
Citation: Klimchitskaya, G.L.;

Mostepanenko, V.M.

Large-Separation Behavior of the

Casimir–Polder Force from Real

Graphene Sheet Deposited on a

Dielectric Substrate. C 2023, 9, 84.

https://doi.org/10.3390/c9030084

Academic Editors: Ahmet Sinan

Oktem and Matteo Strozzi

Received: 5 July 2023

Revised: 24 August 2023

Accepted: 27 August 2023

Published: 31 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of  

Carbon Research C

Article

Large-Separation Behavior of the Casimir–Polder Force from
Real Graphene Sheet Deposited on a Dielectric Substrate
Galina L. Klimchitskaya 1,2,* and Vladimir M. Mostepanenko 1,2,3

1 Central Astronomical Observatory at Pulkovo, Russian Academy of Sciences,
196140 Saint Petersburg, Russia; vmostepa@gmail.com

2 Peter the Great Saint Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
3 Kazan Federal University, 420008 Kazan, Russia
* Correspondence: g.klimchitskaya@gmail.com

Abstract: The Casimir–Polder force between atoms or nanoparticles and graphene-coated dielectric
substrates is investigated in the region of large separations. Graphene coating with any value of
the energy gap and chemical potential is described in the framework of the Dirac model using the
formalism of the polarization tensor. It is shown that the Casimir–Polder force from a graphene-
coated substrate reaches the limit of large separations at approximately 5.6 µm distance between
an atom or a nanoparticle and graphene coating independently of the values of the energy gap and
chemical potential. According to our results, however, the classical limit, where the Casimir–Polder
force no longer depends on the Planck constant and the speed of light, may be attained at much larger
separations depending on the values of the energy gap and chemical potential. In addition, we have
found a simple analytic expression for the Casimir–Polder force from a graphene-coated substrate at
large separations and determined the region of its applicability. It is demonstrated that the asymptotic
results for the large-separation Casimir–Polder force from a graphene-coated substrate are in better
agreement with the results of numerical computations for the graphene sheets with larger chemical
potential and smaller energy gap. Possible applications of the obtained results in nanotechnology
and bioelectronics are discussed.

Keywords: Casimir–Polder force; graphene-coated substrate; asymptotic regime of large separations;
classical limit

1. Introduction

The Casimir–Polder force is a typical example of dispersion interactions caused by
a fluctuating electromagnetic field which is zero in the mean but possesses a nonzero
dispersion. Discovered by Casimir and Polder [1] as a relativistic generalization of the van
der Waals interaction between two atoms (molecules) or an atom and a material surface,
it has received wide recognition in both fundamental physics dealing with precision
experiments and in nanotechnology (for more, see the monographs [2–7]).

The modern theoretical description of the Casimir–Polder force is based on quantum
electrodynamics. In the original article [1], Casimir and Polder considered the interaction
of two neutral atoms and an atom with an ideal metal plate. The case of an atom spaced
at large separation from a plate made of real material characterized by the frequency-
dependent dielectric permittivity was considered in [8]. This was done on the basis of the
Lifshitz theory [9] describing the Casimir force acting between two thick plates by rarefying
the material of one of them.

A more general formula for the potential energy of a molecule of solute in a dilute
solution of low concentration as a function of the interface distance was obtained in [10]
using the same rarefying procedure of one of the plates (see also [11]). At a later time,
the Lifshitz formula for the Casimir–Polder interaction of microparticles with material
plates was used in several hundreds papers (see [2–7] and references therein). This formula
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allows calculation of the Casimir–Polder interaction given the dynamic atomic (molecular)
polarizability and the dielectric permittivity of plate material. Formulas of this kind are
applicable in the case of nanoparticles interacting with planar or gently curved surfaces
under the condition that the nanoparticle radius R is much less than the distance to the
surface [12–15].

Among the new materials which have appeared, the one-atom-thick layer of carbon
atoms called graphene seems to hold the lead [16]. Thanks to its two-dimensional structure,
graphene admits a theoretical description in the framework of the Dirac formalism of
quantum electrodynamics [17,18] without resorting to the phenomenological assumptions
and far-reaching extrapolations which are often used in condensed matter physics when
dealing with ordinary three-dimensional materials. This enables the response of graphene
to the electromagnetic field to be found as a function of frequency, wave vector, and tem-
perature with the use of the polarization tensor [19–22]. In actual fact, the two independent
components of the polarization tensor are equivalent to the spatially nonlocal dielectric
permittivities of graphene [23,24]. Because of this, by using this formalism one can calculate
the Casimir–Polder force acting from the source side of graphene on atoms, molecules,
and nanoparticles.

