Lauric Acid Treatments to Oxidized and Control Biochars and Their Effects on Rubber Composite Tensile Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Used
2.2. Chemical and Physical Material Properties
2.3. Lauric Acid Coating of Biochar
2.4. Creation and Tensile Testing of Rubber Composite Samples
3. Results
3.1. Biochar Characterization
3.2. Determination of Lauric Acid Coating Concentration
3.3. Tensile Property Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carbon Black in Tires. Available online: https://www.orioncarbons.com/tire (accessed on 30 September 2022).
- Lee, C.-C.; Olasehinde-Williams, G.; Akadiri, S.S. Are geopolitical threats powerful enough to predict global oil price volatility? Environ. Sci. Pollut. Res. 2021, 28, 28720–28731. [Google Scholar] [CrossRef] [PubMed]
- Ragothaman, A.; Anderson, W.A. Air Quality Impacts of Petroleum Refining and Petrochemical Industries. Environments 2017, 4, 66. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.-J.; Jiang, H.; Yu, H.-Q. Development of Biochar-Based Functional Materials: Toward a Sustainable Platform Carbon Material. Chem. Rev 2015, 115, 12251–12285. [Google Scholar] [CrossRef] [PubMed]
- Gross, A.; Bromm, T.; Glaser, B. Soil Organic Carbon Sequestration after Biochar Application: A Global Meta-Analysis. Agronomy 2021, 11, 2474. [Google Scholar] [CrossRef]
- Cheng, F.; Li, X. Preparation and Application of Biochar-Based Catalysts for Biofuel Production. Catalysts 2018, 8, 346. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.-Z.; Huang, D.-L.; Liu, Y.-G.; Zhang, C.; Lai, C.; Wang, X.; Zeng, G.-M.; Gong, X.-M.; Duan, A.; Zhang, Q.; et al. Recent advances in biochar-based catalysts: Properties, applications and mechanisms for pollution remediation. Chem. Eng. J. 2019, 371, 380–403. [Google Scholar] [CrossRef]
- Do Minh, T.; Song, J.; Deb, A.; Cha, L.; Srivastava, V.; Sillanpää, M. Biochar based catalysts for the abatement of emerging pollutants: A review. Chem. Eng. J. 2020, 394, 124856. [Google Scholar] [CrossRef]
- Liu, W.-J.; Jiang, H.; Yu, H.-Q. Emerging applications of biochar-based materials for energy storage and conversion. Energy Environ. Sci. 2019, 12, 1751–1779. [Google Scholar] [CrossRef]
- Senthil, C.; Lee, C.W. Biomass-derived biochar materials as sustainable energy sources for electrochemical energy storage devices. Renew. Sustain. Energy Rev. 2021, 137, 110464. [Google Scholar] [CrossRef]
- Ehsani, A.; Parsimehr, H. Electrochemical energy storage electrodes from fruit biochar. Adv. Colloid Interface Sci. 2020, 284, 102263. [Google Scholar] [CrossRef] [PubMed]
- Xiang, W.; Zhang, X.; Chen, J.; Zou, W.; He, F.; Hu, X.; Tsang, D.C.W.; Ok, Y.S.; Gao, B. Biochar technology in wastewater treatment: A critical review. Chemosphere 2020, 252, 126539. [Google Scholar] [CrossRef] [PubMed]
- Palansooriya, K.N.; Yang, Y.; Tsang, Y.F.; Sarkar, B.; Hou, D.; Cao, X.; Meers, E.; Rinklebe, J.; Kim, K.-H.; Ok, Y.S. Occurrence of contaminants in drinking water sources and the potential of biochar for water quality improvement: A review. Crit. Rev. Env. Sci. Technol. 2020, 50, 549–611. [Google Scholar] [CrossRef]
