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Abstract: The Casimir–Polder force acting on atoms and nanoparticles spaced at large separations
from real graphene sheets possessing some energy gaps and chemical potentials is investigated in the
framework of the Lifshitz theory. The reflection coefficients expressed via the polarization tensor of
graphene, found based on the first principles of thermal quantum field theory, are used. It is shown
that for graphene the separation distances, starting from which the zero-frequency term of the Lifshitz
formula contributes more than 99% of the total Casimir–Polder force, are less than the standard
thermal length. According to our results, however, the classical limit for graphene, where the force
becomes independent of the Planck constant, may be reached at much larger separations than the limit
of the large separations determined by the zero-frequency term of the Lifshitz formula, depending
on the values of the energy gap and chemical potential. The analytic asymptotic expressions for
the zero-frequency term of the Lifshitz formula at large separations are derived. These asymptotic
expressions agree up to 1% with the results of numerical computations starting from some separation
distances that increase with increasing energy gaps and decrease with increasing chemical potentials.
The possible applications of the obtained results are discussed.

Keywords: Casimir–Polder force; atoms; nanoparticles; Lifshitz theory; graphene; polarization tensor;
energy gap; chemical potential

1. Introduction

The Casimir–Polder force [1] acts between electrically neutral small bodies (atoms
and nanoparticles) and material surfaces. This force is induced by the zero-point and
thermal fluctuations of the electromagnetic field, which have their origin in the microscopic
charges and currents occurring inside all material bodies. It is a generalization of the
van der Waals force to separation distances, where the relativistic effects already make a
pronounced impact on the force value. This typically happens at separations exceeding
several nanometers.

The unified theory of the atom–plate van der Waals and Casimir–Polder forces was
developed by Lifshitz [2–4]. Given the dynamic polarizability, α(ω), of an atom or a
nanoparticle and the dielectric function of a material plate, one can calculate the Casimir–
Polder force in the framework of the Lifshitz theory. Calculations of this kind have been
performed for different atoms, nanoparticles, and plate materials [5–20]. The obtained
results were found to be important in explaining the crucially new physical phenomena of
quantum reflection [21–30] and Bose–Einstein condensation [31–35]. It should be noted that
the original Lifshitz theory was formulated for physical systems that are in a state of thermal
equilibrium with the environment. The generalization of this theory for situations out of
thermal equilibrium (for instance, when the plate temperature is different from that of the
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environment) has been performed in [36–41]. It was applied to calculate the nonequilibrium
Casimir–Polder force in different cases, including experimental configurations [42–45].

Considerable attention has recently been focused on graphene, which is a two-dimensional
sheet of carbon atoms packed in a hexagonal lattice [46]. Currently, graphene finds ex-
panding applications in both fundamental physics and nanotechnology. Specifically, the
Casimir–Polder force acting on atoms [47–59] and nanoparticles [60–65] from graphene and
graphene-coated substrates has become the topic of a large body of research. Graphene was
demonstrated to have properties described by the Dirac model [46,66,67], i.e., at energies
below approximately 3 eV [68] electrons in graphene can be considered as a set of massless
or light quasiparticles governed by the Dirac equation in two spatial dimensions, where the
speed of light, c, is replaced by the Fermi velocity, vF ≈ c/300. This has made it possible to
find the polarization tensor of graphene at any temperature [69–72], which is equivalent to
spatially nonlocal dielectric functions, transverse one and longitudinal one. These results
have been used in [48–51,53–59,65] to calculate the Casimir–Polder force acting on an atom
or a nanoparticle from graphene in the framework of the Lifshitz theory.

An important question is how soon the Casimir–Polder force from graphene ap-
proaches its limiting form, given by the zero-frequency term in the Lifshitz formula, which
can be reached at large separations (high temperatures). In [73], the asymptotic behavior of
the Casimir–Polder interaction was investigated in the case of an undoped graphene sheet
possessing zero chemical potential. However, real graphene sheets are characterized not
only by the energy gap in the spectrum of quasiparticles, ∆ = 2mv2

F, where m is the small
but nonzero mass of quasiparticles [46,74,75], but they are also doped, i.e., their crystal
lattice contains some fraction of foreign atoms. This can be described by a nonzero value of
the chemical potential, µ, depending on the doping concentration [76].

In this article, we examine the behavior of the Casimir–Polder force between atoms
(nanoparticles) and real graphene sheets in the limit of large separations (high temperatures)
as a function of the atom–plate separation a, the energy gap ∆, and the chemical potential
µ. First, we demonstrate that the term of the Lifshitz formula at zero Matsubara frequency
contributes more than 99% of the force magnitude at separations exceeding some value
a0, which is distinctly less than the standard thermal length, h̄c/kBT) ≈ 7.6 µm at room
temperature, T = 300 K (here, kB is the Boltzmann constant). The value of a0 decreases
with increasing ∆. For sufficiently small ∆, a0 increases with increasing µ, but for a larger
∆ the dependence of a0 on µ becomes nonmonotonic.

