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Abstract: In this study, ryegrass straw agricultural residue (Lolium multiflorum L.) was employed as
an adsorbent material to remove methylene blue (MB) dye from aqueous solutions. Four adsorbents
were produced using phosphoric acid and pyrolysis as activating agents. The samples were analyzed
with TGA, FTIR, SEM, and XRD techniques. A rapid adsorption of the MB was obtained with the
ryegrass treated with 40% H3PO4, reaching equilibrium in 2 min. Moreover, a maximum adsorption
capacity of 80.79 mg g−1 and a removal efficiency of 99% were achieved. The results demonstrate a
good performance of adsorbents from ryegrass for removing dye contaminants, such as methylene
blue, from the aqueous solutions.

Keywords: ryegrass; methylene blue; agricultural waste

1. Introduction

Environmental pollution has reached a level of potential threat not only due to the
environmental problems observed in the last years but also due to the health of the entire
population [1,2]. Currently, water pollution is considered one of the main factors that affect
the environment, and textile dyes are known as the world’s most significant source of water
pollution contaminants due to their release into water resources [3]. During the dyeing
process in textile industries, a large fraction of the dye does not react with the cellulose
fibers; therefore, about 20% of all dye used is discarded in effluents [4]. These residues
are composed of non-biodegradable and recalcitrant molecules [5]. Several studies have
focused on the treatment of colored effluents contaminated with methylene blue (MB)
cationic dye [6–9] due to their complex degradation mechanism and high toxicity. Human
exposure to MB dye can cause numerous health issues, such as vomiting, cyanosis, jaundice,
shock, and tissue necrosis [10]. In addition, when present in water bodies the MB hinders
the penetration of light, decreasing oxygen levels and harming the entire aquatic ecosystem,
which can generate several carcinogenic and mutagenic problems in this biota [11,12].

Numerous techniques regarding the treatment of textile wastewater have already been
reported, such as physical oxidation, biological degradation, cavitation, photocatalytic
oxidation, and adsorption [5]. Among them, adsorption has emerged as being an extremely
effective technique in effluent treatment due to its simplicity and the high percentage of
removal of contaminants [13]. Even with it being a considerably inexpensive process,
the main restriction of using adsorption in the treatment of effluents is the cost of the
production of the adsorbent [14–16]. Thus, studies have their main focus on the search
for alternative adsorbent materials [17–23]. In this sense, the use of agricultural waste can
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be an effective alternative due to its abundance and low cost. Thus, it is considered an
eco-friendly and sustainable resource [24,25]. Accordingly, Chahm et al. [8] and Ma [26]
produced adsorbents from the waste of Rapanea ferrugínea using H2SO4 and wheat straw
using KOH and ZnCl2, respectively.

The Lolium multiflorum L. (LM), commonly known as ryegrass, is mostly used in
subtropical regions. However, the south of Brazil is responsible for producing 5 to 8 tons
per hectare that has no destination nor use [27,28].

In a previous work carried out by part of our team, LM was treated with NaOH for the
production of activated carbon. Furthermore, in the investigation regarding the adsorption
of MB dye, the best result reached 67 mg g−1 of maximum adsorption capacity for the
LM treated with NaOH [28]. However, due to the abundance of Ryegrass biomass, we
believe that other forms of activation should be studied. Hence, this work aims to add
value to the agricultural waste of LM, proposing a sustainable use of it as an adsorbent
and a raw material for activated carbon production. The adsorbents were produced using
H3PO4 and pyrolysis as activating agents and were investigated through TGA, DRX, and
BET. The adsorption of the MB dye was analyzed using the mathematical models of kinetic
and isotherm.

2. Materials and Methods
2.1. Preparation and Characterization of the Adsorbents

The dried LM straw was kindly supplied by EMBRAPA. The collected material was
ground (Marconi, model Croton) and sieved in an electromagnetic sieve shaker (Bertel,
model 4830, Brazil) to obtain particles with a size <2 mm.

