IR Spectroscopy of Vacancy Clusters (Amber Centers) in CVD Diamonds Nanostructured by Fast Neutron Irradiation
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Moderate Fluences (1 × 1018 and 3 × 1018 cm−2)
3.1.1. 4100 cm−1 Band
3.1.2. 9300 cm−1 Band
3.1.3. Defect Structure upon Moderate Radiation Damage
3.2. High Fluences (1 × 1019 and 2 × 1019 cm−2)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shimaoka, T.; Koizumi, S.; Kaneko, J.H. Recent progress in diamond radiation detectors. Funct. Diam. 2022, 1, 205–220. [Google Scholar] [CrossRef]
- Prins, J.F. Ion implantation of diamond for electronic applications. Semicond. Sci. Technol. 2003, 18, S27–S33. [Google Scholar] [CrossRef]
- Lagomarsino, S.; Flatae, A.M.; Kambalathmana, H.; Sledz, F.; Hunold, L.; Soltani, N.; Reuschel, P.; Sciortino, S.; Gelli, N.; Massi, M.; et al. Creation of silicon-vacancy color centers in diamond by ion implantation. Front. Phys. 2021, 8, 601362. [Google Scholar] [CrossRef]
- Kobayashi, S.; Matsuzaki, Y.; Morishita, H.; Miwa, S.; Suzuki, Y.; Fujiwara, M.; Mizuochi, N. Electrical control for extending the Ramsey spin coherence time of ion-implanted nitrogen-vacancy centers in diamond. Phys. Rev. Appl. 2020, 14, 044033. [Google Scholar] [CrossRef]
- Poklonskaya, O.N.; Vyrko, S.A.; Khomich, A.A.; Averin, A.A.; Khomich, A.V.; Khmelnitsky, R.A.; Poklonski, N.A. Raman scattering in natural diamond crystals implanted with high-energy ions and irradiated with fast neutrons. J. Appl. Spectrosc. 2014, 81, 969–977. [Google Scholar] [CrossRef]
- Khomich, A.A.; Khmelnitsky, R.A.; Khomich, A.V. Probing the nanostructure of neutron-irradiated diamond using Raman spectroscopy. Nanomaterials 2019, 10, 1166. [Google Scholar] [CrossRef]
- Almaviva, S.; Angelone, M.; Marinelli, M.; Milani, E.; Pillon, M.; Prestopino, G.; Tucciarone, A.; Verona, C.; Verona-Rinati, G. Characterization of damage induced by heavy neutron irradiation on multilayered 6LiF-single crystal chemical vapor deposition diamond detectors. J. Appl. Phys. 2009, 106, 073501. [Google Scholar] [CrossRef]
- Angelone, M.; Verona, C. Properties of diamond-based neutron detectors operated in harsh environments. J. Nucl. Eng. 2021, 2, 422–470. [Google Scholar] [CrossRef]
- Passeri, M.; Pompili, F.; Esposito, B.; Pillon, M.; Angelone, M.; Marocco, D.; Pagano, G.; Podda, S.; Riva, M. Assessment of single crystal diamond detector radiation hardness to 14 MeV neutrons. Nucl. Inst. Methods Phys. Res. A 2021, 1010, 165574. [Google Scholar] [CrossRef]
- Liu, L.; Ouyang, X.; Gao, R.; Wan, P.; Ouyang, X. Latest developments in room-temperature semiconductor neutron detectors: Prospects and challenges. Sci. China-Phys. Mech. Astron. 2023, 66, 232001. [Google Scholar] [CrossRef]
- Prins, J.F. On the annihilation of vacancies by diffusing interstitial atoms in diamond. Diam. Relat. Mater. 2000, 9, 1835–1839. [Google Scholar] [CrossRef]
- Steeds, J.W.; Sullivan, W.; Wotherspoon, A.; Hayes, J.M. Long-range migration of intrinsic defects during irradiation or implantation. J. Phys. Condens. Matter. 2009, 21, 364219. [Google Scholar] [CrossRef] [PubMed]
