A Novel Approach to Water Softening Based on Graphene Oxide-Activated Open Cell Foams
Abstract
:1. Introduction
2. Materials and Methods
2.1. Washcoat Deposition and Characterization
2.2. Water Softening Tests
3. Results
3.1. Graphene Deposition and Washcoat Characterization
3.2. Assessment of the Softening Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Allen, M.J.; Tung, V.C.; Kaner, R.B. Honeycomb Carbon: A Review of Graphene. Chem. Rev. 2010, 110, 132–145. [Google Scholar] [CrossRef]
- Lee, X.J.; Hiew, B.Y.Z.; Lai, K.C.; Lee, L.Y.; Gan, S.; Thangalazhy-Gopakumar, S.; Rigby, S. Review on graphene and its derivatives: Synthesis methods and potential industrial implementation. J. Taiwan Inst. Chem. Eng. 2019, 98, 163–180. [Google Scholar] [CrossRef]
- Liu, J.; Chen, F.; Yao, Q.; Sun, Y.; Huang, W.; Wang, R.; Yang, B.; Li, W.; Tian, J. Application and prospect of graphene and its composites in wastewater treatment. Polish J. Environ. Stud. 2020, 29, 3965–3974. [Google Scholar] [CrossRef]
- Anand, A.; Unnikrishnan, B.; Mao, J.-Y.; Lin, H.-J.; Huang, C.-C. Graphene-based nanofiltration membranes for improving salt rejection, water flux and antifouling–A review. Desalination 2018, 429, 119–133. [Google Scholar] [CrossRef]
- Castelletto, S.; Boretti, A. Advantages, limitations, and future suggestions in studying graphene-based desalination membranes. RSC Adv. 2021, 11, 7981–8002. [Google Scholar] [CrossRef] [PubMed]
- Buelke, C.; Alshami, A.; Casler, J.; Lewis, J.; Al-Sayaghi, M.; Hickner, M.A. Graphene oxide membranes for enhancing water purification in terrestrial and space-born applications: State of the art. Desalination 2018, 448, 113–132. [Google Scholar] [CrossRef]
- Han, Z.-Y.; Huang, L.-J.; Qu, H.-J.; Wang, Y.-X.; Zhang, Z.-J.; Rong, Q.-L.; Sang, Z.-Q.; Wang, Y.; Kipper, M.J.; Tang, J.-G. A review of performance improvement strategies for graphene oxide-based and graphene-based membranes in water treatment. J. Mater. Sci. 2021, 56, 9545–9574. [Google Scholar] [CrossRef]
- You, Y.; Sahajwalla, V.; Yoshimura, M.; Joshi, R.K. Graphene and graphene oxide for desalination. Nanoscale 2016, 8, 117–119. [Google Scholar] [CrossRef]
- Alen, S.K.; Nam, S.; Dastgheib, S.A. Recent advances in graphene oxide membranes for gas separation applications. Int. J. Mol. Sci. 2019, 20, 5609. [Google Scholar] [CrossRef] [PubMed]
- Kwon, O.; Choi, Y.; Choi, E.; Kim, M.; Woo, Y.C.; Kim, D.W. Fabrication Techniques for Graphene Oxide-Based Molecular Separation Membranes: Towards Industrial Application. Nanomaterials 2021, 11, 757. [Google Scholar] [CrossRef] [PubMed]
- RPandey, R.P.; Shukla, G.; Manohar, M.; Shahi, V.K. Graphene oxide based nanohybrid proton exchange membranes for fuel cell applications: An overview. Adv. Colloid Interface Sci. 2017, 240, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Migliavacca, A.; Latorrata, S.; Stampino, P.G.; Dotelli, G. Preparation and characterization of graphene oxide based membranes as possible Gas Diffusion Layers for PEM fuel cells with enhanced surface homogeneity. Mater. Today Proc. 2017, 4, 11594–11607. [Google Scholar] [CrossRef] [Green Version]
- Peressut, A.B.; Latorrata, S.; Stampino, P.G.; Dotelli, G. Development of self-assembling sulfonated graphene oxide membranes as a potential proton conductor. Mater. Chem. Phys. 2021, 257, 123768. [Google Scholar] [CrossRef]
- Liu, Y. Application of graphene oxide in water treatment. IOP Conf. Ser. Earth Environ. Sci. 2017, 94, 012060. [Google Scholar] [CrossRef]
