Biomass-Derived N-Doped Activated Carbon from Eucalyptus Leaves as an Efficient Supercapacitor Electrode Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Activated Carbon
2.3. Synthesis of N-Doped Activated Carbon
2.4. Charaterization and Electrochemical Performance Evaluations
3. Results
3.1. X-ray Diffraction Spectroscopy
3.2. Raman Spectroscopy
3.3. Scanning Electronic Microscopy (SEM)
3.4. Fourier-Transform Infrared Spectroscopy (FTIR)
3.5. Cyclic Voltammetry (CV)
3.6. Galvano-Static Charge and Discharge (GCD)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Amirante, R.; Cassone, E.; Distaso, E.; Tamburrano, P. Overview on Recent Developments in Energy Storage: Mechanical, Electrochemical and Hydrogen Technologies. Energy Convers. Manag. 2017, 132, 372–387. [Google Scholar] [CrossRef]
- Aliyu, A.K.; Modu, B.; Tan, C.W. A Review of Renewable Energy Development in Africa: A Focus in South Africa, Egypt and Nigeria. Renew. Sustain. Energy Rev. 2018, 81, 2502–2518. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, T.; Talifu, D.; Abulizi, A.; Ji, Y. Porous Carbon Materials Derived from Waste Cotton Stalk with Ultra-High Surface Area for High Performance Supercapacitors. Mater. Res. Bull. 2021, 143, 111457. [Google Scholar] [CrossRef]
- Dubey, P.; Shrivastav, V.; Maheshwari, P.H.; Sundriyal, S. Recent Advances in Biomass Derived Activated Carbon Electrodes for Hybrid Electrochemical Capacitor Applications: Challenges and Opportunities. Carbon 2020, 170, 1–29. [Google Scholar] [CrossRef]
- Chen, T.; Dai, L. Carbon Nanomaterials for High-Performance Supercapacitors. Mater. Today 2013, 16, 272–280. [Google Scholar] [CrossRef]
- Atika; Dutta, R.K. Oxygen-Rich Porous Activated Carbon from Eucalyptus Wood as an Efficient Supercapacitor Electrode. Energy Technol. 2021, 9, 2100463. [Google Scholar] [CrossRef]
- Stoller, M.D.; Ruoff, R.S. Best Practice Methods for Determining an Electrode Material’s Performance for Ultracapacitors. Energy Environ. Sci. 2010, 3, 1294–1301. [Google Scholar] [CrossRef]
- Tan, Y.; Li, Y.; Wang, W.; Ran, F. High Performance Electrode of Few-Layer-Carbon@bulk-Carbon Synthesized via Controlling Diffusion Depth from Liquid Phase to Solid Phase for Supercapacitors. J. Energy Storage 2020, 32, 101672. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, X.S. Carbon-Based Materials as Supercapacitor Electrodes. Chem. Soc. Rev. 2009, 38, 2520–2531. [Google Scholar] [CrossRef]
- Najib, S.; Erdem, E. Current Progress Achieved in Novel Materials for Supercapacitor Electrodes: Mini Review. Nanoscale Adv. 2019, 1, 2817–2827. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Guo, D.; Liu, Y.; Wang, H.; Wang, L. Recent Advances and Challenges in Biomass-Derived Porous Carbon Nanomaterials for Supercapacitors. Chem. Eng. J. 2020, 397, 125418. [Google Scholar] [CrossRef]
- Sellin, N.; Krohl, D.R.; Marangoni, C.; Souza, O. Oxidative Fast Pyrolysis of Banana Leaves in Fluidized Bed Reactor. Renew. Energy 2016, 96, 56–64. [Google Scholar] [CrossRef]
- Pujol, D.; Liu, C.; Gominho, J.; Olivella, M.À.; Fiol, N.; Villaescusa, I.; Pereira, H. The Chemical Composition of Exhausted Coffee Waste. Ind. Crops Prod. 2013, 50, 423–429. [Google Scholar] [CrossRef]