The chemical activation of the adsorbents was performed in a 1:1 ratio (w/w) of H3PO4
and LM. The samples were impregnated with H3PO4 solution at a concentration of 40% or
70% and then oven-dried (Nova Ética, model 109-1, Brazil) at 105 ◦C for 24 h. To obtain
the activated carbons, a pyrolysis of the chemically activated samples was carried out in a
stainless-steel reactor at 550 ◦C for 1 h (heating rate of 3 ◦C min−1) under an N2 atmosphere.
Finally, all samples were washed with a sodium hydroxide solution until reaching a neutral
pH. Figure 1 describes the methods and conditions used to synthesize each adsorbent.
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LM, R-40, R-70, AC-40, and AC-70 samples were characterized by the particle size
diameter (dps), obtained by sieving with Tyler sieves 9 to 270. The real densities (ρr) were
obtained by a helium gas pycnometer (ULTRAPYC 1200e, Quantachrome Instruments,
Boynton Beach, FL, USA), and the bulk densities (ρb) by a test tube. The porosity of the
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particle bed (ε) was determined by Equation 1 using ρb (kg·m−3) and ρr (kg·m−3), and the
moisture (Ubu), ashes’ contents (CZ), volatile material (Mv), and fixed carbon (CF), were
determined using AOAC [29] and ASTM [30–32] methodologies.

ε = 1 − ρb
ρr

(1)

BET (Brunauer—Emmet—Teller) and BJH (Barret—Joyner—Halenda) were used to
obtain the physical structure characteristics of the activated carbons (Quantachrome In-
strument, NOVA 4200e, USA). The values for the yield (Y) of the activated carbons were
obtained using Equation (2), where mi and mf correspond to the initial and final adsorbent
mass (g), respectively.

Y(%) =
m f

mi
100 (2)

X-ray diffraction (XRD, Rigaku ULTIMA IV, Tokyo, Japan) was performed to infer
the crystalline structures by scanning step over the range of 10–70◦ using Bragg-Brentano
geometry. The crystallinity index (Ic) was calculated according to Equation (3) [33], where
Icr is the intensity of the crystalline peak and Iam is the intensity of the amorphous phase.

IC =
Icr − Iam

Icr
100 (3)

The thermogravimetric analysis (TGA, Shimadzu, model TGA 50, Tokyo, Japan) was
performed in N2 gas.

2.2. Adsorption Experiments

The molecular structural model of the MB dye is shown in Figure 2. The MB solution
(25–1000 mg L−1) was added to a 4–20 g L−1 of adsorbent dosage, the operating range
conditions that were obtained from preliminary trials. The mixtures of adsorbent-adsorbate
were agitated in a shaker (NOVA ÉTICA, model 109-1) at 120 rpm, between 1 and 120 min.
The samples were centrifuged for 15 min to separate the adsorbents from the MB solution.
The MB solution was quantified at a maximum wavelength of 660 nm. The capacity of
adsorption and removal efficiency were calculated using Equations (4) and (5), respectively.

Q =
Ci − C f

M
V (4)

E =
Ci − C f

Ci
100 (5)

where Ci is the initial concentration (mg L−1); Cf, the final concentration (mg L−1); M, the
mass of adsorbent (g); and V, the volume of solution (L).

The pseudo-first-order [34], pseudo-second-order [35], and Avrami [36] models
were used to analyze the kinetic data. The expressions of the models were shown in
Equations (6)–(8), respectively.

qt = qe

(
1 − e−k1t

)
(6)

qt =
k2q2

e t
1 + k2qet

(7)

qt = qe

(
1 − e(−kavt)nav

)
(8)

where qt and qe is the quantity of adsorbate in the adsorbent (mg g−1); t is the time of
contact (min); k1 is the pseudo-first-order constant (min−1); k2 is the pseudo-second-order
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constant (g mg−1 min−1); Kid is the intra-particle constant (g mg−1 min−1/2); Kav (1 min−1)
and nav are the Avrami constants; and C is related to diffusion resistance (mg g−1).
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The data of equilibrium isotherms were fitted to the mathematical models Lang-
muir [37], Freundlich [38], Sips [39], and Tóth [40], presented in Equations (9)–(12).

qe =
qmaxKLCe

1 + KLCe
(9)

qe = KFC
1
n
e (10)

qe =
qmax

(
Ks Ce)

m

1 +
(
Ks Ce)

m (11)

qe =
qmaxbCe

(1 + (bCe)
d)

1
d

(12)

where qe is the amount of MB in the adsorbent at equilibrium (mg g−1); qmax is the maximum
MB adsorbed per unit mass of the adsorbent (mg g−1); KL is the Langmuir constant of the
rate of adsorption (K mg−1); KF is the Freundlich constant [(mg L−1) (mg L−1)−1/n]; KS is
the constant of Sips model (L mg−1); b is the constant of Tóth model (mg L−1); and m, n,
and d are the parameters characterizing the system heterogeneity.