- Li, B.; Wang, C.-G.; Surat’Man, N.E.; Loh, X.J.; Li, Z. Microscopically tuning the graphene oxide framework for membrane separations: A review. Nanoscale Adv. 2021, 3, 5265–5276. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, Y.; Gao, X.; Ma, Z.; Wang, X.; Gao, C. Multilayered graphene oxide membranes for water treatment: A review. Carbon N. Y. 2018, 139, 964–981. [Google Scholar] [CrossRef]
- Latorrata, S.; Cristiani, C.; Peressut, A.B.; Brambilla, L.; Bellotto, M.; Dotelli, G.; Finocchio, E.; Stampino, P.G.; Ramis, G. Reduced Graphene Oxide Membranes as Potential Self-Assembling Filter for Wastewater Treatment. Minerals 2021, 11, 15. [Google Scholar] [CrossRef]
- Rocha, L.S.; Nogueira, J.; Daniel-Da-Silva, A.L.; Marques, P.; Fateixa, S.; Pereira, E.; Trindade, T. Water softening using graphene oxide/biopolymer hybrid nanomaterials. J. Environ. Chem. Eng. 2021, 9, 105045. [Google Scholar] [CrossRef]
- Liang, J.; Huang, Y.; Zhang, F.; Zhang, Y.; Li, N.; Chen, Y. The use of graphene oxide membranes for the softening of hard water. Sci. China Technol. Sci. 2014, 57, 284–287. [Google Scholar] [CrossRef]
- Petukhov, D.I.; Kapitanova, O.O.; Eremina, E.A.; Goodilin, E.A. Preparation, chemical features, structure and applications of membrane materials based on graphene oxide. Mendeleev Commun. 2021, 31, 137–148. [Google Scholar] [CrossRef]
- Yousefi, N.; Lu, X.; Elimelech, M.; Tufenkji, N. Environmental performance of graphene-based 3D macrostructures. Nat. Nanotechnol. 2019, 14, 107–119. [Google Scholar] [CrossRef]
- Mahalingam, D.K.; Falca, G.; Upadhya, L.; Abou-Hamad, E.; Batra, N.; Wang, S.; Musteata, V.; da Costa, P.M.; Nunes, S.P. Spray-coated graphene oxide hollow fibers for nanofiltration. J. Memb. Sci. 2020, 606, 118006. [Google Scholar] [CrossRef]
- Maio, A.; Gammino, M.; Gulino, E.F.; Megna, B.; Fara, P.; Scaffaro, R. Rapid One-Step Fabrication of Graphene Oxide-Decorated Polycaprolactone Three-Dimensional Templates for Water Treatment. ACS Appl. Polym. Mater. 2020, 2, 4993–5005. [Google Scholar] [CrossRef]
- Scaffaro, R.; Gammino, M.; Maio, A. Wet electrospinning-aided self-assembly of multifunctional GO-CNT@PCL core-shell nanocomposites with spider leg bioinspired hierarchical architectures. Compos. Sci. Technol. 2022, 221, 109363. [Google Scholar] [CrossRef]
- Sanati, A.; Raeissi, K.; Karimzadeh, F. A cost-effective and green-reduced graphene oxide/polyurethane foam electrode for electrochemical applications. FlatChem 2020, 20, 100162. [Google Scholar] [CrossRef]
- Sakhadeo, N.N.; Patro, T.U. Exploring the Multifunctional Applications of Surface-Coated Polymeric Foams─A Review. Ind. Eng. Chem. Res. 2022, 61, 5366–5387. [Google Scholar] [CrossRef]
- Plutnar, J.; Pumera, M.; Sofer, Z. The chemistry of CVD graphene. J. Mater. Chem. C 2018, 6, 6082–6101. [Google Scholar] [CrossRef]
- Chen, Z.; Ren, W.; Gao, L.; Liu, B.; Pei, S.; Cheng, H.-M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424–428. [Google Scholar] [CrossRef]
- Wong, R.; Antoniou, A.; Smet, V. Copper-Graphene Foams: A New High-Performance Material System for Advanced Package-Integrated Cooling Technologies. In Proceedings of the 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 1 June–4 July 2021; pp. 1945–1951. [Google Scholar] [CrossRef]
- BFenner, B.R.; Zimmermann, M.V.; da Silva, M.P.; Zattera, A.J. Comparative analysis among coating methods of flexible polyurethane foams with graphene oxide. J. Mol. Liq. 2018, 271, 74–79. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, J.; Wu, T.; Wang, X.; Huang, G.; Qiu, H.; Li, Y.; Wang, W.; Gao, J. Cost-effective reduced graphene oxide-coated polyurethane sponge as a highly efficient and reusable oil-absorbent. ACS Appl. Mater. Interfaces 2013, 5, 10018–10026. [Google Scholar] [CrossRef] [PubMed]