Calculations of the Casimir–Polder force from graphene acting on atoms (see, e.g., [25–34])
and nanoparticles (see, e.g., [35–42]) find applications in both fundamental physics and
nanotechnology. An expression for the force takes an especially simple form in the limiting
case of large separations (high temperatures). At room temperature T = 300 K, this is
reached at a few micrometers. In [43], the large separation behavior of the Casimir–Polder
force was investigated for a graphene sheet with no foreign atoms possessing zero chemical
potential and sufficiently small energy gap in the spectrum of quasiparticles.

Real graphene sheets are characterized by nonzero values of both the energy gap
∆ and chemical potential µ. In a recent article [44], the large-separation behavior of the
Casimir–Polder force was explored for a real graphene sheet freestanding in vacuum as a
function of ∆ and µ. It was shown that it is possible to control the force value by varying
the values of ∆ and µ and deal with the analytic asymptotic expressions for the force rather
than with more complicated computations by means of the Lifshitz formula.

In practical implementations, graphene is usually deposited on a dielectric substrate.
Here, we investigate the large-separation behavior of the Casimir–Polder force acting on
atoms or nanoparticles from real graphene sheets characterized by an energy gap and
chemical potential which are deposited on thick silica glass substrate. We find that the
range of large separations for a graphene-coated substrate starts at approximately 5.6 µm
from the surface and is almost independent of the values of ∆ and µ. The ratio of forces from
a graphene-coated substrate and an uncoated silica glass plate decreases with increasing ∆
and increases with increasing µ. It is shown that the classical limit of the Casimir–Polder
force from an ideal metal plane reached at the thermal length, for a graphene-coated
substrate may be reached at much larger separations from the surface which essentially
depend on the values of ∆ and µ.

The analytic asymptotic expression for the large-separation behavior of the Casimir–
Polder force from a graphene-coated substrate is found as a function of separation from
the surface, energy gap, chemical potential, and temperature. The asymptotic results are
compared with numerical computations of the Casimir–Polder force at large separations for
different values of ∆ and µ. According to our results, at some fixed separation an agreement
between the asymptotic and numerical results becomes better with increasing chemical
potential and worse with increasing energy gap. By and large, for a graphene-coated
substrate the asymptotic results are found to be in slightly better agreement with the results
of numerical computations than for a freestanding graphene sheet.

The structure of the article is as follows. Section 2 is devoted to the general formalism
of the Lifshitz theory for graphene deposited on a substrate. In Section 3, we consider
the impact of a substrate on the large-separation Casimir–Polder force from real graphene
sheet. Section 4 is devoted to a confrontation between the analytic asymptotic results and
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numerical computations in the presence of a substrate. Section 5 provides a discussion,
while Section 6 lists our conclusions.

2. General Formalism

Here, we briefly present the formalism of the Lifshitz theory describing the Casimir–
Polder force between an atom or a nanoparticle and any planar structure, e.g., a graphene-
coated substrate, which are at temperature T and separated by a distance a. Using the
dimensionless Matsubara frequencies ζl = 2aξl/c = 4πakBTl/(h̄c), where kB is the Boltz-
mann constant, l = 0, 1, 2, . . . , and y = (4a2k2

⊥ + ζ2
l )

1/2 with k⊥ = |k⊥|, k⊥ being the
projection of the wave vector on the planar structure, the Lifshitz formula for the Casimir–
Polder force takes the following form [6]:

Fsub(a, T) = − kBT
8a4

∞

∑
l=0

′
αl

∞∫
ζl

y dy e−y
[
(2y2 − ζ2

l )RTM,l(y)− ζ2
l RTE,l(y)

]
. (1)

In this equation, the prime on the summation sign divides the term with l = 0 by 2 and

αl = α(iξl) = α

(
i
ζlc
2a

)
(2)

is the dynamic polarizability of an atom, a molecule, or a nanoparticle taken at a pure
imaginary frequency that has the dimension of cm3.