Then, we compare the large-separation Casimir–Polder force from graphene, given
by the zero-frequency term of the Lifshitz formula, with that from an ideal metal plane. It
is shown that for a fixed energy gap an agreement between these two quantities becomes
better with increasing chemical potential of a graphene sheet.

Next, we derive simple asymptotic expressions for the zero-frequency contribution
to the Lifshitz formula at large separations and find how they agree with the results of
numerical computations. For this purpose, we use the zero-frequency term of the Lif-
shitz formula with reflection coefficients expressed via the polarization tensor of graphene.
The polarization tensor is calculated using several small parameters. The analytic asymp-
totic expressions for the large-separation Casimir–Polder force are derived for any values
of the energy gap and chemical potential of a graphene sheet.

The derived asymptotic expressions are compared with numerical computations of the
Casimir–Polder force at large separations. The application region of the analytic asymptotic
results is determined. We show that with increasing energy gap the agreement between
the asymptotic and computational results becomes worse, whereas, at the same separation,
an increase in the chemical potential brings the asymptotic results in better agreement with
the results of numerical computations.

This article is organized as follows: In Section 2, we present the Lifshitz formula
for the Casimir–Polder force and reflection coefficients for the case of gapped and doped
graphene in terms of the polarization tensor. Section 3 contains the exact expression and
numerical computations of the Casimir–Polder force at large separations. In Section 4,
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the analytic asymptotic expressions for the Casimir–Polder force are derived. In Section 5,
the asymptotic results for the Casimir–Polder force are compared with the results of numer-
ical computations. Section 6 contains a discussion, and Section 7 contains our conclusions.

2. The Lifshitz Formula and Reflection Coefficients for Gapped and Doped Graphene

The Casimir–Polder force between an atom or a nanoparticle and any plane surface is
expressed by the following Lifshitz formula, which we present in terms of dimensionless
variables [54,77]:

F(a, T) = − kBT
8a4

∞

∑
l=0

′
αl

∞∫
ζl

y dy e−y
[
(2y2 − ζ2

l )rTM(iζl , y)− ζ2
l rTE(iζl , y)

]
. (1)

Here, the prime on the sum in l means that the term with l = 0 is divided by 2, ζl = ξl/ωc,
where ξl = 2πkBTl/h̄ (l = 0, 1, 2, . . .) are the Matsubara frequencies, ωc = c/(2a) is the
characteristic frequency, and αl = α(iζlωc). The dimensionless variable y is defined as

y = 2aql = 2a

(
k2
⊥ +

ξ2
l

c2

)1/2

, (2)

where k⊥ is the magnitude of the wave vector projection on the plane of graphene,
and rTM,TE are the reflection coefficients on graphene for the transverse magnetic (p) and
transverse electric (s) polarizations of the electromagnetic field. Note that both the dynamic
polarizability, αl , and the reflection coefficients, rTM,TE, are calculated at the pure imaginary
frequencies iζl .

The reflection coefficients in (1) are expressed via the dimensionless polarization tensor
of graphene [54]

rTM(iζl , y) =
yΠ̃00,l

yΠ̃00,l + 2(y2 − ζ2
l )

, rTE(iζl , y) = − Π̃l

Π̃l + 2y(y2 − ζ2
l )

, (3)

where the components of the dimensionless Π̃βγ and dimensional Πβγ tensors
(β, γ = 0, 1, 2) are connected by

Π̃βγ,l ≡ Π̃βγ(iζl .y) =
2a
h̄

Πβγ(iξl , k⊥). (4)

The dimensionless quantity Π̃l in (2) is defined as

Π̃l ≡
(2a)3

h̄
(k2
⊥Π β

β,l − q2
l Π00.l) = (y2 − ζ2

l )Π̃
β
β,l − y2Π̃00.l (5)

with a summation over β. The arguments of the polarization tensor components are omitted
for brevity.

As mentioned in the Introduction, the polarization tensor of graphene is equivalent
to the spatially nonlocal transverse and longitudinal dielectric functions defined in two-
dimensional space [78,79]. Using the dimensionless variables, one obtains

εL(iζl , y) = 1 +
1

2
√

y2 − ζ2
l

Π̃00,l , εTr(iζl , y) = 1 +
1

2ζ2
l

√
y2 − ζ2

l

Π̃l . (6)
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The explicit expression for Π̃00,l in terms of the dimensionless variables ζl and y is
presented in [54]. After identical transformations, it can be put in a more convenient form

Π̃00,l = α
y2 − ζ2

l
pl

Ψ(Dl) +
16αakBT

ṽ2
F h̄c

ln
[(

e−
∆

2kBT + e
µ

kBT

)(
e−

∆
2kBT + e−

µ
kBT

)]
(7)

−4αpl

ṽ2
F

∞∫
Dl

du wl(u, y)Re
pl − plu2 + 2iζlu

[p2
l − p2

l u2 + ṽ2
F(y2 − ζ2

l )D2
l + 2iζl plu]1/2

.