- Newton, M.E.; Campbell, B.A.; Twitchen, D.J.; Baker, J.M.; Anthony, T.R. Recombination-enhanced diffusion of self-interstitial atoms and vacancy-interstitial recombination in diamond. Diam. Relat. Mater. 2002, 11, 618–622. [Google Scholar] [CrossRef]
- Dannefaer, S.; Pu, A.; Avalos, V.; Kerr, D. Annealing of monovacancies in electron and γ-irradiated diamonds. Physica B 2001, 308–310, 569–572. [Google Scholar] [CrossRef]
- Dannefaer, S. Defects in diamond. Phys. Stat. Sol. C 2007, 4, 3605–3613. [Google Scholar] [CrossRef]
- Zaitsev, A.M. Optical Properties of Diamond: A Data Handbook; Springer: Berlin, Germany, 2001. [Google Scholar]
- Hounsome, L.S.; Jones, R.; Martineau, P.M.; Fisher, D.; Shaw, M.J.; Briddon, P.R.; Öberg, S. Origin of brown coloration in diamond. Phys. Rev. B 2006, 73, 125203. [Google Scholar] [CrossRef]
- Bangert, U.; Barnes, R.; Gass, M.H.; Bleloch, A.L.; Godfrey, I.S. Vacancy clusters, dislocations and brown colouration in diamond. J. Phys. Condens. Matter. 2009, 21, 364208. [Google Scholar] [CrossRef]
- Laidlaw, F.H.J.; Diggle, P.L.; Breeze, B.G.; Dale, M.W.; Fisher, D.; Beanland, R. Spatial distribution of defects in a plastically deformed natural brown diamond. Diam. Relat. Mater. 2021, 117, 108465. [Google Scholar] [CrossRef]
- Jones, R. Dislocations, vacancies and the brown colour of CVD and natural diamond. Diam. Relat. Mater. 2009, 18, 820–826. [Google Scholar] [CrossRef]
- Mäki, J.M.; Tuomisto, F.; Kelly, C.J.; Fisher, D.; Martineau, P.M. Properties of optically active vacancy clusters in type IIa diamond. J. Physics: Cond. Matt. 2009, 21, 364216. [Google Scholar] [CrossRef]
- Hainschwang, T.; Notari, F.; Pamies, G. A defect study and classification of brown diamonds with non-deformation-related color. Minerals 2020, 10, 914. [Google Scholar] [CrossRef]
- Hainschwang, T.; Notari, F.; Pamies, G. A defect study and classification of brown diamonds with deformation-related color. Minerals 2020, 10, 903. [Google Scholar] [CrossRef]
- Massi, L.; Fritsch, E.; Collins, A.T.; Hainschwang, T.; Notari, F. The ‘‘amber centres’’ and their relation to the brown colour in diamond. Diam. Relat. Mater. 2005, 14, 1623–1629. [Google Scholar] [CrossRef]
- Reinitz, I.M.; Buerki, P.R.; Shigley, J.E.; McClure, S.F.; Moses, T.M. Identification of HPHT-Treated Yellow to Green Diamonds. Gems Gemol. 2000, 36, 128–137. [Google Scholar] [CrossRef]
- Collins, A.T.; Kanda, H.; Kitawaki, H. Colour changes produced in natural brown diamonds by high pressure, high-temperature treatment. Diam. Relat. Mater. 2000, 9, 113–122. [Google Scholar] [CrossRef]
- Kupriyanov, I.N.; Palyanov, Y.N.; Kalinin, A.A.; Shatsky, V.S. Effect of HPHT Treatment on Spectroscopic Features of Natural Type Ib-IaA Diamonds Containing Y Centers. Crystals 2020, 10, 378. [Google Scholar] [CrossRef]
- Wu, G.-C.; Yu, X.-Y.; Liu, F.; Li, H.-B.; Long, Z.-Y.; Wang, H. Color genesis of brown diamond from the Mengyin Kimberlite, China. Crystals 2022, 12, 449. [Google Scholar] [CrossRef]
