Fabrication of an Electrocatalyst Based on Rare Earth Manganites Incorporated with Carbon Nanofiber Hybrids: An Efficient Electrochemical Biosensor for the Detection of Anti-Inflammatory Drug Mefenamic Acid
Abstract
:1. Introduction
2. Experiments and Methods
2.1. Chemical Reagents
2.2. Materials Characterization
2.3. Synthesis Procedure of DMO/CNF
2.4. Fabrication of DMO/f-CNF/GCE
3. Result and Discussion
3.1. Morphological and Structural Analysis
3.2. Electrochemical Behavior of DMO/CNF
3.3. Optimization of Analytical Conditions
3.3.1. Modified Electrodes and Different Ph
3.3.2. Influence of Concentration and Scan Rate
3.3.3. Designation of MA at the Surface of DMO/CNF/GCE
3.3.4. Selectivity Assay
3.3.5. Real Sample Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zarghi, A.; Arfaei, S. Selective COX-2 inhibitors: A review of their structure-activity relationships. Iran. J. Pharm. Res. IJPR 2011, 10, 655. [Google Scholar] [PubMed]
- Ashira, T.; Rafeeque, T.M.; Maanvizhi, S.; Kathirvel, S.; Indukala, P.; Safeetha, S. Review for Analytical Methods for the Determination of Mefenamic Acid. J. Pharm. Res. Int. 2021, 33, 426–437. [Google Scholar] [CrossRef]
- Cimolai, N. The potential and promise of mefenamic acid. Expert Rev. Clin. Pharmacol. 2013, 6, 289–305. [Google Scholar] [CrossRef] [PubMed]
- Rajat, S.; Kumar, M.M.; Kumar, P.A.; Abhishek, S.; Krishna, K. An insight of non-steroidal anti-inflammatory drug mefenamic acid: A review. GSC Biol. Pharm. Sci. 2019, 7, 052–059. [Google Scholar]
- Moll, R.; Derry, S.; Moore, R.A.; McQuay, H.J. Single dose oral mefenamic acid for acute postoperative pain in adults. Cochrane Database Syst. Rev. 2011. [Google Scholar] [CrossRef]
- Liu, L.; Song, J. Voltammetric determination of mefenamic acid at lanthanum hydroxide nanowires modified carbon paste electrodes. Anal. Biochem. 2006, 354, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, T.P.; Lozano, C.M.N.; Tomás, V.; Carpena, J. Analysis of binary mixtures of flufenamic, meclofenamic and mefenamic acids by derivative synchronous fluorescence spectrometry. Talanta 1998, 47, 537–545. [Google Scholar] [CrossRef]
- Rouini, M.-R.; Asadipour, A.; Ardakani, Y.H.; Aghdasi, F. Liquid chromatography method for determination of mefenamic acid in human serum. J. Chromatogr. B 2004, 800, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Aly, F.A.; Al-Tamimi, S.A.; Alwarthan, A.A. Determination of flufenamic acid and mefenamic acid in pharmaceutical preparations and biological fluids using flow injection analysis with tris (2, 2’-bipyridyl) ruthenium (II) chemiluminescence detection. Anal. Chim. Acta 2000, 416, 87–96. [Google Scholar] [CrossRef]
- Perez-Ruiz, T.; Martınez-Lozano, C.; Sanz, A.; Bravo, E. Determination of flufenamic, meclofenamic and mefenamic acids by capillary electrophoresis using β-cyclodextrin. J. Chromatogr. B Biomed. Sci. Appl. 1998, 708, 249–256. [Google Scholar] [CrossRef]
- García, S.; Sánchez-Pedreño, C.; Albero, I.; García, C. Flow-injection spectrophotometric determination of diclofenac or mefenamic acid in pharmaceuticals. Microchim. Acta 2001, 136, 67–71. [Google Scholar] [CrossRef]