Here, α = e2/(h̄c) is the fine structure constant,

Ψ(x) = 2
[

x + (1− x2)arctan
1
x

]
, pl =

√
ṽ2

Fy2 + (1− ṽ2
F)ζ

2
l , (8)

where ṽF = vF/c is the dimensionless Fermi velocity,

wl(u, y) =
1

eBlu+
µ

kBT + 1
+

1

eBlu−
µ

kBT + 1
(9)

and, finally,

Dl ≡ Dl(y) =
2a∆
h̄cpl

, Bl ≡ Bl(y) =
h̄cpl

4akBT
. (10)

In a similar way, the combination of the components of the polarization tensor Π̃l
entering Equation (3) can be written in the form [54]

Π̃l = α(y2 − ζ2
l )plΨ(Dl)−

16αakBTζ2
l

ṽ2
F h̄c

ln
[(

e−
∆

2kBT + e
µ

kBT

)(
e−

∆
2kBT + e−

µ
kBT

)]
(11)

+
4αp2

l
ṽ2

F

∞∫
Dl

du wl(u, y)Re
ζ2

l − p2
l u2 + ṽ2

F(y
2 − ζ2

l )D2
l + 2iζl plu

[p2
l − p2

l u2 + ṽ2
F(y2 − ζ2

l )D2
l + 2iζl plu]1/2

.

By using Equations (1), (3), (7) and (11), one can compute the Casimir–Polder force
between an atom or a nanoparticle and a real graphene sheet characterized by some energy
gap and chemical potential.

3. The Casimir–Polder Force at Large Separations

It is well known that at large separations or, equivalently, at high temperatures,
the dominant contribution to the Casimir–Polder force is given by the term of (1) with
l = 0 [77,80]. For atoms and nanoparticles interacting with the three-dimensional plates
made of ordinary materials, the zero-frequency term of the Lifshitz formula is approxi-
mately equal to the total force already at the thermal length, h̄c/(kBT) ≈ 7.6 µm, at room
temperature. Below we demonstrate that for graphene the zero-frequency term determines
the total force value at even smaller separations depending on the energy gap ∆ and
chemical potential µ.

The zero-frequency term of the Lifshitz formula is obtained by separating the compo-
nent with l = 0 from (1)

F0(a, T) = − kBT
8a4 α0

∞∫
0

y3dy e−yrTM(0, y), (12)
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where the reflection coefficient from (3) simplifies to

rTM(0, y) =
Π̃00,0(y)

Π̃00,0(y) + 2y
. (13)

Note that the TE reflection coefficient does not contribute to (12) because in (1) taken
at l = 0 it is multiplied by zero. Here, we have explicitly indicated the argument y of
the polarization tensor. The component of the dimensionless polarization tensor Π̃00,0 is
obtained from (7) by putting ζ0 = 0

Π̃00,0(y) =
αy2

ṽF
Ψ(D0) +

16αakBT
ṽ2

F h̄c
ln
[(

e−
∆

2kBT + e
µ

kBT

)(
e−

∆
2kBT + e−

µ
kBT

)]
(14)

−4αy
ṽF

√
1+D2

0∫
D0

du w0(u, y)
1− u2√

1− u2 + D2
0

,

where
D0 =

2a∆
h̄cṽFy

, B0 =
h̄cṽFy
4akBT

(15)

and w0(u, y) is defined in (9) with l = 0 and B0 from (15).
Here, we perform numerical computations in order to find such separation, a0, that

at all separations a > a0 the quantity F0 from (12) contributes no less than 99% of the
total Casimir–Polder force (1). This is performed for heavy atoms, for instance, Rb, and
nanoparticles. It is apparent that the value of a0 depends on the energy gap and chem-
ical potential of the specific graphene sheet, so that a0 = a0(∆, µ). For this purpose,
first, we compute F0 from (12) as a function of separation using Equations (13)–(15). All
computations here and below are performed at room temperature, T = 300 K, in the
range of ∆ from 0.001 eV to 0.2 eV with a step of 0.01 eV for four values of µ = 0, 25,
75, and 150 meV. Similar computations of the total Casimir–Polder force F from (1) are
performed by Equations (1), (3), (7), and (11) at separations exceeding 1 µm, where, with-
out the loss of accuracy, one can use an approximation of the static atomic polarizability
αl ≈ α(0) = α0 [77]. The point is that computations of the Casimir–Polder force from
graphene by (1) using the frequency-dependent polarizability α(ω) show [54] that even
for light atoms, such as He∗, the value of a0 is above 1 µm. In doing so, for heavy atoms,
such as Rb, and nanoparticles all αl providing contributions to the result (i.e., with l ≤ 6 at
a = 1 µm, l ≤ 3 at a = 2 µm, and l ≤ 2 at a = 3 µm) are approximately equal to α0.