The analysis of the variance (ANOVA) was evaluated for all the models and the
statistical values were studied at a level of confidence of 95% for each adjustment.

All the theoretical model parameters were defined through nonlinear regression using
the quasi-Newton method. The models were checked by using the Chi-square (X2) and
average relative error (ARE) according to Equations (13) and (14), respectively.

ARE =
100
nn ∑

qexp − qpred

qexp
(13)

X2 = ∑
(q exp − qpred)

2

nn − NN
(14)

where qexp are the experimental values; qpred is the value of the model; nn is the experiment
number observed; and NN is the number of the parameters in the model.



C 2023, 9, 44 5 of 17

3. Results
3.1. Characterization of Lolium multiflorum and Adsorbents

The results of the physical characterizations of the LM, R-40, R-70, AC-40, and AC-70
samples are shown in Figure 3. The values of dps for the R-40 and R-70 were smaller than the
LM, suggesting the dehydration of the raw material and structure changes after the chemical
treatment. Furthermore, the AC-70 exhibits higher ρr than the R-70, which indicates the
formation of pores, resulting from the effective thermal activation of the material. Both
ACs showed Ubu lower than 5%, which is in accordance with the commercial activated
carbons [41]. Thus, the increase in Cz can be attributed to the presence of inorganics after
the chemical and thermal activation [42,43].
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The R-40 and R-70 samples presented lower values of Mv than the LM, which might
be attributed to the degradation caused by the H3PO4 activation [43]. After pyrolysis,
the AC-40 and AC-70 presented another decrease in Mv values and an increase in CF,
indicating the carbonization of volatile materials [44], which is in agreement with the
physical characteristics obtained for activated carbons (Table 1).

Table 1. Textural characteristics and yield of AC-40 and AC-70.

Adsorbents SBET (m2 g−1) PV (cm3 g−1) PD (nm) Y (%)

AC-40 14.50 0.0252 3.73 47.60
AC-70 68.28 0.0603 3.25 50.33

Figure 4a, b shows the TGA profiles of the LM, R-40, R-70, AC-40, and AC-70. All sam-
ples display a weight loss for the temperatures inferior to 100 ◦C related to the evaporation
of moisture [45]. The LM sample presented a weight loss of 63% in the range between 235
and 370 ◦C, which is related to the degradation of hemicellulose (235–315 ◦C), cellulose
(315–370 ◦C), and lignin (100–900 ◦C) [46]. This result agrees with the DTG peak at 278 ◦C
and 330 ◦C. In the profile of the R-40 and R-70, the decomposition of cellulose was noticed
in the range between 257 and 350 ◦C. Moreover, the less pronounced peak of cellulose
and the absence of a hemicellulose shoulder in the DTG curves suggests that the chemical
treatment with H3PO4 catalyzes the hydrolysis of glucose bonds [47,48].
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The weight loss of 6.6% at 197 ◦C for the AC-40 and AC-70 can be assigned to the
volatiles related to H3PO4 chemical activation [49]. The absence of lignin and hemicellulose
peaks in the DTG, associated with the superior thermal stability of the ACs, confirms the
efficiency of pyrolysis in the production of adsorbent materials.

The XRD patterns of the LM, R-40, R-70, AC-40, and AC-70 are shown in Figure 4c. The
values of the crystallinity index were 39.70% and 35.43% for the R-40 and R-70, respectively.
The LM showed a crystallinity index of 48.70%. The crystallinity reduction of the R-40
and R-70 can be attributed to the chemical reaction involving cellulose, since the acid
diffuses into the internal and external layers of the fiber, providing the breakdown of the
intramolecular and intermolecular bonds with the phosphate groups [50].