- Ibrahim, F.; Sharaf El-Din, M.K.; El-Deen, A.K.; Shimizu, K. Micellar HPLC method for simultaneous determination of ethamsylate and mefenamic acid in presence of their main impurities and degradation products. J. Chromatogr. Sci. 2016, 55, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Purohit, B.; Kumar, A.; Mahato, K.; Chandra, P. Novel sensing assembly comprising engineered gold dendrites and MWCNT-AuNPs nanohybrid for acetaminophen detection in human urine. Electroanalysis 2020, 32, 561–570. [Google Scholar] [CrossRef]
- Shetti, N.P.; Malode, S.J.; Vernekar, P.R.; Nayak, D.S.; Shetty, N.S.; Reddy, K.R.; Shukla, S.S.; Aminabhavi, T.M. Electro-sensing base for herbicide aclonifen at graphitic carbon nitride modified carbon electrode–Water and soil sample analysis. Microchem. J. 2019, 149, 103976. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Cellat, K.; Arıkan, K.; Savk, A.; Karimi, F.; Şen, F. Palladium–Nickel nanoparticles decorated on Functionalized-MWCNT for high precision non-enzymatic glucose sensing. Mater. Chem. Phys. 2020, 250, 123042. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Arotiba, O.A. Simultaneous determination of cholesterol, ascorbic acid and uric acid as three essential biological compounds at a carbon paste electrode modified with copper oxide decorated reduced graphene oxide nanocomposite and ionic liquid. J. Colloid Interface Sci. 2020, 560, 208–212. [Google Scholar] [CrossRef]
- Ferrari, A.G.-M.; Carrington, P.; Rowley-Neale, S.J.; Banks, C.E. Recent advances in portable heavy metal electrochemical sensing platforms. Environ. Sci. Water Res. Technol. 2020, 6, 2676–2690. [Google Scholar] [CrossRef]
- Kimmel, D.W.; LeBlanc, G.; Meschievitz, M.E.; Cliffel, D.E. Electrochemical sensors and biosensors. Anal. Chem. 2012, 84, 685–707. [Google Scholar] [CrossRef]
- Yu, J.; Li, J.; Zhao, F.; Zeng, B. Characterization of carbon nanotubes-gold nanoparticles composite film modified electrode and voltammetric determination of mefenamic acid. J. Braz. Chem. Soc. 2008, 19, 849–855. [Google Scholar] [CrossRef]
- Babaei, A.; Afrasiabi, M.; Babazadeh, M. A glassy carbon electrode modified with multiwalled carbon nanotube/chitosan composite as a new sensor for simultaneous determination of acetaminophen and mefenamic acid in pharmaceutical preparations and biological samples. Electroanalysis 2010, 22, 1743–1749. [Google Scholar] [CrossRef]
- Kianipour, S.; Asghari, A. Room temperature ionic liquid/multiwalled carbon nanotube/chitosan-modified glassy carbon electrode as a sensor for simultaneous determination of ascorbic acid, uric acid, acetaminophen, and mefenamic acid. IEEE Sens. J. 2013, 13, 2690–2698. [Google Scholar] [CrossRef]
- Malode, S.J.; Shetti, N.P.; Kulkarni, R.M. Voltammetric detection and determination of mefenamic acid at silver-doped TiO2 nanoparticles modified electrode. Mater. Today: Proc. 2019, 18, 671–678. [Google Scholar] [CrossRef]
- Shetti, N.P.; Nayak, D.S.; Malode, S.J.; Kakarla, R.R.; Shukla, S.S.; Aminabhavi, T.M. Sensors based on ruthenium-doped TiO2 nanoparticles loaded into multi-walled carbon nanotubes for the detection of flufenamic acid and mefenamic acid. Anal. Chim. Acta 2019, 1051, 58–72. [Google Scholar] [CrossRef]
- Bonyadi, S.; Ghanbari, K.; Ghiasi, M. All-electrochemical synthesis of a three-dimensional mesoporous polymeric GC3N4/PANI/CdO nanocomposite and its application as a novel sensor for the simultaneous determination of epinephrine, paracetamol, mefenamic acid, and ciprofloxacin. New J. Chem. 2020, 44, 3412–3424. [Google Scholar] [CrossRef]