Using the obtained computational results, in Figure 1 we plot a0 as a function of the
energy gap of graphene, ∆, by the four lines (black, red, blue, and brown) for the chemical
potential, µ , equal to 0, 25, 75, and 150 meV, respectively. From Figure 1, it can be seen
that the value of a0 decreases with increasing energy gap. For ∆ < 0.15 eV, the value of
a0 increases with increasing µ, but for larger ∆ this is already not the case. Specifically,
the value of a0 for a graphene sheet with µ = 0 may become larger than for sheets with
µ = 25 and 75 meV. Intuitively, it is clear that increasing µ brings graphene closer to an
ideal metal and, thus, leads to an increase in a0. To the contrary, an increase in ∆ results in
decreasing a0 due to the suppressed impact of the thermal effects on the Matsubara terms
in (1) with l ≥ 1. The actual value of a0 for small µ and large ∆ results from the interplay
between these two effects. By and large, the value of a0 for gapped and doped graphene is
distinctly less than the thermal length for ordinary materials equal to 7.6 µm.
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Figure 1. Minimum separation between an atom (nanoparticle) and real graphene sheet for which the
zero-frequency term of the Lifshitz formula contributes no less than 99% of the total Casimir–Polder
force at T = 300 K is shown as a function of the energy gap by the four lines for chemical potential
equal to 0, 25, 75, and 150 meV.

It is also interesting to compare the Casimir–Polder force from gapped and doped
graphene F0 at large separations with that from an ideal metal plane given by [77]

F IM
0 (a, T) = −3kBT

4a4 α0. (16)

This is the so-called classical limit because the force does not depend on the Planck constant.
To understand where the large-separation Casimir–Polder forces from graphene and

an ideal metal plane come together, we compute the relative quantity

δF0(a, T) =
F0(a, T)− F IM

0 (a, T)
F IM

0 (a, T)
. (17)

The computational results for a graphene sheet with ∆ = 0.2 eV are shown in Figure 2
at T = 300 K as a function of separation by the four lines (black, red, blue, and brown)
from bottom to top for chemical potential µ equal to 0, 25, 75, and 150 meV, respectively. In
the inset, the behavior of blue and brown lines at short separations (µ = 75 and 150 eV) is
shown on an enlarged scale with better resolution. The dashed lines indicate the border
of the 1-percent relative deviation between the large-separation behavior of the Casimir–
Polder forces from a graphene sheet and an ideal metal plane. The separation region
a > 3 µm is considered where, according to Figure 1, F0 represents the large-separation
behavior of the Casimir–Polder force.

As can be seen in Figure 2, for ∆ = 0.2 eV, µ = 150 meV (the top line) the Casimir–
Polder forces from graphene and from an ideal metal plane agree within 1% at all separa-
tions considered. With decreasing µ to 75, 25, and 0 meV, the agreement within 1% occurs at
separations exceeding 7, 36, and 54 µm, respectively. This result is physically natural if one
takes into account that larger µ corresponds to larger doping concentrations, i.e., graphene
becomes more akin to an ideal metal plane. Thus, for graphene sheets with relatively low
chemical potential, the classical limit is reached only at rather large separation distances.

In the next section, we obtain simple asymptotic expressions for the quantity F0
from (12), which allow the calculation of the Casimir–Polder force from gapped and
doped graphene at large separations, without using complicated expressions for the
polarization tensor.
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Figure 2. The relative deviation between the high-separation behaviors of the Casimir–Polder force
from graphene sheet with ∆ = 0.2 eV and an ideal metal plane at T = 300 K is shown as a function of
the energy gap by the four lines counted from bottom to top for chemical potential equal to 0, 25, 75,
and 150 meV. In the inset, the two lines for µ = 75 and 150 meV (bottom and top, respectively) are
shown at short separations on an enlarged scale. The dashed lines indicate the border of the 1-percent
relative deviation.