- Al-Maliki, S.; Al-Masoudi, M. Interactions between Mycorrhizal Fungi, Tea Wastes, and Algal Biomass Affecting the Microbial Community, Soil Structure, and Alleviating of Salinity Stress in Corn Yield (Zea mays L.). Plants 2018, 7, 63. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, Y.; Zhang, G.; Liu, W.; Wang, D.; Dong, Y. Preparation of Activated Carbon from Willow Leaves and Evaluation in Electric Double-Layer Capacitors. Mater. Lett. 2016, 176, 60–63. [Google Scholar] [CrossRef]
- Guo, N.; Li, M.; Sun, X.; Wang, F.; Yang, R. Tremella Derived Ultrahigh Specific Surface Area Activated Carbon for High Performance Supercapacitor. Mater. Chem. Phys. 2017, 201, 399–407. [Google Scholar] [CrossRef]
- El-Sayed, S.A.; Mostafa, M.E. Thermal Pyrolysis and Kinetic Parameter Determination of Mango Leaves Using Common and New Proposed Parallel Kinetic Models. RSC Adv. 2020, 10, 18160–18179. [Google Scholar] [CrossRef]
- Grima-Olmedo, C.; Ramírez-Gómez, A.; Gómez-Limón, D.; Clemente-Jul, C. Activated Carbon from Flash Pyrolysis of Eucalyptus Residue. Heliyon 2016, 2, e00155. [Google Scholar] [CrossRef] [Green Version]
- Gan, Y.X. Activated Carbon from Biomass Sustainable Sources. C 2021, 7, 39. [Google Scholar] [CrossRef]
- Roy, C.K.; Shah, S.S.; Reaz, A.H.; Sultana, S.; Chowdhury, A.N.; Firoz, S.H.; Zahir, M.H.; Ahmed Qasem, M.A.; Aziz, M.A. Preparation of Hierarchical Porous Activated Carbon from Banana Leaves for High-Performance Supercapacitor: Effect of Type of Electrolytes on Performance. Chem. Asian J. 2021, 16, 296–308. [Google Scholar] [CrossRef]
- Bergna, D.; Varila, T.; Romar, H.; Lassi, U. Comparison of the Properties of Activated Carbons Produced in One-Stage and Two-Stage Processes. C 2018, 4, 41. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Yu, S.; Xu, K.; Zhang, Y.; Zhang, L.; Lou, G.; Wu, Y.; Zhu, E.; Chen, H.; Shen, Z.; et al. Sustainable Activated Carbons from Dead Ginkgo Leaves for Supercapacitor Electrode Active Materials. Chem. Eng. Sci. 2018, 181, 36–45. [Google Scholar] [CrossRef]
- Sylla, N.F.; Ndiaye, N.M.; Ngom, B.D.; Mutuma, B.K.; Momodu, D.; Chaker, M.; Manyala, N. Ex-Situ Nitrogen-Doped Porous Carbons as Electrode Materials for High Performance Supercapacitor. J. Colloid Interface Sci. 2020, 569, 332–345. [Google Scholar] [CrossRef] [PubMed]
- Xiao, P.W.; Meng, Q.; Zhao, L.; Li, J.J.; Wei, Z.; Han, B.H. Biomass-Derived Flexible Porous Carbon Materials and Their Applications in Supercapacitor and Gas Adsorption. Mater. Des. 2017, 129, 164–172. [Google Scholar] [CrossRef]
- Farma, R.; Kusumasari, M.; Apriyani, I.; Awitdrus, A. The Production of Carbon Electrodes from Lignocellulosic Biomass of Areca Midrib through a Chemical Activation Process for Supercapacitor Cells Application. Energy Sources A Recover. Util. Environ. Eff. 2021, 1–11. [Google Scholar] [CrossRef]
- Lee, S.M.; Lee, S.H.; Roh, J.S. Analysis of Activation Process of Carbon Black Based on Structural Parameters Obtained by XRD Analysis. Crystals 2021, 11, 153. [Google Scholar] [CrossRef]
- Pang, X.; Cao, M.; Qin, J.; Li, X.; Yang, X. Synthesis of Bamboo-Derived Porous Carbon: Exploring Structure Change, Pore Formation and Supercapacitor Application. J. Porous Mater. 2022, 29, 559–569. [Google Scholar] [CrossRef]
- Ratnaji, T.; Kennedy, L.J. Hierarchical Porous Carbon Derived from Tea Waste for Energy Storage Applications: Waste to Worth. Diam. Relat. Mater. 2020, 110, 108100. [Google Scholar] [CrossRef]