- Mashkovtsev, R.I.; Rakhmanova, M.I.; Zedgenizov, D.A. Specific spectroscopic features of yellow cuboid diamonds from placers in the north-eastern Siberian Platform. J. Geosciences 2021, 66, 117–126. [Google Scholar] [CrossRef]
- Hainschwang, T.; Karampelas, S.; Fritsch, E.; Notari, F. Luminescence spectroscopy and microscopy applied to study gem materials: A case study of C centre containing diamonds. Miner. Petrol. 2013, 107, 393–413. [Google Scholar] [CrossRef]
- Zaitsev, A.M.; Wang, W.; Moe, K.S.; Johnson, P. Spectroscopic studies of yellow nitrogen-doped CVD diamonds. Diam. Relat. Mater. 2016, 68, 51–61. [Google Scholar] [CrossRef]
- Shiryaev, A.A.; Titkov, S.V. Spatial distribution of “Amber” defects in diamond: Results of IR mapping. New Data Miner. 2018, 52, 87–90. [Google Scholar]
- Eaton-Magaña, S.C.; Moe, K.S. Temperature effects on radiation stains in natural diamonds. Diam. Relat. Mater. 2016, 64, 130–142. [Google Scholar] [CrossRef]
- Morelli, D.T.; Perry, T.A.; Farmer, J.W. Phonon scattering in lightly neutron-irradiated diamond. Phys. Rev. B 1993, 47, 131. [Google Scholar] [CrossRef] [PubMed]
- Mita, Y.; Yamada, Y.; Nisida, Y.; Okada, M.; Nakashima, T. Infrared absorption studies of neutron-irradiated type Ib diamond. Phys. B 2006, 376–377, 288–291. [Google Scholar] [CrossRef]
- Khomich, A.V.; Khmelnitskii, R.A.; Hu, X.J.; Khomich, A.A.; Popovich, A.F.; Vlasov, I.I.; Dravin, V.A.; Chen, Y.G.; Karkin, A.E.; Ralchenko, V.G. Radiation damage effects on optical, electrical, and thermophysical properties of CVD diamond films. J. Appl. Spectrosc. 2013, 80, 707–714. [Google Scholar] [CrossRef]
- Mita, Y.; Nisida, Y.; Okada, M. Formation of the nitrogen aggregates in annealed diamond by neutron irradiation. AIP Adv. 2018, 8, 025106. [Google Scholar] [CrossRef]
- Dale, M.W. Colour Centres on Demand in Diamond. Ph.D. Thesis, University of Warwick, Warwick, UK, 2015. [Google Scholar]
- Khomich, A.A.; Dzeraviaha, A.N.; Poklonskaya, O.N.; Khomich, A.V.; Khmelnitsky, R.A.; Poklonski, N.A.; Ralchenko, V.G. Effect of neutron irradiation on the hydrogen state in CVD diamond films. J. Phys. Conf. Ser. 2018, 1135, 012019. [Google Scholar] [CrossRef]
- Woods, G.S. Infrared absorption studies of the annealing of irradiated diamonds. Philosoph. Magaz. B 1984, 50, 673–688. [Google Scholar] [CrossRef]
- Collins, A.T.; Dahwich, A. The annealing of interstitial-related optical centres in type Ib diamond. Diam. Relat. Mater. 2004, 13, 1959–1962. [Google Scholar] [CrossRef]
- Bolshakov, A.P.; Ralchenko, V.G.; Yurov, V.Y.; Shu, G.; Bushuev, E.V.; Khomich, A.A.; Ashkinazi, E.E.; Sovyk, D.N.; Antonova, I.A.; Savin, S.S.; et al. Enhanced deposition rate of polycrystalline CVD diamond at high microwave power densities. Diam. Relat. Mater. 2019, 97, 107466. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, C.; Liu, J.; Wei, J.; Zhang, X.; Ye, H.; Ouyang, X. Chemical vapor deposited diamond with versatile grades: From gemstone to quantum electronics. Front. Mater. Sci. 2022, 16, 220590. [Google Scholar] [CrossRef]