4. Asymptotic Expressions for the Casimir–Polder Force

We consider the Casimir–Polder force (12) where the reflection coefficient, rTM, is
given by (13) and the polarization tensor is expressed by (14) with the notations in (15). We
seek the asymptotic expression of (14) and (12) under the following condition:

2akBT
ṽF h̄c

=
kBT

ṽF h̄ωc
� 1. (18)

At T = 300 K, this condition is well satisfied for a > 0.2 µm, i.e., not restrictive.
The reflection coefficient (13) can be identically rewritten in the form

rTM(0, y) = 1− 2y
Π̃00,0(y) + 2y

. (19)

As is seen from (14), the parameter in (18) stands in front of the second contribution to
Π̃00,0 by making it much larger than unity. Note that this contribution does not depend on
y. Simultaneously, the main contribution to (12) is given by y ∼ 1. Because of this, one can
replace y with unity in the denominator of (19) and neglect by 2 in comparison with Π̃00,0.
As a result, (19) takes the form

rTM(0, y) ≈ 1− 2y
Π̃00,0(1)

. (20)

Substituting (20) into (12) and integrating with respect to y, one obtains the following
asymptotic expression:

Fas
0 (a, T) ≈ −3kBTα0

4a4

[
1− 8

Π̃00,0(1)

]
= F IM

0 (a, T)

[
1− 8

Π̃00,0(1)

]
, (21)
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where F IM
0 is the Casimir–Polder force from an ideal metal plane at large separations defined

in (17). Note that Fas
0 (a, T) depends on the Planck constant h̄ through the polarization tensor

of graphene Π̃00,0(1).
Now we deal with the asymptotic expressions for the polarization tensor Π̃00,0(1) and

start from the case ∆ = 0, µ 6= 0. In this case, we have from (15) D0 = 0 and from (8)
Ψ(0) = π. Because of this, (14) simplifies to

Π̃00,0(1) ≈
απ

ṽF
+

8αkBT
ṽ2

F h̄ωc
ln
[(

1 + e
µ

kBT

)(
1 + e−

µ
kBT

)]
(22)

−4α

ṽF

1∫
0

du

(
1

eB0u+ µ
kBT + 1

+
1

eB0u− µ
kBT + 1

)√
1− u2.

Owing to the condition (18), the first contribution on the right-hand side of (22) is
much less than the second and can be neglected. Owing to the same condition, according
to (15),

B0 = 0 =
h̄cṽFy
4akBT

≈ ṽF h̄ωc

2kBT
� 1. (23)

Because of this, it holds that B0u � 1 and one can put exp(B0u) ≈ 1 into (22). As a
result, (22) takes the form

Π̃00,0(1) ≈
8αkBT
ṽ2

F h̄ωc
ln
[(

1 + e
µ

kBT

)(
1 + e−

µ
kBT

)]
(24)

−4α

ṽF

[(
1 + e

µ
kBT

)−1
+

(
1 + e−

µ
kBT

)−1
] 1∫

0

du
√

1− u2.

Calculating the integral, we find an expression

Π̃00,0(1) ≈
α

ṽF

{
8kBT
ṽF h̄ωc

ln
[(

1 + e
µ

kBT

)(
1 + e−

µ
kBT

)]
(25)

−π

[(
1 + e

µ
kBT

)−1
+

(
1 + e−

µ
kBT

)−1
]}

,

where, thanks to (18), the second term is much less than the first. As a result, one obtains

Π̃00,0(1) ≈
8αkBT
ṽ2

F h̄ωc
ln
[(

1 + e
µ

kBT

)(
1 + e−

µ
kBT

)]
. (26)

In the special case of a pristine graphene ∆ = µ = 0, (26) reduces to

Π̃00,0(1) ≈
16αkBT
ṽ2

F h̄ωc
ln 2, (27)

which agrees with [81].
We are now coming to the case of arbitrary, but not too small, values of ∆ and any

value of µ. In fact, we assume that D0 defined in (15) with y = 1 is much larger than unity

D0 =
2a∆

h̄cṽFy
≈ ∆

h̄ωcṽF
� 1. (28)

The assumption in (28) is not too restrictive. The point is that we consider the Casimir–
Polder force at large separations a > 2 µm, i.e., h̄ωc < 0.05 eV. This means that the
condition (28) is satisfied for all ∆ > 0.001 eV.
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Let us consider the first term in the polarization tensor (14) with y = 1. Using the
definition of Ψ in (8) and expanding arctan (D−1

0 ) in powers of small parameter D−1
0 ,

we obtain
Ψ(D0) ≈

8
3D0

,
α

ṽF
Ψ(D0) ≈

8α

3ṽFD0
=

8α

3
h̄ωc

∆
. (29)

The maximum value of the latter quantity in (29) (i.e., of the first term in (14)) for our values
of parameters is unity, and it decreases with increasing ∆. Thus, thanks to (18), the first
term in (14) is much less than the second one containing the logarithm function.