Particular attention should be paid to the quantities RTM,l and RTE,l in (1); these are
the reflection coefficients for the transverse magnetic (TM) and transverse electric (TE), or
equivalently p and s, polarized electromagnetic waves on the planar structure calculated at
the pure imaginary frequencies

RTM,l(y) = RTM(iξl , k⊥) = RTM

(
i
ζlc
2a

,
1
2a

√
y2 − ζ2

l

)
= RTM(iζl , y),

RTE,l(y) = RTE(iξl , k⊥) = RTE

(
i
ζlc
2a

,
1
2a

√
y2 − ζ2

l

)
= RTE(iζl , y). (3)

In our case, the planar structure is a graphene sheet deposited on a dielectric substrate.
The electromagnetic response of the graphene is described by the polarization tensor in
(2 + 1) dimensions, whereas the material of the substrate reacts to the electromagnetic field
through its frequency-dependent dielectric permittivity. The form of reflection coefficients
in this unusual case was found in [45]. Using the dimensionless variables introduced above,
these coefficients are provided by [29]

RTM,l(y) =
ε ly(y2 − ζ2

l ) +
√

y2 + (ε l − 1)ζ2
l

[
yΠ̃00,l(y)− (y2 − ζ2

l )
]

ε ly(y2 − ζ2
l ) +

√
y2 + (ε l − 1)ζ2

l

[
yΠ̃00,l(y) + (y2 − ζ2

l )
] ,

RTE,l(y) =
(y2 − ζ2

l )
[
y−

√
y2 + (ε l − 1)ζ2

l

]
− Π̃l(y)

(y2 − ζ2
l )
[
y +

√
y2 + (ε l − 1)ζ2

l

]
+ Π̃l(y)

. (4)

Here, in analogy with (2), the dielectric permittivity of a substrate is taken at the pure
imaginary frequencies

ε l = ε(iξl) = ε

(
i
ζlc
2a

)
. (5)
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The quantity Π̃00,l is the 00 component and Π̃l is the linear combination of components
of the dimensionless polarization tensor

Π̃kn =
2a
h̄

Πkn, (6)

which are taken at the pure imaginary frequencies iζlc/(2a).
The explicit expressions for the quantities Π̃00,l and Π̃l for real graphene sheets char-

acterized by any value of the energy gap ∆ and chemical potential µ are presented in [29].
Here, we use them in the more convenient identical form provided in [44]. Thus, the 00
component is

Π̃00,l(y) = α
y2 − ζ2

l
pl

Ψ(Dl) +
16αakBT

ṽ2
F h̄c

ln
[(

e−
∆

2kBT + e
µ

kBT

)(
e−

∆
2kBT + e−

µ
kBT

)]
(7)

−4αpl

ṽ2
F

∞∫
Dl

du wl(u, y)Re
pl − plu2 + 2iζlu

[p2
l − p2

l u2 + ṽ2
F(y2 − ζ2

l )D2
l + 2iζl plu]1/2

.

The quantity α in (7) is the fine structure constant

α =
e2

h̄c
≈ 1

137
. (8)

It should not be confused with the static polarizability α0 used below. The function
Ψ(Dl) is defined as

Ψ(Dl) = 2
[

Dl + (1− D2
l )arctan

1
Dl

]
, (9)

where
Dl ≡ Dl(y) =

2a∆
h̄cpl

, pl = pl(y) =
√

ṽ2
Fy2 + (1− ṽ2

F)ζ
2
l (10)

and ṽF is the dimensionless Fermi velocity, ṽF = vF/c ≈ 1/300.
As to the function wl(u, y) entering (7), it is provided by

wl(u, y) =
1

eBl u+
µ

kBT + 1
+

1

eBl u−
µ

kBT + 1
, (11)

where

Bl ≡ Bl(y) =
h̄cpl(y)
4akBT

. (12)

Using the same notations, we express the linear combination of the components of the
polarization tensor Π̃l from Equation (4) defining the TE reflection coefficient [29,44]:

Π̃l(y) = α(y2 − ζ2
l )plΨ(Dl)−

16αakBTζ2
l

ṽ2
F h̄c

ln
[(

e−
∆

2kBT + e
µ

kBT

)(
e−

∆
2kBT + e−

µ
kBT

)]
(13)

+
4αp2

l
ṽ2

F

∞∫
Dl

du wl(u, y)Re
ζ2

l − p2
l u2 + ṽ2

F(y
2 − ζ2

l )D2
l + 2iζl plu

[p2
l − p2

l u2 + ṽ2
F(y2 − ζ2

l )D2
l + 2iζl plu]1/2

.