- Akbarian, Y.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. Fabrication of a new electrocatalytic sensor for determination of diclofenac, morphine and mefenamic acid using synergic effect of NiO-SWCNT and 2, 4-dimethyl-N/-[1-(2,3-dihydroxy phenyl) methylidene] aniline. Sens. Actuators B Chem. 2018, 273, 228–233. [Google Scholar] [CrossRef]
- Farshchi, F.; Hasanzadeh, M.; Feyziazar, M.; Saadati, A.; Hassanpour, S. Electropolymerization of chitosan in the presence of CuNPs on the surface of a copper electrode: An advanced nanocomposite for the determination of mefenamic acid and indomethacin in human plasma samples and prevention of drug poisoning. Anal. Methods 2020, 12, 1212–1217. [Google Scholar] [CrossRef]
- Wang, J.; Lin, Y. Functionalized carbon nanotubes and nanofibers for biosensing applications. TrAC Trends Anal. Chem. 2008, 27, 619–626. [Google Scholar] [CrossRef]
- Feng, L.; Xie, N.; Zhong, J. Carbon nanofibers and their composites: A review of synthesizing, properties and applications. Materials 2014, 7, 3919–3945. [Google Scholar] [CrossRef]
- Klein, K.L.; Melechko, A.V.; McKnight, T.E.; Retterer, S.T.; Rack, P.D.; Fowlkes, J.D.; Joy, D.C.; Simpson, M.L. Surface characterization and functionalization of carbon nanofibers. J. Appl. Phys. 2008, 103, 3. [Google Scholar] [CrossRef]
- Thamer, B.M.; Aldalbahi, A.; Moydeen, A.M.; Al-Enizi, A.M.; El-Hamshary, H.; El-Newehy, M.H. Fabrication of functionalized electrospun carbon nanofibers for enhancing lead-ion adsorption from aqueous solutions. Sci. Rep. 2019, 9, 19467. [Google Scholar] [CrossRef]
- Durmus, Z.; Durmus, A.; Bektay, M.Y.; Kavas, H.; Unver, I.S.; Aktas, B. Quantifying structural and electromagnetic interference (EMI) shielding properties of thermoplastic polyurethane–carbon nanofiber/magnetite nanocomposites. J. Mater. Sci. 2016, 51, 8005–8017. [Google Scholar] [CrossRef]
- Ahmad, J.; Bukhari, S.H.; Jamil, M.T.; Rehmani, M.K.; Ahmad, H.; Sultan, T. Lattice dynamics and transport properties of multiferroic DyMn2O5. Adv. Condens. Matter Phys. 2017, 2017, 5389573. [Google Scholar] [CrossRef]
- Kaddar, Y.; Zaari, H.; Rachadi, A.; Benyoussef, A.; El Kenz, A.; Balli, M. Theoretical study of the electronic structure, magnetic and magnetocaloric properties of the DyMn2O5 multiferroic. J. Magn. Magn. Mater. 2021, 530, 167890. [Google Scholar] [CrossRef]
- Wilkinson, C.; Sinclair, F.; Gardner, P.; Forsyth, J.; Wanklyn, B. The antiferromagnetic structure of DyMn2O5 at 4.2 K. J. Phys. C Solid State Phys. 1981, 14, 1671. [Google Scholar] [CrossRef]
- Balli, M.; Jandl, S.; Fournier, P.; Kedous-Lebouc, A. Advanced materials for magnetic cooling: Fundamentals and practical aspects. Appl. Phys. Rev. 2017, 4, 021305. [Google Scholar] [CrossRef]
- Wu, S.; Mei, Y. Hydrothermal synthesis of DyMn2O5 nanorods and their magnetic properties. J. Alloy. Compd. 2014, 583, 309–312. [Google Scholar] [CrossRef]
- Higashiyama, D.; Miyasaka, S.; Kida, N.; Arima, T.; Tokura, Y. Control of the ferroelectric properties of Dy Mn2O5 by magnetic fields. Phys. Rev. B 2004, 70, 174405. [Google Scholar] [CrossRef]
- Tung, Y.-H.; Yang, C.-C.; Hsu, T.-W.; Kao, C.-W.; Chen, Y.Y. Size effects on magnetic property of multiferroic DyMn2O5 nanorods. AIP Adv. 2017, 7, 055830. [Google Scholar] [CrossRef]