We turn our attention to the third term in (14). Due to (28), the lower and upper
integration limits are very close, and one can replace B0u with B0D0 in the powers of
exponents entering w0(u, y) defined in (9). Taking into account that, according to (15),
B0D0 = ∆/(2kBT), we can rewrite (14) with y = 1 in the form

Π̃00,0(1) ≈
8αkBT
ṽ2

F h̄ωc
ln
[(

e−
∆

2kBT + e
µ

kBT

)(
e−

∆
2kBT + e−

µ
kBT

)]
(30)

−4α

ṽF

(
1

e
∆

2kBT +
µ

kBT + 1
+

1

e
∆

2kBT−
µ

kBT + 1

) √1+D2
0∫

D0

du
1− u2√

1− u2 + D2
0

.

The integral in (30) is easily calculated

I =

√
1+D2

0∫
D0

du
1− u2√

1− u2 + D2
0

= −D0

2
+

D2
0 − 1
2

(
arctanD0 −

π

2

)
. (31)

Under the condition (28), we find from (31) I ≈ −D0 and (30) leads to

Π̃00,0(1) ≈
8αkBT
ṽ2

F h̄ωc
ln
[(

e−
∆

2kBT + e
µ

kBT

)(
e−

∆
2kBT + e−

µ
kBT

)]
+

4α∆
ṽ2

F h̄ωc

(
1

e
∆

2kBT +
µ

kBT + 1
+

1

e
∆

2kBT−
µ

kBT + 1

)
. (32)

After making identical transformations in the first and second terms of this expression,
we bring it to the form (see (A7) in Appendix A for details)

Π̃00,0(1) ≈
8αkBT
ṽ2

F h̄ωc

[
ln
(

4 cosh
∆ + 2µ

4kBT
cosh

∆− 2µ

4kBT

)
− ∆

4kBT

(
tanh

∆ + 2µ

4kBT
+ tanh

∆− 2µ

4kBT

)]
. (33)

By putting µ = 0 in (33), one finds

Π̃00,0(1) ≈
16αkBT
ṽ2

F h̄ωc

[
ln
(

2 cosh
∆

4kBT

)
− ∆

4kBT
tanh

∆
4kBT

]
. (34)

Under the additional condition ∆ � 4kBT, we can neglect the second term in (34),
as compared to the first one, and obtain

Π̃00,0(1) ≈
16αkBT
ṽ2

F h̄ωc
ln
(

2 cosh
∆

4kBT

)
. (35)

This result coincides with that obtained earlier in [81] if it is taken into account that [81]
uses the notation ∆̃ = ∆/(h̄ωc), where ∆ is equal to ∆/2 in our current notations, i.e., to
one-half of the total energy gap.
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Note that at T = 300 K the application region of (35) reduces to 0.001 eV < ∆ < 0.01 eV,
i.e., it is rather narrow. In Appendix A, using the condition opposite to (28), we prove,
however, that (35) remains valid for arbitrary small values of ∆ (see Equation (A8) with
any µ including µ = 0).

Now we finalize the asymptotic expression Fas
0 for the Casimir–Polder force from

gapped and doped graphene with not-too-small energy gaps ∆. For this purpose, we
substitute (33) into (21). The obtained expression Fas

0 is valid under the condition (18).
In the next section, we find how close the asymptotic Casimir–Polder force would be to the
numerical values of the force at large separations F0.

5. Comparison between Asymptotic and Numerical Results

Here, we compare the analytic asymptotic expressions for the large-separation Casimir–
Polder force, Fas

0 , obtained in Section 4 with numerical computations of F0 for different
values of the energy gap and chemical potential.

We begin with the case of an undoped graphene sheet, µ = 0, and calculate the ratio
F0/Fas

0 for different values of the energy gap ∆. In doing so, F0 is computed by (12)–(15)
and Fas

0 by (21) and (34). All computations are performed at T = 300 K.
In Figure 3, the ratio F0/Fas

0 is shown as a function of separation between an atom
(nanoparticle) and a graphene sheet by the three lines counted from top to bottom for the
energy gap ∆ = 0.1, 0.15, and 0.2 eV. The case of large separations up to 100 µm is shown in
the inset for ∆ = 0.15 and 0.2 eV.
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0.95

1.00

20 40 60 80 100

0.975

0.980

0.985

0.990

0.995

1.000

a (µm)

F
0
/F

a
s

0

µ = 0

∆ = 0.1 eV

∆ = 0.15 eV
∆ = 0.2 eV

∆ = 0.15 eV

∆ = 0.2 eV

Figure 3. The ratio of the Casimir–Polder force from a graphene sheet with µ = 0 at large separations
to its asymptotic behavior is shown as a function of separation by the three lines counted from top to
bottom for energy gap ∆ equal to 0.1, 0.15, and 0.2 eV. In the inset, the two lines for ∆ = 0.15 and
0.2 eV are shown at larger separations.