As is seen from (1), (4)–(13), for computation of the Casimir–Polder force acting on
some particle on the source side of a graphene-coated substrate, it is desirable to know the
dynamic polarizability of this particle (2) and the dielectric permittivity of a substrate (5)
within a sufficiently wide frequency region, along with the energy gap, the chemical
potential of the graphene sheet, and the temperature.
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It is pertinent to note that the above formalism was developed in the framework
of the Dirac model of graphene [16–18], which applies when the energy is not too high,
i.e., h̄ω < 3 eV [46]. Taking into consideration that the characteristic frequency of the
Casimir–Polder force is provided by c/(2a), which leads to energies of less than 1 eV at
all separations exceeding 100 nm [6], it can be concluded that this formalism is very well
adapted for theoretical description of the Casimir–Polder force at large separations.

3. Impact of Substrate on the Casimir–Polder Force from a Real Graphene Sheet at
Large Separations

For a particle interacting with a lonely graphene sheet which is freestanding in vacuum,
it was shown in [44] that, for separations exceeding some value a0 from 2.3 to 3.2 µm, 99%
of the total Casimir–Polder force is provided by the term of (1) with l = 0. This result is
valid for various values of the energy gap and chemical potential of graphene. We start by
finding how it is modified by the presence of a substrate.

For this purpose, we consider the term of (1) with l = 0

Fsub,0(a, T) = − kBT
8a4 α0

∞∫
0

y3dy e−yRTM,0(y), (14)

where α0 = α(0) is the static polarizability of an atom or a nanoparticle. It is seen that Fsub,0
does not depend on the TE reflection coefficient.

The reflection coefficient RTM,0 is obtained from (4), again by setting l = 0,

RTM,0(y) =
ε0y + Π̃00,0(y)− y
ε0y + Π̃00,0(y) + y

. (15)

When obtaining (15), it was assumed that

lim
ζ→0

[
ζ2ε

(
i
ζc
2a

)]
= 0, (16)

which is valid for substrates made of both dielectric materials and metals described by the
Drude model. The value of Π̃00,0(y) in (15) is provided by (7) with l = 0 [29]

Π̃00,0(y) =
αy
ṽF

Ψ(D0) +
16αakBT

ṽ2
F h̄c

ln
[(

e−
∆

2kBT + e
µ

kBT

)(
e−

∆
2kBT + e−

µ
kBT

)]
(17)

−4αy
ṽF

√
1+D2

0∫
D0

du w0(u, y)
1− u2√

1− u2 + D2
0

.

Here, the quantity D0 is obtained from (10) and B0 entering w0 is obtained from (12)

D0 =
2a∆

h̄cṽFy
, B0 =

h̄cṽFy
4akBT

. (18)

Note that Equation (14) of [44] for Π̃00,0 contains a typo: the factor y2 in the first term
on the right-hand side of (14) in [44] should be replaced with y.

All numerical computations below are performed for a graphene sheet deposited on a
fused silica glass (SiO2) substrate. This substrate is typical in graphene technologies (see,
e.g., [47–50]) and in precision measurements of the Casimir force from graphene [51,52].
The optical data for the complex index of refraction of fused silica glass can be found
in [53] in the wide range of h̄ω extending from 0.0025 eV to 2000 eV. The obtained dielectric
permittivity of SiO2 along the imaginary frequency axis is well known and has been used
in many publications (see, e.g., [6]). It contains the two steps, one of which is due to
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ionic polarization and another one is due to electronic polarization. The static dielectric
permittivity of SiO2 is ε0 = 3.81.

Now, we compute the large-separation Casimir–Polder force from a graphene-coated
SiO2 substrate using the full Lifshitz formula (1) and its term with l = 0 (14) for var-
ious values of the energy gap and chemical potential. Taking into account that in the
presence of the substrate the region of large separations starts at separations exceeding a
few micrometers, full computations using (1) can be safely performed by setting αl ≈ α0
without sacrificing precision [6]. When using the Lifshitz formula (1), the computations
are performed by (4)–(13). When Equation (14) is employed, we use (15), (17) and (18) in
the computations. In both cases, we use the value of ε0 for the SiO2 substrate, and in full
computations we use values of ε l with l > 1.

Comparing the obtained results, we find that the full values of the Casimir–Polder
force Fsub computed by (1) differ from the force Fsub,0 computed by (14) in less than 1% at all
separations a ≥ a0 = 5.6 µm independently of the values of ∆ and µ used in computations
(see below for the typical specific values of these parameters). Thus, for a graphene
sheet deposited on a substrate, the large-separation behavior of the Casimir–Polder force
provided by Fsub,0 is reached at larger separations than for a freestanding graphene sheet
(i.e., from 2.3 to 3.2 µm, depending on the values of ∆ and µ [44]). What is more, for a
graphene-coated substrate the value of a0 is essentially independent on ∆ and µ. Note that
for an uncoated silica glass plate the large-separation behavior of the Casimir–Polder force
is reached at a0 = 6 µm.