The XRD patterns of the R-40 and R-70 indicate the presence of cellulose in the peaks
around 10–25 ◦C. This decrease in the R-40 and R-70 in relation to the LM is due to the
breaking of the crystalline chains and the widening of the amorphous structure, converting
the crystalline cellulose into amorphous cellulose. The non-appearance of the crystallinity of
cellulose in the AC-40 and AC-70 can be assigned to the reduction in the stretching hydrogen
bonds and their disorganization as an amorphous structure after the pyrolysis [50]. The
AC-40 and AC-70 have a predominantly amorphous structure despite presenting a peak at
26◦, which indicates a crystallinity of SiO2 [51,52]. The increase in the amorphous structure
of the AC-40 and AC-70 shows that pyrolysis was effective in carbonizing the R-40 and
R-70, causing a disorder in the crystalline structure and consequently creating empty spaces
for the adsorption of the MB dye [53].

Figure 5 shows the FTIR spectrum of the adsorbents R-40 (a), R-70 (b), AC-40 (c),
and AC-70 (d). All samples have similar absorption bands, related to the lignocellulosic
constituents. In general, these bands are expected since they are often found in agricultural
residues that are composed of hemicellulose, lignin, cellulose, proteins, hydrocarbons,
lipids, simple sugars, and amide [54]. The band at approximately 3000–3700 cm−1 is at-
tributed to the stretching of O-H bonds (phenols, alcohols, and carboxylic acids) and the
stretching of the -NH amine groups of the lignin [55]. The two bands at 2913–2923 and
2849 cm−1 are related to the symmetric and asymmetric stretching of the -CH3 and -CH2
groups or the –C–OH group [56,57]. In both activated carbons, there was a decrease in the in-
tensity of these peaks, suggesting a lower amount of these groups on the surface compared
to the treated samples. The band around 1717 cm−1 is characteristic of the C=O stretching
of the esters, ketones, and carboxylic groups of the hemicellulose and lignin [56,58–60]
followed by the C=C bond stretching in aromatic rings around 1637 cm−1 [56]. The intense
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absorption band at 1060 cm−1 is attributed to the C-O-C of the β–glycosidic linkages stretch
of the lignocellulosic compounds [58,61] The peaks around 610 cm−1 corresponds to the
C-H group of the aliphatic and aromatic or the C-N groups [62–64]. In general, all the
bands were more intense in the sample treated with acid at the lower concentration. This
suggests that the higher concentration of the phosphoric acid used in the treatments causes
a change in the groups present on the surface of the adsorbents that are visualized by the
displacement of some absorption bands in the activated carbons.
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The morphology of the samples was investigated by SEM and Figure 6 shows the
images of the R-40, R-70, AC-40, and AC-70 adsorbents at 200× magnification. It is
observed that there is a degradation of the fibrous structures caused by the acid and a
significant difference between the treated samples and the activated carbons. Among the
treated samples, the R-70 showed the appearance of cavities, which were intensified by the
pyrolysis process. The sample AC-70 presented a rougher surface with irregularities in the
structure. It is also noticed that there is a decrease in the particle size of the sample when
comparing the treated samples with the produced activated carbons.
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Table 1 shows the textural characteristics of the activated carbons. The increase in
surface area (SBET) and pore volume (Pv) of the AC-70 suggests the efficiency of H3PO4
activation and pyrolysis [43,65]. The pore diameter (PD) values obtained for the AC-40
and AC-70 were 3.73 nm and 3.25 nm, respectively, which implies that both adsorbents
can be applied in the removal of the MB molecule (0.59 × 1.38 nm) [49,66]. The high yield
percentage (Y) of the AC-40 and AC-70 is related to the creation of phosphate film, which
can protect the internal carbon structure, preventing the material from being excessively
carbonized and limiting the formation of tar during pyrolysis [46].