As can be seen in Figure 3, the best agreement between the asymptotic and computed
Casimir–Polder forces holds for the smallest ∆ = 0.1 eV. In this case, Fas

0 agrees with F0 in
the limits of 1% at any a > 3 µm. With increasing ∆, the agreement between Fas

0 and F0
becomes worse. Thus, for a graphene sheet with ∆ = 0.15 eV, the 1% agreement is reached at
a = 14 µm. As for graphene with ∆ = 0.2 eV, the 2% agreement is only reached at a = 50 µm.

Now we consider the impact of the chemical potential on the measure of agreement
between Fas

0 and F0. For this purpose, we consider graphene sheets with ∆ = 0.2 eV (the case
of the worst agreement in Figure 3) but various values of chemical potential. Computations
of Fas

0 are performed by (21) and (33).
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In Figure 4, the ratio F0/Fas
0 is again shown as a function of separation by the three lines

counted from top to bottom for chemical potentials µ = 150, 75, and 25 meV, respectively
(brown, blue, and red lines). In the inset, the lines for a graphene sheet with µ = 75 and
25 meV are shown in the region of large separations up to 100µm.
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∆ = 0.2 eV
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µ = 75 meV

µ = 25 meV

Figure 4. The ratio of the Casimir–Polder force from a graphene sheet with ∆ = 0.2 eV at large
separations to its asymptotic behavior is shown as a function of separation by the three lines counted
from top to bottom for chemical potential µ equal to 150, 75, and 25 meV. In the inset, the two lines
for µ = 75 and 25 meV are shown at larger separations.

From Figure 4, one can conclude that an increase in the value of the chemical potential
makes the agreement between Fas

0 and F0 better. Thus, for µ = 150 meV, the 1% agreement
occurs at all separations a > 3µm, whereas for µ = 75 meV, at a > 5.5µm. For a graphene
sheet with µ = 25 meV the 1% agreement is reached only at a ≈ 34µm. We can say that
an increase in the values of ∆ and µ acts on the agreement between Fas

0 and F0 in opposite
directions by making it worse and better, respectively, at the same separation distance.

The above results allow the determination of the region of distances where the large-
separation Casimir-Polder force F0 can be replaced with its asymptotic behavior Fas

0 depend-
ing on the values of the energy gap and chemical potential of the specific graphene sheet.
These results are valid for both light and heavy atoms and for spherical nanoparticles.

6. Discussion

As discussed in Section 1, the Casimir–Polder force on atoms and nanoparticles from
different surfaces, including graphene, has been the subject of topical investigations in
the interests of fundamental physics and its applications. The Casimir–Polder force from
graphene attracts special attention because graphene is a novel material of high promise
due to its unusual mechanical and electrical properties.

From a theoretical point of view, graphene offers major advantages over more conven-
tional materials because its response functions to the electromagnetic field can be found
on the basis of the first principles of thermal quantum field theory without resorting to
phenomenological models. This is not the case for real metals, the response of which to
low-frequency electromagnetic field is described by the phenomenological Drude model,
which lacks an experimental confirmation in the area of s-polarized evanescent waves
giving an important contribution to the Casimir effect [82,83]. As a result, there are contra-
dictions between the predictions of the Lifshitz theory and measurements of the Casimir
force between metallic surfaces (see [77,80,84,85] for a review).
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Although the Casimir–Polder force from graphene has not yet been measured, the alre-
ady performed measurements of the Casimir force between a graphene-coated plate and
a Au-coated sphere demonstrate excellent agreement between the theoretical predictions
of the Lifshitz theory using the polarization tensor of graphene and the measurement
data [86,87]. Because of this, the above results for the Casimir–Polder force from gapped and
doped graphene at large separations, obtained here using the formalism of the polarization
tensor, are of a high degree of reliability.

7. Conclusions

To conclude, in the foregoing we investigated the Casimir–Polder force acting on
atoms and nanoparticles from a gapped and doped graphene sheet at large separations.
We have found separation distances, starting from which the zero-frequency term of the
Lifshitz formula coincides with the total Casimir–Polder force acting on heavy atoms or
spherical nanoparticles in the limits of 1%. It was shown that, depending on the values of
the energy gap and chemical potential of graphene, the classical limit may be reached at
much larger distances than the limit of large separations.

Furthermore, we derived the analytic asymptotic expressions for the zero-frequency
term of the Lifshitz formula at large separations with the reflection coefficient expressed
via the polarization tensor of graphene. These expressions are valid for light and heavy
atoms and nanoparticles of spherical shape. The obtained asymptotic expressions were
compared with numerical computations of the zero-frequency term. According to our
results, with the increasing energy gap of graphene, the separation distance ensuring a
better than 1% agreement between the asymptotic and numerically computed forces also
increases. By contrast, an increase in the chemical potential of graphene leads to a 1%
agreement between the asymptotic and numerical results at shorter separations.