- Benadjemia, M.; Millière, L.; Reinert, L.; Benderdouche, N.; Duclaux, L. Preparation, Characterization and Methylene Blue Adsorption of Phosphoric Acid Activated Carbons from Globe Artichoke Leaves. Fuel Process. Technol. 2011, 92, 1203–1212. [Google Scholar] [CrossRef]
- Xu, J.; Chen, L.; Qu, H.; Jiao, Y.; Xie, J.; Xing, G. Preparation and Characterization of Activated Carbon from Reedy Grass Leaves by Chemical Activation with H3PO4. Appl. Surf. Sci. 2014, 320, 674–680. [Google Scholar] [CrossRef]
- Saka, C. BET, TG-DTG, FT-IR, SEM, Iodine Number Analysis and Preparation of Activated Carbon from Acorn Shell by Chemical Activation with ZnCl2. J. Anal. Appl. Pyrolysis 2012, 95, 21–24. [Google Scholar] [CrossRef]
- Joshi, S.; Pokharel, B.P. Preparation and Characterization of Activated Carbon from Lapsi (Choerospondias axillaris) Seed Stone by Chemical Activation with Potassium Hydroxide. J. Inst. Eng. 2014, 9, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Tsyganova, S.; Mazurova, E.; Bondarenko, G.; Fetisova, O.; Skvortsova, G. Structural and Current-Voltage Characteristics of Carbon Materials Obtained during Carbonization of Fir and Aspen Barks. Biomass Bioenergy 2020, 142, 105759. [Google Scholar] [CrossRef]
- Ochai-Ejeh, F.O.; Bello, A.; Dangbegnon, J.; Khaleed, A.A.; Madito, M.J.; Bazegar, F.; Manyala, N. High Electrochemical Performance of Hierarchical Porous Activated Carbon Derived from Lightweight Cork (Quercus suber). J. Mater. Sci. 2017, 52, 10600–10613. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, J.; Bhattacharyya, S. Application of Graphene and Graphene-Based Materials in Clean Energy-Related Devices Minghui. Arch. Thermodyn. 2012, 33, 23–40. [Google Scholar] [CrossRef]
- Puttapati, S.K.; Gedela, V.; Srikanth, V.V.S.S.; Reddy, M.V.; Adams, S.; Chowdari, B.V.R. Unique Reduced Graphene Oxide as Efficient Anode Material in Li Ion Battery. Bull. Mater. Sci. 2018, 41, 53. [Google Scholar] [CrossRef] [Green Version]
- Farma, R.; Apriyani, I.; Awitdrus, A.; Taer, E.; Apriwandi, A. Hemicellulosa-Derived Arenga pinnata Bunches as Free-Standing Carbon Nanofiber Membranes for Electrode Material Supercapacitors. Sci. Rep. 2022, 12, 2572. [Google Scholar] [CrossRef]
- Gou, H.; He, J.; Zhao, G.; Zhang, L.; Yang, C.; Rao, H. Porous Nitrogen-Doped Carbon Networks Derived from Orange Peel for High-Performance Supercapacitors. Ionics 2019, 25, 4371–4380. [Google Scholar] [CrossRef]
- Ahmed, S.; Rafat, M.; Ahmed, A. Nitrogen Doped Activated Carbon Derived from Orange Peel for Supercapacitor Application. Adv. Nat. Sci. Nanosci. Nanotechnol. 2018, 9, 035008. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Dai, F.; Xiao, Q.; Yang, L.; Shen, J.; Zhang, C.; Cai, M. Nitrogen-Doped Activated Carbon for a High Energy Hybrid Supercapacitor. Energy Environ. Sci. 2016, 9, 102–106. [Google Scholar] [CrossRef]
- Ahmed, S.; Ahmed, A.; Rafat, M. Nitrogen Doped Activated Carbon from Pea Skin for High Performance Supercapacitor. Mater. Res. Express 2018, 5, 045508. [Google Scholar] [CrossRef]
- Liu, Y.; An, Z.; Wu, M.; Yuan, A.; Zhao, H.; Zhang, J.; Xu, J. Peony Pollen Derived Nitrogen-Doped Activated Carbon for Supercapacitor Application. Chin. Chem. Lett. 2020, 31, 1644–1647. [Google Scholar] [CrossRef]