3.2. Adsorption Experiments

The kinetic adjustment of the experimental data was obtained for the Pseudo-first-
order, Pseudo-second-order, and Avrami models. The faster adsorption was detected in the
first moments of contact between the adsorbents and the MB molecules (Figure 7). A rapid
adsorption is an important feature of adsorbents for practical application in wastewater
treatment [67,68]. The kinetic results indicate that the increase of contact time between the
solid and liquid phases increases MB adsorption. The R-40, R-70, AC-40, and AC-70 reached
the equilibrium in 2, 5, 20, and 10 min, respectively. The increase in the equilibrium time
for the activated carbon can be attributed to structural characteristics, such as the average
pore diameter after pyrolysis. The mass transfer in the pores of the adsorbents is generally
controlled by their size [67]; i.e., the larger the pore size, the smaller the contribution of
resistance to the intraparticle diffusion in the control of adsorption kinetics [67]. Table
S1 shows the parameters obtained through the application of the kinetic models for the
experimental data.
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Pseudo-first-order, Pseudo-second-order, and Avrami models showed higher correla-
tion coefficients (R2) and lower values for ARE and X2 for all adsorbents. The Pseudo-first-
order model indicates that the adsorption of MB occurs predominantly through physical
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mechanisms [69,70]. The empty sites are proportional to the occupancy rate of the adsorp-
tion sites [71].

The Pseudo-second-order model suggests that electrons are shared or exchanged
between the surface of the adsorbents and the MB molecules [72]. This indicates that the
interaction of the surface of the R-40, R-70, AC-40, and AC-70 with the MB molecules occurs
due to the delocalized electrons on the basal planes of the adsorbent and the free electrons
of the aromatic rings of the MB molecules [73]. In this study, the Avrami model is adequate
to describe all the kinetic experimental data, assuming multiple kinetic orders during the
process. The Avrami exponent (n) is a fractional number related to the possible changes
in the adsorption mechanism during the process [74]. The adsorption mechanism could
follow multiple kinetic orders that are changed during the adsorption process [75]. A better
interpretation of the adsorption mechanisms can be obtained in the plots of qt versus t1/2

(Figure 8). All the adsorbents showed a multilinearity of the lines. This implies that the
adsorption process involves more than one kinetic stage, which is in agreement with the
good fit obtained with the Avrami kinetic model [72,76]. The R-40 and R-70 exhibited two
stages: the first can be attributed to instant adsorption, with the mass transfer of the dye
to the surface of the adsorbent particles [77]; the second stage can be defined as the final
stage of equilibrium. For these adsorbents, it is observed that the resistance to intraparticle
diffusion is practically non-existent and the dye is adsorbed on the external surface. The
AC-40 and AC-70 showed three stages of kinetic mechanisms: external adsorption, gradual
diffusion within the pores, and the equilibrium stage. In the equilibrium stage, the diffusion
within the particles decreases due to extremely low concentrations (less than 3 mg L−1) of
the adsorbate in the solution [75,76,78].
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The results of the adsorption equilibrium data of the MB dye for the R-40, R-70,
AC-40, and AC-70 at 25 ◦C are shown in Figure 9, and the adjustments of Langmuir,
Freundlich, Sips, and Tóth models are presented in Table S2. The shape of the equilibrium
curves indicates a favorable adsorption process from all adsorbents; i.e., the increase of the
adsorption capacity and the increase of the adsorbate concentration are proportionate. This
behavior occurs when the adsorbent-adsorbate interaction has a great affinity [28,69]. The
profile of the curve of the AC-40 and R-40 can be also classified as a Langmuir type (L) [79].
The L type initially tends to curve downwards due to a decrease in the availability of active
sites, indicating that the molecules are adsorbed on the surface of the adsorbent. For the
AC-70 and R-70, the shape of the curve can be classified as a High-affinity type (H) due to
an initial vertical part of the isotherm curve, suggesting that adsorption is high even at low
initial MB concentrations.
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25 ◦C. Conditions: adsorbent dosage, 4 g L−1 for R-40 and R-70 and 20 g L−1 for AC-40 and AC-70;
pH, unaltered; contact time, 60 min.