- Bukhari, S.H.; Ahmad, J. Evidence for magnetic correlation in the paramagnetic phase of DyMn2O5. Phys. B Condens. Matter 2016, 503, 179–182. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, M.; Li, X.; Wang, J.; Yan, Z.; Wang, K.; Liu, J.-M. Reversing ferroelectric polarization in multiferroic DyMn2O5 by nonmagnetic Al substitution of Mn. J. Appl. Phys. 2014, 116, 054104. [Google Scholar] [CrossRef]
- García-Flores, A.; Granado, E.; Martinho, H.; Urbano, R.; Rettori, C.; Golovenchits, E.; Sanina, V.; Oseroff, S.; Park, S.; Cheong, S.-W. Anomalous phonon shifts in the paramagnetic phase of multiferroic R Mn2O5 (R= Bi, Eu, Dy): Possible manifestations of unconventional magnetic correlations. Phys. Rev. B 2006, 73, 104411. [Google Scholar] [CrossRef]
- Tajiri, T.; Deguchi, H.; Mito, M.; Konishi, K.; Miyahara, S.; Kohno, A. Effect of size on the magnetic properties and crystal structure of magnetically frustrated DyMn2O5 nanoparticles. Phys. Rev. B 2018, 98, 064409. [Google Scholar] [CrossRef]
- Khataee, A.; Darvishi Cheshmeh Soltani, R.; Hanifehpour, Y.; Safarpour, M.; Gholipour Ranjbar, H.; Joo, S.W. Synthesis and characterization of dysprosium-doped ZnO nanoparticles for photocatalysis of a textile dye under visible light irradiation. Ind. Eng. Chem. Res. 2014, 53, 1924–1932. [Google Scholar] [CrossRef]
- El-Deen, A.G.; Barakat, N.A.; Khalil, K.A.; Kim, H.Y. Hollow carbon nanofibers as an effective electrode for brackish water desalination using the capacitive deionization process. New J. Chem. 2014, 38, 198–205. [Google Scholar] [CrossRef]
- Yousefi, S.R.; Masjedi-Arani, M.; Morassaei, M.S.; Salavati-Niasari, M.; Moayedi, H. Hydrothermal synthesis of DyMn2O5/Ba3Mn2O8 nanocomposite as a potential hydrogen storage material. Int. J. Hydrog. Energy 2019, 44, 24005–24016. [Google Scholar] [CrossRef]
- Brown, A.P.; Anson, F.C. Electron transfer kinetics with both reactant and product attached to the electrode surface. J. Electroanal. Chem. Interfacial Electrochem. 1978, 92, 133–145. [Google Scholar] [CrossRef]
- Sundaresan, R.; Mariyappan, V.; Chen, S.-M.; Ramachandran, B.; Paulsamy, R.; Rasu, R. Construction of an electrochemical sensor towards environmental hazardous 4-nitrophenol based on Nd(OH)3-embedded VSe2 nanocomposite. Environ. Sci. Pollut. Res. 2023, 1–14. [Google Scholar] [CrossRef]
- Sundaresan, R.; Mariyappan, V.; Chen, T.-W.; Chen, S.-M.; Akilarasan, M.; Liu, X.; Yu, J. One-dimensional rare-earth tungstate nanostructure encapsulated reduced graphene oxide electrocatalyst-based electrochemical sensor for the detection of organophosphorus pesticide. J. Nanostructure Chem. 2023, 1–14. [Google Scholar] [CrossRef]
- Tarlekar, P.; Chatterjee, S. Enhancement in sensitivity of non-steroidal anti-inflammatory drug mefenamic acid at carbon nanostructured sensor. J. Electroanal. Chem. 2017, 803, 51–57. [Google Scholar] [CrossRef]
- Babaei, A.; Khalilzadeh, B.; Afrasiabi, M. A new sensor for the simultaneous determination of paracetamol and mefenamic acid in a pharmaceutical preparation and biological samples using copper (II) doped zeolite modified carbon paste electrode. J. Appl. Electrochem. 2010, 40, 1537–1543. [Google Scholar] [CrossRef]