In an effort to determine the impact of graphene coating on the large-separation
Casimir–Polder force, we computed the force Fsub,0 from a graphene-coated SiO2 substrate
and FSiO2

0 from an uncoated fused silica plate. To compute the latter quantity, one should
set Π̃00,0(y) = 0 in (15). In Figure 1a,b the computational results for the ratio Fsub,0/FSiO2

0 at
T = 300 K, a = 6 µm are shown as a function of the energy gap by (a) the four lines labeled
1, 2, 3, and 4 for µ = 0, 0.05, 0.1, and 0.15 eV, respectively, and (b) the three lines labeled 4,
5, and 6 for µ = 0.15, 0.2, and 0.25 eV, respectively. For illustrative purposes, the dashed
lines show the value of the ratio FIM

0 /FSiO2
0 when the graphene-coated substrate is replaced

with an ideal metal plane.
As seen in Figure 1a,b, the impact of graphene coating on the large-separation Casimir–

Polder force increases with increasing chemical potential and decreasing energy gap of the
graphene. As a result, the fused silica substrate coated by a graphene sheet with ∆ = 0.1 eV
and µ = 0.25 eV produces almost the same Casimir–Polder force at a = 6 µm separation as
an ideal metal plane.

It is well known that at separations above 6 µm the Casimir–Polder force from an ideal
metal plane takes the so-called classical form, which does not depend on either h̄ or c [6]:

FIM
0 (a, T) = −3kBT

4a4 α0. (19)

In order to find how the large-separation Casimir–Polder force from a graphene-coated
SiO2 substrate approaches this classical limit depending on the values of ∆ and µ, we can
calculate the relative difference

δFsub,0(a, T) =
Fsub,0(a, T)− FIM

0 (a, T)
FIM

0 (a, T)
. (20)

In Figure 2, the computational results for δFsub,0 at T = 300 K are shown for a graphene
coating with ∆ = 0.2 eV as a function of separation by the five lines labeled 1, 2, 3, 4, and 5
for µ = 0, 0.025, 0.05, 0.075, and 0.1 eV, respectively. The dashed line shows the lower
boundary of the figure plane domain where the relative deviation between Fsub,0 and FIM

0
is less than 1%.
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4: µ = 0.15 eV

(b)

(a)

Figure 1. The ratio of the Casimir–Polder force from the graphene-coated SiO2 substrate to that
from an uncoated plate at the distance of 6 µm is shown as the function of the energy gap (a) by the
lines labeled 1, 2, 3, and 4 for the chemical potential of graphene equal to 0, 0.05, 0.1, and 0.15 eV,
respectively, and (b) by the lines labeled 4, 5, and 6 for the chemical potential equal to 0.15, 0.2,
and 0.25 eV, respectively. The dashed lines show the ratio of the Casimir–Polder force from an ideal
metal plane to that from an uncoated SiO2 plate.

As is seen in Figure 2, for a graphene coating with µ = 0.1 eV (line 5), the relative
deviation (20) remains within 1% over the entire separation region a > 5.6 µm. As for the
graphene coating with smaller µ = 0.075, 0.05, 0.025, and 0 eV, the Casimir–Polder force
takes the classical form at larger separations equal to 6.5, 15.5, 35.5, and 53 µm, respectively.
These values are only slightly larger than for a freestanding graphene sheet [44]. From
Figure 2, it can be concluded that the Casimir–Polder force from a graphene-coated substrate
takes the classical form at larger separations for graphene with lower chemical potential.

10 20 30 40 50 60
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0

a (µm)

δF
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b
,0

(%
)