- Gwenzi, W.; Chaukura, N.; Wenga, T.; Mtisi, M. Biochars as media for air pollution control systems: Contaminant removal, applications and future research directions. Sci. Total Environ. 2021, 753, 142249. [Google Scholar] [CrossRef] [PubMed]
- Peiris, C.; Nawalage, S.; Wewalwela, J.J.; Gunatilake, S.R.; Vithanage, M. Biochar based sorptive remediation of steroidal estrogen contaminated aqueous systems: A critical review. Environ. Res. 2020, 191, 110183. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, D.; Maiti, S.K. Can biochar reclaim coal mine spoil? J. Environ. Manag. 2020, 272, 111097. [Google Scholar] [CrossRef] [PubMed]
- Weber, K.; Quicker, P. Properties of biochar. Fuel 2018, 217, 240–261. [Google Scholar] [CrossRef]
- Greenough, S.; Dumont, M.-J.; Prasher, S. The physicochemical properties of biochar and its applicability as a filler in rubber composites: A review. Mater. Today Commun. 2021, 29, 102912. [Google Scholar] [CrossRef]
- Xue, B.; Wang, X.; Sui, J.; Xu, D.; Zhu, Y.; Liu, X. A facile ball milling method to produce sustainable pyrolytic rice husk bio-filler for reinforcement of rubber mechanical property. Ind. Crop. Prod. 2019, 141, 111791. [Google Scholar] [CrossRef]
- Jiang, C.; Bo, J.; Xiao, X.; Zhang, S.; Wang, Z.; Yan, G.; Wu, Y.; Wong, C.; He, H. Converting waste lignin into nano-biochar as a renewable substitute of carbon black for reinforcing styrene-butadiene rubber. Waste Manag. 2020, 102, 732–742. [Google Scholar] [CrossRef]
- Lay, M.; Rusli, A.; Abdullah, M.K.; Abdul Hamid, Z.A.; Shuib, R.K. Converting dead leaf biomass into activated carbon as a potential replacement for carbon black filler in rubber composites. Compos. Part B Eng. 2020, 201, 108366. [Google Scholar] [CrossRef]
- Suliman, W.; Harsh, J.B.; Abu-Lail, N.I.; Fortuna, A.-M.; Dallmeyer, I.; Garcia-Perez, M. Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass Bioenerg. 2016, 84, 37–48. [Google Scholar] [CrossRef]
- Suliman, W.; Harsh, J.B.; Abu-Lail, N.I.; Fortuna, A.-M.; Dallmeyer, I.; Garcia-Perez, M. Modification of biochar surface by air oxidation: Role of pyrolysis temperature. Biomass Bioenerg. 2016, 85, 1–11. [Google Scholar] [CrossRef]
- Yi, Z.; Li, C.; Li, Q.; Zhang, L.; Zhang, S.; Wang, S.; Qin, L.; Hu, X. Influence of CO2 atmosphere on property of biochar from pyrolysis of cellulose. J. Environ. Chem. Eng. 2022, 10, 107339. [Google Scholar] [CrossRef]
- Shen, Y.; Ma, D.; Ge, X. CO2-looping in biomass pyrolysis or gasification. Sustain. Energy Fuels 2017, 1, 1700–1729. [Google Scholar] [CrossRef]
- Jung, S.-H.; Kim, J.-S. Production of biochars by intermediate pyrolysis and activated carbons from oak by three activation methods using CO2. J. Anal. Appl. Pyrol. 2014, 107, 116–122. [Google Scholar] [CrossRef]
- Rothon, R.N. Rapra Technology Limited. Particulate-Filled Polymer Composites, 2nd ed.; Rapra Technology: Shrewsbury, UK, 2003; 544p. [Google Scholar]