- Li, Z.; Liang, Q.; Yang, C.; Zhang, L.; Li, B.; Li, D. Convenient Preparation of Nitrogen-Doped Activated Carbon from Macadamia Nutshell and Its Application in Supercapacitor. J. Mater. Sci. Mater. Electron. 2017, 28, 13880–13887. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, J.; Zhang, X.; Song, Q.; Wu, J.; Ding, L.; Zhang, C.; Zhu, H.; Cui, H. Template-Free Preparation of Nitrogen-Doped Activated Carbon with Porous Architecture for High-Performance Supercapacitors. Microporous Mesoporous Mater. 2019, 276, 280–291. [Google Scholar] [CrossRef]
- Quan, C.; Jia, X.; Gao, N. Nitrogen-Doping Activated Biomass Carbon from Tea Seed Shell for CO2 Capture and Supercapacitor. Int. J. Energy Res. 2020, 44, 1218–1232. [Google Scholar] [CrossRef]
- Han, X.; Jiang, H.; Zhou, Y.; Hong, W.; Zhou, Y.; Gao, P.; Ding, R.; Liu, E. A High Performance Nitrogen-Doped Porous Activated Carbon for Supercapacitor Derived from Pueraria. J. Alloys Compd. 2018, 744, 544–551. [Google Scholar] [CrossRef]
Sample Code | 2θ | Inter Layer (nm) | Micro Crystalline Dimension | Lc/La | Np | SSAxrd | |||
---|---|---|---|---|---|---|---|---|---|
* C002 | * C100 | d002 | d100 | Lc | La | ||||
AC-800 | 24.35 | 43.72 | 0.365 | 0.2067 | 0.957 | 3.506 | 0.273 | 2.621 | 1008.34 |
AC-700 | 24.85 | 43.87 | 0.357 | 0.2061 | 0.939 | 3.006 | 0.312 | 2.625 | 1027.74 |
AC-600 | 24.26 | 43.71 | 0.366 | 0.2068 | 0.989 | 2.626 | 0.376 | 2.699 | 975.73 |
AC-500 | 23.92 | 43.96 | 0.371 | 0.2072 | 1.000 | 2.156 | 0.463 | 2.692 | 965.10 |
AC-400 | 23.85 | 43.01 | 0.372 | 0.2100 | 1.024 | 2.854 | 0.358 | 2.748 | 942.54 |
NAC-700 | 25.05 | 43.49 | 0.354 | 0.2078 | 0.925 | 2.917 | 0.317 | 2.607 | 1042.92 |
Raw Materials | Precursors | Electrolyte | Specific Capacitance (F g−1) | Energy Density (Wh kg−1) | Ref. |
---|---|---|---|---|---|
Orange peel | KOH + Melamine | 6 M KOH | 168 | 23.3 | [39] |
corncob | KOH + NH3 | Organic | 185 | - | [40] |
Pea skin | KOH + Melamine | 1 M LiTFSI in 1 L EMITFSI | 141 | 19.6 | [41] |
Peony pollen | KOH + NH4[BF4] | 6 M KOH | 209 | - | [42] |
Macadamia nutshell | KOH + Melamine | 1 M KOH | 229 | - | [43] |
Glucosamine | - | PVA/ KOH | 244 | 7.2 | [44] |
Tea seed shell | KOH + Melamine | 1 M KOH | 141 | - | [45] |
Pueraria | Melamine + K2CO3 | 6 M KOH | 250 | 8.46 | [46] |
Eucalyptus Leaves | ZnCl2 + Urea | 2 KOH | 258 | 28.76 | Present work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bejjanki, D.; Banothu, P.; Kumar, V.B.; Kumar, P.S. Biomass-Derived N-Doped Activated Carbon from Eucalyptus Leaves as an Efficient Supercapacitor Electrode Material. C 2023, 9, 24. https://doi.org/10.3390/c9010024
Bejjanki D, Banothu P, Kumar VB, Kumar PS. Biomass-Derived N-Doped Activated Carbon from Eucalyptus Leaves as an Efficient Supercapacitor Electrode Material. C. 2023; 9(1):24. https://doi.org/10.3390/c9010024
Chicago/Turabian StyleBejjanki, Dinesh, Praveen Banothu, Vijay Bhooshan Kumar, and Puttapati Sampath Kumar. 2023. "Biomass-Derived N-Doped Activated Carbon from Eucalyptus Leaves as an Efficient Supercapacitor Electrode Material" C 9, no. 1: 24. https://doi.org/10.3390/c9010024
APA StyleBejjanki, D., Banothu, P., Kumar, V. B., & Kumar, P. S. (2023). Biomass-Derived N-Doped Activated Carbon from Eucalyptus Leaves as an Efficient Supercapacitor Electrode Material. C, 9(1), 24. https://doi.org/10.3390/c9010024