Table S2 describes that the best adjustment of the experimental data occurred with the
Tóth model for all the adsorbent materials. This is verified by the highest values of R2 and
lowest values of X2 and ARE. The d values being close to one for the R-40 and AC-40 indicate
that MB adsorption is highly homogeneous [80]. For the R-70 and AC-70, the d values
were not close to one, implying a heterogeneous adsorption [81]. This can be explained
by the larger amount of H3PO4 used in the samples of the R-70 and AC-70. The b values
obtained for the R-70 and AC-70 were 20.96 and 7.55, higher than the R-40 (b = 0.60) and
AC-40 (b = 2.85), which indicates a better affinity with the MB molecules. Regarding the
b values obtained in the literature from the MB adsorption, it is worth mentioning the
zeolite 13× [80]; the activated carbon from Delonix regia [74]; and the zeolite from rice husk
ash [82] that obtained 0.93, 0.06, and 0.47 respectively. This corroborates the interpretation
of the high affinity between the MB molecules and the adsorbents produced from the LM.
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The AC-40, AC-70, and R-70 also presented significant adjustments with the Sips
model and the m values (m < 1), demonstrating the increase of heterogeneity from the R-70
and AC-70, in agreement with the d values obtained by the Tóth model. Concerning the
AC-40, aside from having the adjustments mentioned above, the great fit of the Langmuir
model suggests that it can also be used to describe its adsorption process in accordance
with the d values. This model proposes that the MB dye molecules form an adsorbate
monolayer on the material surface, filling the pores [67,72,83]. In most cases, more than
one model can explain the adsorption process [84].

Table 2 shows a comparison of the qmax values of the adsorption of the MB dye for the
adsorbents obtained in this work with the values similar studies reported. The values of
qmax for the R-40, R-70, AC-70, and AC-40 were 80.79 mg g−1, 70.21 mg g−1, 53.32 mg g−1,
and 8.2 mg g−1, respectively. For all adsorbents, the dye removal efficiency was about 99%.
These results suggest that the LM was efficient in MB wastewater treatment. Moreover,
these results are in agreement with the previous study where the LM activated with
NaOH obtained a qmax of 67.19 mg g−1, compared to the 28.8 mg g−1 for the LM without
treatment [28]. The higher qmax for the LM adsorbent activated with H3PO4 agrees with
other reports, as can be seen in Table 2.

Table 2. Comparison of different adsorbents for removal of MB dye.

Adsorbents from Biomass Chemical
Activation

C0
(mg L−1)

Temperature
(◦C)

Contact Time
(h)

mads/Vsol
(g L−1) pH qmax

(mg g−1)

R-40 H3PO4 25–360 25 2 4 7 80.79
R-70 H3PO4 25–360 25 2 4 7 70.21

AC-40 H3PO4 25–150 25 2 20 7 8.20
AC-70 H3PO4 50–1000 25 2 20 7 53.32

LM [28] - 150 - 2 4–32 7 28.70
LM + NaOH [28] NaOH 150 - 1 4–32 67.19

Carica papaya wood [85] - 10–50 - 2.3 2 10 32.25
Coconut shell [86] H2SO4 25–200 30 3 1 8 50.60
AC—Corncob [87] H3PO4 300–1500 - 5 2 - 112.00

Mango seedkernel poder [88] H2SO4 100 30 0.5 4 8 58.08
Mucuma beans [89] HCl + HNO3 100 25 - 5 5 19.28
Mucuma beans [89] NaOH 100 25 - 5 7,8 19.93

Orange tree sawdust [90] NaOH 40–100 20 3 1 6 78.74
Parthenium hysterophorus [91] H3PO4 50–250 26 1.5 4 7 88.49
Parthenium hysterophorus [91] H2SO4 50–250 26 1.5 4 7 39.68
Seed husk of Timbaúva [92] - 10–50 25 - 20 - 3.62

Sugarcane Bagasse [93] - 10–50 30 1.5 1.5 6 1.83
Waste fruits of Rapanea

ferrugínea [8] H2SO4 20–120 25 2 1.2 7 33.00

AC- waste of sunflower oil [94] H2SO4 0–250 25 24 2 6 16.43
AC- Coconut fiber [95] ZnCl2 60–100 30 1.6 5 8 15.49
AC- Apricot stones [96] H3PO4 + HNO3 5–100 25 2 0.1 5 36.68

AC = Activated Carbon.