The obtained results make it possible to easily calculate the large-separation Casimir–
Polder force from the gapped and doped graphene sheets and to control it by varying the
values of the energy gap and chemical potential. This can be used in precision experiments
on quantum reflection and Bose–Einstein condensation near the surfaces of graphene,
as well as in various technological applications. In the future, it would be interesting to
investigate the large-separation Casimir–Polder force from graphene-coated substrates
made of different materials.
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Appendix A. Asymptotic Expression for Graphene with Small Energy Gap

The asymptotic expression for the Casimir–Polder force from gapped and doped
graphene obtained in Section 4 is valid for graphene satisfying the condition (28), i.e.,
having not too small energy gap. Here, we consider the separation region where the
condition (18) is again satisfied but the energy gap satisfies the condition

D0 ≈
∆

ṽF h̄ωc
� 1, (A1)
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which is just the opposite to (28).
Owing the condition (18), the inequality in (23) preserves its validity and the first

contribution to the polarization tensor (14) with y = 1 is much less than the second and can
be omitted.

First, we evaluate the third contribution to (14) given by

I(1) = −4α

ṽF

√
1+D2

0∫
D0

du

(
1

eB0u+ µ
kBT + 1

+
1

eB0u− µ
kBT + 1

)
1− u2√

1− u2 + D2
0

. (A2)

By introducing the new integration variable v = u− D0, this term takes the form

I(1) = −4α

ṽF

√
1+D2

0−D0∫
0

dv

(
1

e
∆

2kBT +
µ

kBT eB0v + 1
+

1

e
∆

2kBT−
µ

kBT eB0v + 1

)

×
(√

1− v2 − 2vD0 −
D2

0√
1− v2 − 2vD0

)
. (A3)

Using (A1), we conclude that the upper integration limit in (A3) is
√

1 + D2
0 − D0 ∼ 1.

Then, because of (23), one can put exp(B0v) ≈ 1 and rewrite (A3) as

I(1) ≈ −4α

ṽF

(
1

e
∆

2kBT +
µ

kBT + 1
+

1

e
∆

2kBT−
µ

kBT + 1

)

×

√
1+D2

0−D0∫
0

dv

(√
1− v2 − 2vD0 −

D2
0√

1− v2 − 2vD0

)
. (A4)

Calculating the integral in (A4), we obtain

I(1) ≈ −2α

ṽF

(
1

e
∆

2kBT +
µ

kBT + 1
+

1

e
∆

2kBT−
µ

kBT + 1

)
×
[
(1− D2

0)
π

2
− D0 − (1 + D2

0)arctanD0

]
(A5)

= −2α

ṽF

(
1

e
∆

2kBT +
µ

kBT + 1
+

1

e
∆

2kBT−
µ

kBT + 1

)
[π + O(D0)].

Taking into account (18), it can be seen that the magnitude of I(1) is much less than
the second term in the polarization tensor (14) and can be omitted.

Thus, we are left with only the second term in (14)

Π̃00,0(1) ≈
8αkBT
ṽ2

F h̄ωc
ln
[(

e−
∆

2kBT + e
µ

kBT

)(
e−

∆
2kBT + e−

µ
kBT

)]
, (A6)

which can be transformed similarly to (32). Here, we present this transformation in
greater detail

Π̃00,0(1) ≈
8αkBT
ṽ2

F h̄ωc
ln
[

e
µ

kBT

(
e−

∆
2kBT−

µ
kBT + 1

)
e−

µ
kBT

(
e−

∆
2kBT +

µ
kBT + 1

)]
=

8αkBT
ṽ2

F h̄ωc
ln
[

e−
∆+2µ
4kBT

(
e

∆+2µ
4kBT + e−

∆+2µ
4kBT

)
e−

∆−2µ
4kBT

(
e

∆−2µ
4kBT + e−

∆−2µ
4kBT

)]
=

8αkBT
ṽ2

F h̄ωc
ln
(

4 cosh
∆ + 2µ

4kBT
cosh

∆− 2µ

4kBT

)
− 2α∆

ṽ2
F h̄ωc

. (A7)
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Owing to the condition (A1), the last term in (A7) can be neglected and, as a result,

Π̃00,0(1) ≈
8αkBT
ṽ2

F h̄ωc
ln
(

4 cosh
∆ + 2µ

4kBT
cosh

∆− 2µ

4kBT

)
. (A8)

For µ = 0, (A8) reduces to (35). Thus, (35) is really valid for arbitrarily small ∆
satisfying the condition (A1).
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