- Karkin, A.E.; Voronin, V.I.; Berger, I.F.; Kazantsev, V.A.; Ponosov, Y.S.; Ralchenko, V.G.; Konov, V.I.; Goshchitskii, B.N. Neutron irradiation effects in chemical-vapor-deposited diamond. Phys. Rev. B 2008, 78, 033204. [Google Scholar] [CrossRef]
- Poklonski, N.A.; Khomich, A.A.; Svito, I.A.; Vyrko, S.A.; Poklonskaya, O.N.; Kovalev, A.I.; Kozlova, M.V.; Khmelnitskii, R.A.; Khomich, A.V. Magnetic and optical properties of natural diamonds with subcritical radiation damage induced by fast neutrons. Appl. Sci. 2023, 13, 6221. [Google Scholar] [CrossRef]
- Nistor, S.V.; Stefan, M.; Ralchenko, V.; Khomich, A.; Schoemaker, D. Nitrogen and hydrogen in thick diamond films grown by microwave plasma enhanced chemical vapor deposition at variable H2 flow rates. J. Appl. Phys. 2000, 87, 8741–8746. [Google Scholar] [CrossRef]
- Dobrinets, I.A.; Vins, V.G.; Zaitsev, A.M. HPHT-Treated Diamonds; Springer: Berlin, Germany, 2013. [Google Scholar]
- Steeds, J.W.; Charles, S.; Davis, T.J.; Gilmore, A.; Hayes, J.; Pickard, D.; Butler, J.E. Creation and mobility of self-interstitials in diamond by use of a transmission electron microscope and their subsequent study by photoluminescence microscopy. Diam. Relat. Mater. 1999, 8, 94–100. [Google Scholar] [CrossRef]
- Dischler, B. Handbook of Spectral Lines in Diamond: Volume 1: Tables and Interpretations; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Richter, H.; Wang, Z.P.; Ley, L. The one phonon Raman spectrum in microcrystalline silicon. Sol. Stat. Com. 1981, 39, 625–629. [Google Scholar] [CrossRef]
- Prawer, S.; Nugent, K.W.; Jamieson, D.N.; Orwa, J.O.; Bursill, L.A.; Peng, J.L. The Raman spectrum of nanocrystalline diamond. Chem. Phys. Lett. 2000, 332, 93–97. [Google Scholar] [CrossRef]
- Osswald, S.; Mochalin, V.N.; Havel, M.; Yushin, G.; Gogotsi, Y. Phonon confinement effects in the Raman spectrum of nanodiamond. Phys. Rev. B 2009, 80, 075419. [Google Scholar] [CrossRef]
- Orwa, J.O.; Nugent, K.W.; Jamieson, D.N.; Prawer, S. Raman investigation of damage caused by deep ion implantation in diamond. Phys. Rev. B. 2000, 62, 5461–5472. [Google Scholar] [CrossRef]
- Poklonskaya, O.N.; Khomich, A.A. Raman scattering in a diamond crystal implanted by high-energy nickel ions. J. Appl. Spectrosc. 2013, 80, 715–720. [Google Scholar] [CrossRef]
- Smit, K.V.; D’Haenens-Johansson, U.F.S.; Howell, D.; Loudin, L.C.; Wang, W. Deformation-related spectroscopic features in natural Type Ib-IaA diamonds from Zimmi (West African craton). Mineral. Petrol. 2018, 112, 243–257. [Google Scholar] [CrossRef]
- Khomich, A.V.; Khmelnitskiy, R.A.; Dravin, V.A.; Gippius, A.A.; Zavedeev, E.V.; Vlasov, I.I. Radiation damage in diamonds subjected to helium implantation. Phys. Sol. State 2007, 49, 1661–1665. [Google Scholar] [CrossRef]
- Kalish, R.; Reznik, A.; Nugent, K.W.; Prawer, S. The nature of damage in ion-implanted and annealed diamond. Nucl. Instr. Meth. Phys. Res. B 1999, 148, 626–633. [Google Scholar] [CrossRef]