Moreover, the lower values of qmax obtained for the AC-40 and AC-70 may be related
to the carbon pores not being completely unobstructed and being less accessible than the
surfaces of the R-40 and R-70. This result indicates a substantial increase in the adsorption
of MB when the LM was treated with H3PO4. The highest value of the maximum capacity
of adsorption in this work was reached with the R-40 sample, confirming that even in
smaller percentages H3PO4 is efficient for the chemical activation of the LM. It is important
to mention that the non-use of pyrolysis in the production process of the LM adsorbent
reduces energy costs, and, consequently, financial costs. The adsorbent R-40 proved to be
an excellent low-cost adsorbent for removing the MB dye in aqueous solutions, in addition
to being a great option for using LM straw agricultural waste.

3.3. Adsorption Mechanism

The adsorption process is very complex and can involve more than one mechanism.
For this mechanism, it is important to understand the basic principles of the adsorption
process [97]. Figure 10 suggests the mechanisms that may be involved in the adsorption
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of MB using treated ryegrass straw (R-40, R-70) and activated carbons (AC-40, AC-70). In
Figure 10, the possible interactions that occur between the MB molecules (cationic dye)
and the adsorbents produced can be observed. Three types of interactions are proposed:
electrostatic, π-π bonds, and interactions with the functional groups present on the surface
of the adsorbents [56,98]. Electrostatic interactions can occur with the attraction between
the cations of the MB and the surface of the adsorbent when the adsorbent has a nega-
tive charge. This is one of the main mechanisms reported for the adsorption of MB by
bioadsorbents [99,100]. π-π interactions can occur due to the presence of the aromatic rings
of lignin in the structures of the adsorbents and MB.
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From the FTIR analysis, some functional groups present in the adsorbents (-OH,
-COOH, C=O, -OCH3) were found to be derived from the main biomass component (cellu-
lose, hemicellulose, and lignin). These groups may have interacted with hydrogen bonds
as well as Van der Waals forces [56,100]. Among the functional groups, it was observed
that the adsorbent with the highest amount of OH groups on the surface (R-40) showed
the best adsorption capacity of the MB dye. This suggests that the predominant mech-
anism in this study was the interaction between the functional groups. The OH group
interaction has already been observed in other studies. Cusioli et al. [100] reported the
interaction of the OH group by hydrogen bonding between the aromatic N of MB and
the H of the hydroxyl group for the adsorption of MB on soybean hulls. Al-Ghouti and
Sweleh [98] and Manna et al. [101] stated that both hydrogen bonds, mainly those involving
-OH groups, and electrostatic interactions play an important role in the MB adsorption by
lignocellulosic materials.

4. Conclusions

The H3PO4 was efficient in the chemical activation of the LM straw, causing the
degradation of hemicellulose and cellulose. Pyrolysis was effective in the production of
activated carbons, producing the AC-40 and AC-70 with a predominantly amorphous
structure and with a SBET of 14.5 m2 g−1 and 68.2 m2 g−1, respectively. All the adsorbents
have a good interaction with the MB molecule, reaching the equilibrium time in less than
20 min and with a removal efficiency of about 99%. The best kinetic adjustment for the
adsorption of the MB dye was obtained from the Avrami model, showing that the kinetic
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experimental data assumes multiple kinetic orders during the adsorption process. The Tóth
model showed the best isotherm adjustment for all the adsorbents produced. Chemical
activation with 40% H3PO4 in the LM straw showed the highest adsorption capacity
(80.79 mg g−1) of the MB dye. The good and fast performances of the materials produced
in this work suggests that ryegrass is an excellent precursor for the adsorbent materials to
be applied in the treatment of colored effluents contaminated with MB.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/c9020044/s1, Table S1: Kinetic parameters of adsorption of
MB on R-40, R-70, AC-40, and AC-70. Conditions: Co, 150 mg L−1; temperature, 25 ◦C; adsorbent
dosage, 20 g L−1 pH, unaltered; Table S2: Isothermal parameters of adsorption of MB on R-40, R-70,
AC-40, and AC-70 at 25 ◦C. Conditions: adsorbent dosage, 4 g L−1 for R-40 and R-70, and 20 g L−1

for AC-40 and AC-70; pH, unaltered; contact time, 60 min.
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