- Mukherjee, A.; Zimmerman, A.R.; Harris, W. Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 2011, 163, 247–255. [Google Scholar] [CrossRef]
- Navarathna, C.M.; Bombuwala Dewage, N.; Keeton, C.; Pennisson, J.; Henderson, R.; Lashley, B.; Zhang, X.; Hassan, E.B.; Perez, F.; Mohan, D.; et al. Biochar Adsorbents with Enhanced Hydrophobicity for Oil Spill Removal. ACS Appl. Mater. Interfaces 2020, 12, 9248–9260. [Google Scholar] [CrossRef] [PubMed]
- Darmstadt, H.; Roy, C.; Kaliaguine, S.; Xu, G.; Auger, M.; Tuel, A.; Ramaswamy, V. Solid state 13C-NMR spectroscopy and XRD studies of commercial and pyrolytic carbon blacks. Carbon 2000, 38, 1279–1287. [Google Scholar] [CrossRef]
- Kong, W.; Fu, X.; Yuan, Y.; Liu, Z.; Lei, J. Preparation and thermal properties of crosslinked polyurethane/lauric acid composites as novel form stable phase change materials with a low degree of supercooling. RSC Adv. 2017, 7, 29554–29562. [Google Scholar] [CrossRef]
SBR | CB | Filler | MBTBM | SA | ZnO | Sulfur | CBTS |
---|---|---|---|---|---|---|---|
100 | 30 | 12.86 | 0.80 | 2.00 | 3.00 | 2.00 | 1.00 |
Sample | C (%) | H (%) | N (%) | O (%) a | Ash (%) | Density (g/cm3) |
---|---|---|---|---|---|---|
CB b | >99 | <1 | <1 | <1 | <1 | 1.7–1.9 |
BC control | 87.22 ± 0.50 | 1.81 ± 0.18 | 0.12 ± 0.04 | 6.52 | 4.33 | 1.68 |
BC air | 86.42 ± 0.38 | 1.63 ± 0.20 | 0.13 ± 0.02 | 7.93 | 3.89 | 1.69 |
BC CO2 | 88.67 ± 0.32 | 1.49 ± 0.03 | 0.15 ± 0.03 | 5.96 | 3.73 | 1.69 |
LA Concentration (%) | Tensile Strength (MPa) | Elongation (%) | Toughness (MPa) |
---|---|---|---|
0 | 19.8 ± 0.4 | 526 ± 14 | 49.1 ± 2.7 |
5 | 19.2 ± 0.5 | 527 ± 5 | 46.3 ± 1.8 |
10 | 20.5 ± 1.1 | 552 ± 20 | 53.2 ± 3.7 |
20 | 19.3 ± 0.8 | 513 ± 10 | 45.6 ± 0.9 |
Sample | n | Tensile Strength (MPa) | Elongation (%) | Toughness (MPa) |
---|---|---|---|---|
BC control | 8 | 20.1 ± 2.1 | 501 ± 42 | 43.1 ± 8.5 |
BC air | 5 | 21.2 ± 1.0 | 488 ± 17 | 44.8 ± 4.0 |
BC CO2 | 4 | 18.6 ± 1.1 | 447 ± 20 | 34.9 ± 3.9 |
BC control LA | 5 | 20.7 ± 0.9 | 532 ± 18 | 47.9 ± 3.7 |
BC air LA | 4 | 20.8 ± 1.3 | 504 ± 25 | 45.4 ± 5.7 |
BC CO2 LA | 5 | 22.1 ± 0.6 | 536 ± 12 | 51.6 ± 2.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peterson, S.C.; Thomas, A.J. Lauric Acid Treatments to Oxidized and Control Biochars and Their Effects on Rubber Composite Tensile Properties. C 2022, 8, 58. https://doi.org/10.3390/c8040058
Peterson SC, Thomas AJ. Lauric Acid Treatments to Oxidized and Control Biochars and Their Effects on Rubber Composite Tensile Properties. C. 2022; 8(4):58. https://doi.org/10.3390/c8040058
Chicago/Turabian StylePeterson, Steven C., and A. J. Thomas. 2022. "Lauric Acid Treatments to Oxidized and Control Biochars and Their Effects on Rubber Composite Tensile Properties" C 8, no. 4: 58. https://doi.org/10.3390/c8040058
APA StylePeterson, S. C., & Thomas, A. J. (2022). Lauric Acid Treatments to Oxidized and Control Biochars and Their Effects on Rubber Composite Tensile Properties. C, 8(4), 58. https://doi.org/10.3390/c8040058