- Khmelnitsky, R.A.; Dravin, V.A.; Tal, A.A.; Latushko, M.I.; Khomich, A.A.; Khomich, A.V.; Trushin, A.S.; Alekseev, A.A.; Terentiev, S.A. Mechanical stresses and amorphization of ion-implanted diamond. Nucl. Instr. Meth. Phys. Res. B 2013, 304, 5–10. [Google Scholar] [CrossRef]
- Kiflawi, G.D.; Fisher, D.; Kanda, H. New infrared absorption centres in electron irradiated and annealed type Ia diamonds. Diam. Relat. Mater. 1999, 8, 1576–1580. [Google Scholar] [CrossRef]
- Parsons, B.J. Spectroscopic Mode Grüneisen Parameters for Diamond. Proc. R. Soc. Lond. A 1977, 352, 397–417. [Google Scholar]
- Collins, A.T.; Stanley, M. Absorption and luminescence studies of synthetic diamond in which the nitrogen has been aggregated. J. Phys. D Appl. Phys. 1985, 18, 2537. [Google Scholar] [CrossRef]
- Gaillou, E.; Fritsch, E.; Notari, F. Photoinduced H1b and H1c centers in some natural treated diamonds. Diam. Relat. Mater. 2008, 17, 2029–2036. [Google Scholar] [CrossRef]
- Lomer, J.N.; Wild, A.M.A. Electron spin resonance in electron irradiated diamond annealed to high temperatures. Radiat. Eff. 1973, 17, 37–44. [Google Scholar] [CrossRef]
- Zhu, W.; Song, Z.; Lu, T.; Li, H. Pale yellow type IIa diamond coloured by H4 centres. J. Gemmol. 2020, 37, 350–352. [Google Scholar] [CrossRef]
- Nasdala, L.; Grambole, D.; Wildner, M.; Gigler, A.M.; Hainschwang, T.; Zaitsev, A.M.; Harris, J.W.; Milledge, J.; Schulze, D.J.; Hofmeister, W.; et al. Radio-colouration of diamond: A spectroscopic study. Contrib. Mineral. Petrol. 2013, 165, 843–861. [Google Scholar] [CrossRef]
- Khomich, A.A.; Averin, A.A.; Poklonskaya, O.N.; Bokova-Sirosh, S.N.; Dzeraviaha, A.N.; Khmelnitsky, R.A.; Vlasov, I.I.; Shenderova, O.; Poklonski, N.A.; Khomich, A.V. Features of the 1640 cm−1 band in the Raman spectra of radiation-damaged and nano-sized diamonds. J. Phys. Conf. Ser. 2019, 1400, 044017. [Google Scholar] [CrossRef]
- Steeds, J.W.; Kohn, S. Annealing of electron radiation damage in a wide range of Ib and IIa diamond samples. Diam. Relat. Mater. 2014, 50, 110–122. [Google Scholar] [CrossRef]
- Twitchen, D.J.; Newton, M.E.; Baker, J.M.; Anthony, T.R.; Banholzer, W.F. Electron-paramagnetic-resonance measurements on the divacancy defect center R 4/W 6 in diamond. Phys. Rev. B 1999, 59, 12900. [Google Scholar] [CrossRef]
- Hounsome, L.S.; Jones, R.; Martineau, P.M.; Shaw, M.J.; Briddon, P.R.; Öberg, S.; Blumenau, A.T.; Fujita, N. Optical properties of vacancy related defects in diamond. Phys. Status Solidi A 2005, 202, 2182–2187. [Google Scholar] [CrossRef]
- Iakoubovskii, K.; Stesmans, A. Dominant paramagnetic centers in 17 O-implanted diamond. Phys. Rev. B 2002, 66, 045406. [Google Scholar] [CrossRef]
- Iakoubovskii, K.; Stesmans, A. Vacancy clusters in diamond studied by electron spin resonance. Phys. Status Solidi A 2004, 201, 2509–2515. [Google Scholar] [CrossRef]