- Tjandra, R.; Lui, G.; Veilleux, A.; Broughton, J.; Chiu, G.; Yu, A. Introduction of an enhanced binding of reduced graphene oxide to polyurethane sponge for oil absorption. Ind. Eng. Chem. Res. 2015, 54, 3657–3663. [Google Scholar] [CrossRef]
- Hodlur, R.; Rabinal, M. Self assembled graphene layers on polyurethane foam as a highly pressure sensitive conducting composite. Compos. Sci. Technol. 2014, 90, 160–165. [Google Scholar] [CrossRef]
- Boland, C.S.; Khan, U.; Binions, M.; Barwich, S.; Boland, J.B.; Weaire, D.; Coleman, J.N. Graphene-coated polymer foams as tuneable impact sensors. Nanoscale 2018, 10, 5366–5375. [Google Scholar] [CrossRef] [Green Version]
- Ba, H.; Truong-Phuoc, L.; Romero, T.; Sutter, C.; Nhut, J.-M.; Schlatter, G.; Giambastiani, G.; Pham-Huu, C. Lightweight, few-layer graphene composites with improved electro-thermal properties as efficient heating devices for de-icing applications. Carbon 2021, 182, 655–668. [Google Scholar] [CrossRef]
- Ambrosetti, M.; Bracconi, M.; Groppi, G.; Tronconi, E. Analytical Geometrical Model of Open Cell Foams with Detailed Description of Strut-Node Intersection. Chem. Ing. Tech. 2017, 89, 915–925. [Google Scholar] [CrossRef]
- Balzarotti, R.; Bisaccia, A.; Tripi, M.C.; Ambrosetti, M.; Groppi, G.; Tronconi, E. Production and characterization of copper periodic open cellular structures made by 3D printing-replica technique. J. Adv. Manuf. Process. 2020, 2, e10068. [Google Scholar] [CrossRef]
- Balzarotti, R.; Fratalocchi, L.; Latorrata, S.; Finocchio, E.; Cristiani, C. Effective Ce-based catalysts deposition on ceramic open cell foams. Appl. Catal. A Gen. 2019, 584, 117089. [Google Scholar] [CrossRef]
- Zhang, W.; He, W.; Jing, X. Preparation of a stable graphene dispersion with high concentration by ultrasound. J. Phys. Chem. B 2010, 114, 10368–10373. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, T. Study of ultrasonic dispersion of graphene nanoplatelets. Materials 2019, 12, 1757. [Google Scholar] [CrossRef] [Green Version]
- Tyurnina, A.V.; Tzanakis, I.; Morton, J.; Mi, J.; Porfyrakis, K.; Maciejewska, B.M.; Grobert, N.; Eskin, D.G. Ultrasonic exfoliation of graphene in water: A key parameter study. Carbon 2020, 168, 737–747. [Google Scholar] [CrossRef]
Sample name | F60 |
Bulk material | Polyurethane |
Support type | Open cell foam |
Cell diameter [µm] | 610 ± 40 |
Strut size [µm] | 64 ± 8 |
Strut shape | Triangular |
Porosity (ε) [-] | 0.909 |
Geometric surface area [m−1] | 4500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balzarotti, R.; Migliavacca, A.; Basso Peressut, A.; Mansutti, A.; Latorrata, S. A Novel Approach to Water Softening Based on Graphene Oxide-Activated Open Cell Foams. C 2023, 9, 6. https://doi.org/10.3390/c9010006
Balzarotti R, Migliavacca A, Basso Peressut A, Mansutti A, Latorrata S. A Novel Approach to Water Softening Based on Graphene Oxide-Activated Open Cell Foams. C. 2023; 9(1):6. https://doi.org/10.3390/c9010006
Chicago/Turabian StyleBalzarotti, Riccardo, Alessandro Migliavacca, Andrea Basso Peressut, Alessandro Mansutti, and Saverio Latorrata. 2023. "A Novel Approach to Water Softening Based on Graphene Oxide-Activated Open Cell Foams" C 9, no. 1: 6. https://doi.org/10.3390/c9010006
APA StyleBalzarotti, R., Migliavacca, A., Basso Peressut, A., Mansutti, A., & Latorrata, S. (2023). A Novel Approach to Water Softening Based on Graphene Oxide-Activated Open Cell Foams. C, 9(1), 6. https://doi.org/10.3390/c9010006