- Hasanzadeh, M.; Shadjou, N.; Saghatforoush, L.; Dolatabadi, J.E.N. Preparation of a new electrochemical sensor based on iron (III) complexes modified carbon paste electrode for simultaneous determination of mefenamic acid and indomethacin. Colloids Surf. B Biointerfaces 2012, 92, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Bukkitgar, S.D.; Shetti, N.P.; Nayak, D.S.; Bagehalli, G.B.; Nandibewoor, S.T. Electrochemical sensor for the detection of mefenamic acid in pharmaceutical sample and human urine at glassy carbon electrode. Der Pharma Chem. 2014, 6, 258–268. [Google Scholar]
- Petković, B.B.; Ognjanović, M.; Krstić, M.; Stanković, V.; Babincev, L.; Pergal, M.; Stanković, D.M. Boron-doped diamond electrode as efficient sensing platform for simultaneous quantification of mefenamic acid and indomethacin. Diam. Relat. Mater. 2020, 105, 107785. [Google Scholar] [CrossRef]
- Babaei, A.; Rezaei, E.; Sohrabi, M.; Hasani, O.K. A Sensitive Simultaneous Determination of Epinephrine, Mefenamic Acid and Acetaminophen Using a Nickel Hydroxide Nanoparticles/Multiwalled Carbon Nanotubes Modified electrode. Anal. Bioanal. Electrochem. 2015, 7, 302–317. [Google Scholar]
Working Electrode | LOD (μM) | Linear Range (μM) | Method | Reference |
---|---|---|---|---|
a SWNT/b GCE | 0.0134 | 0.1–35 | f SWV | [49] |
Cu2+Y/ZMCPE | 0.040 | 0.3–100 | g DPV | [50] |
Fe (III)-SBMCPE | 0.020 | 0.02–150 | DPV | [51] |
GCE | 0.15 | 1.00–1000 | DPV | [52] |
CdO/PANI/c mpg-C3N4/GCE | 0.045 | 0.20–400 | DPV | [24] |
BDDE | 0.078 | 0.50–100 | DPV | [53] |
NiO-SWCNTs/DDPM/d CPE | 0.50 | 1.00–600 | SWV | [25] |
e MWCNTs–NHNPs/GCE | 0.040 | 0.10–85.0 | DPV | [54] |
MWCNTs-CHT/GCE | 0.66 | 4–200 | DPV | [20] |
DMO/CNF/GCE | 0.009 | 0.01–741 | DPV | This work |
Sample | MA Added (μM) | Found (μM) | Recovery (%) |
---|---|---|---|
Human blood | 5 10 | 4.97 9.95 | 99.4 99.5 |
15 | 14.98 | 99.8 | |
Tablet | 5 10 | 4.91 9.96 | 98.2 99.6 |
15 | 14.97 | 99.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alagarsamy, S.; Sundaresan, R.; Chen, S.-M.; Devi, J.M.; Chandrasekar, N.; Ramachandran, B. Fabrication of an Electrocatalyst Based on Rare Earth Manganites Incorporated with Carbon Nanofiber Hybrids: An Efficient Electrochemical Biosensor for the Detection of Anti-Inflammatory Drug Mefenamic Acid. C 2023, 9, 47. https://doi.org/10.3390/c9020047
Alagarsamy S, Sundaresan R, Chen S-M, Devi JM, Chandrasekar N, Ramachandran B. Fabrication of an Electrocatalyst Based on Rare Earth Manganites Incorporated with Carbon Nanofiber Hybrids: An Efficient Electrochemical Biosensor for the Detection of Anti-Inflammatory Drug Mefenamic Acid. C. 2023; 9(2):47. https://doi.org/10.3390/c9020047
Chicago/Turabian StyleAlagarsamy, Saranvignesh, Ruspika Sundaresan, Shen-Ming Chen, J. Meena Devi, Narendhar Chandrasekar, and Balaji Ramachandran. 2023. "Fabrication of an Electrocatalyst Based on Rare Earth Manganites Incorporated with Carbon Nanofiber Hybrids: An Efficient Electrochemical Biosensor for the Detection of Anti-Inflammatory Drug Mefenamic Acid" C 9, no. 2: 47. https://doi.org/10.3390/c9020047
APA StyleAlagarsamy, S., Sundaresan, R., Chen, S. -M., Devi, J. M., Chandrasekar, N., & Ramachandran, B. (2023). Fabrication of an Electrocatalyst Based on Rare Earth Manganites Incorporated with Carbon Nanofiber Hybrids: An Efficient Electrochemical Biosensor for the Detection of Anti-Inflammatory Drug Mefenamic Acid. C, 9(2), 47. https://doi.org/10.3390/c9020047