- Baker, J.M. Deducing atomic models for point defects in diamond: The relevance of their mechanism of formation. Diam. Relat. Mater. 2007, 16, 216–219. [Google Scholar] [CrossRef]
- Vins, V.; Yelisseyev, A.; Terentyev, S.; Nosukhin, S. Specifics of high-temperature annealing of brown CVD single crystal diamonds at graphite-stable and diamond-stable conditions. Diam. Relat. Mater. 2021, 118, 108511. [Google Scholar] [CrossRef]
- Dresselhaus, G.; Dresselhaus, M.S. The Optical Properties of Solids; Tauc, J., Ed.; Academic Press, Inc.: New York, NY, USA, 1966; p. 198. [Google Scholar]
- Kalish, R.; Reznik, A.; Prawer, S.; Saada, D.; Adler, J. Ion-implantation-induced defects in diamond and their annealing: Experiment and simulation. Phys. Status Solidi A 1999, 174, 83–99. [Google Scholar] [CrossRef]
- Prins, J.F. Electrical conduction in diamond after vacancy generation by means of carbon-ion implantation. Appl. Phys. Lett. 2000, 76, 2095–2097. [Google Scholar] [CrossRef]
- Trajkov, E.; Prawer, S. Conduction mechanisms in ion-implanted and annealed polycrystalline CVD diamond. Diam. Relat. Mater. 2006, 15, 1714–1719. [Google Scholar] [CrossRef]
- Xu, H.; Ye, H.; Coathup, D.; Mitrovic, I.Z.; Weerakkody, A.D.; Hu, X. An insight of p-type to n-type conductivity conversion in oxygen ion-implanted ultrananocrystalline diamond films by impedance spectroscopy. Appl. Phys. Lett. 2017, 110, 033102. [Google Scholar] [CrossRef]
- Thonke, K. The boron acceptor in diamond. Semicond. Sci. Technol. 2003, 18, S20. [Google Scholar] [CrossRef]
- Khomich, A.; Ralchenko, V.; Nistor, L.; Vlasov, I.; Khmelnitskiy, R. Optical properties and defect structure of CVD diamond films annealed at 900–1600 °C. Phys. Status Solidi A 2000, 181, 37–44. [Google Scholar] [CrossRef]
Sample | Fluence, cm−2 | Thickness, mm | NC, cm−3 | C-H, cm−3 |
---|---|---|---|---|
D1 | 1 × 1018 | 0.47 | 1.0 × 1018 | 1.6 × 1020 |
D3 | 3 × 1018 | 0.47 | 1.0 × 1018 | 1.3 × 1020 |
D10 | 10 × 1018 | 0.51 | 0.3 × 1018 | 0.4 × 1020 |
D20 | 20 × 1018 | 0.49 | 0.9 × 1018 | 0.7 × 1020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khomich, A.A.; Khmelnitskii, R.; Kozlova, M.; Khomich, A.V.; Ralchenko, V. IR Spectroscopy of Vacancy Clusters (Amber Centers) in CVD Diamonds Nanostructured by Fast Neutron Irradiation. C 2023, 9, 55. https://doi.org/10.3390/c9020055
Khomich AA, Khmelnitskii R, Kozlova M, Khomich AV, Ralchenko V. IR Spectroscopy of Vacancy Clusters (Amber Centers) in CVD Diamonds Nanostructured by Fast Neutron Irradiation. C. 2023; 9(2):55. https://doi.org/10.3390/c9020055
Chicago/Turabian StyleKhomich, Andrey A., Roman Khmelnitskii, Maria Kozlova, Alexander V. Khomich, and Victor Ralchenko. 2023. "IR Spectroscopy of Vacancy Clusters (Amber Centers) in CVD Diamonds Nanostructured by Fast Neutron Irradiation" C 9, no. 2: 55. https://doi.org/10.3390/c9020055
APA StyleKhomich, A. A., Khmelnitskii, R., Kozlova, M., Khomich, A. V., & Ralchenko, V. (2023). IR Spectroscopy of Vacancy Clusters (Amber Centers) in CVD Diamonds Nanostructured by Fast Neutron Irradiation. C, 9(2), 55. https://doi.org/10.3390/c9020055