1
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∆ = 0.2 eV

1: µ = 0

2: µ = 0.025 eV

3: µ = 0.05 eV

4: µ = 0.075 eV

5: µ = 0.1 eV

Figure 2. The relative difference between the large-separation Casimir–Polder forces from the
graphene-coated SiO2 substrate and an ideal metal plane for the energy gap of graphene equal to
0.2 eV at T = 300 K is shown as the function of separation by the lines labeled 1, 2, 3, 4, and 5 for the
chemical potential of graphene equal to 0, 0.025, 0.05, 0.075, and 0.1 eV, respectively. The dashed line
restricts the area of the figure plane where δFsub,0 6 1%.
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In fact, for a graphene sheet deposited on a substrate, the initiation of an energy gap is
almost unavoidable [16]. Thus, an energy gap equal to 0.3 eV is rather typical [51,52]. To
cover this case, in Figure 3a,b we present the computational results for δFsub,0 at T = 300 K
for a graphene coating with ∆ = 0.3 eV. These results are again shown as the function of
separation (a) by the five lines labeled 1, 2, 3, 4, and 5 for µ = 0, 0.025, 0.05, 0.075, and 0.1 eV,
respectively, over the separation interval from 5.6 to 60 µm and (b) by the four lines labeled
1, 2, 3, and 4 for µ = 0, 0.025, 0.05, and 0.075 eV, respectively, over the separation interval
from 60 to 200 µm. The dashed lines in Figure 3a,b again enclose the figure domain where
δFsub,0 is less than 1%.
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δ
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b
,0
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)

1
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3

4

5

1: µ = 0

2: µ = 0.025 eV

3: µ = 0.05 eV

4: µ = 0.075 eV

5: µ = 0.1 eV

∆ = 0.3 eV
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-2

-1

0

a (µm)

δ
F
s
u
b
,0
(%

)

1

2

3

4

1: µ = 0

2: µ = 0.025 eV

3: µ = 0.05 eV

4: µ = 0.075 eV
∆ = 0.3 eV (b)

(a)

Figure 3. The relative difference between the large-separation Casimir–Polder forces from the
graphene-coated SiO2 substrate and an ideal metal plane for the energy gap of graphene equal to
0.3 eV at T = 300 K is shown as the function of separation (a) by the lines labeled 1, 2, 3, 4, and 5
for the chemical potential of graphene equal to 0, 0.025, 0.05, 0.075, and 0.1 eV, respectively, in the
separation region from 5.6 µm to 60 µm and (b) by the lines labeled 1, 2, 3, and 4 for the chemical
potential of graphene equal to 0, 0.025, 0.05, and 0.075 eV, respectively, in the separation region from
60 µm to 200 µm. The dashed line restricts the areas of the figure plane where δFsub,0 6 1%.

As is seen in Figure 3a, only for a graphene coating with µ = 0.1 eV (line 5) does the
Casimir–Polder force take the classical form in the field of this figure (for a > 24.5 µm). Thus,
with increasing energy gap the classical form of the force is reached at larger separations.
From Figure 3b, it can be seen that for graphene sheets with µ = 0.075 and 0.05 eV the
Casimir–Polder force becomes classical starting from 63 and 157 µm, respectively (lines 4
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and 3). As for the graphene coating with µ = 0.025 and 0 eV, the corresponding Casimir–
Polder force does not take the classical form in the field of this figure up to a = 200 µm.
Calculations show that the Casimir–Polder force from the graphene-coated substrate with
∆ = 0.3 eV, µ = 0.025 and 0 eV becomes classical only at separations of 363 and 550 µm,
respectively. By and large, Figures 2 and 3 demonstrate that with increasing µ the classical
form of the Casimir–Polder force from the graphene-coated substrate is reached at shorter
and with increasing ∆ at larger separations.

4. Analytic Asymptotic Results Confronted with Numerical Computations in the
Presence of Substrate

In this section, we obtain the analytic asymptotic expressions Fas
0 for the large-separation

Casimir–Polder force from a graphene-coated substrate Fsub,0 and find the measure of agree-
ment between Fas

0 and the numerically computed Fsub,0 for different values of the energy
gap and chemical potential of a graphene sheet.

The asymptotic expression sought here is valid under the following condition:

2akBT
ṽF h̄c

� 1, (21)

which is satisfied with a large safety margin at T = 300 K, a > 0.2 µm (in fact, as was
shown in Section 3, we consider separation distances exceeding 5.6 µm).

We consider the large-separation Casimir–Polder force (14) with the reflection co-
efficient (15) under the condition (21). This reflection coefficient can be rearranged to

RTM(0, y) = 1− 2y
Π̃00,0(y) + (ε0 + 1)y

. (22)

According to (17), the polarization tensor is of the order of parameter (21); thus,
Π̃00,0(y)� 1. What is more, the main contribution to the integral (14) is provided by y ∼ 1.
Because of these conditions, we can replace y with unity in the denominator of (22) and
neglect (ε0 + 1) in comparison with Π̃00,0(1). Therefore, (22) becomes

RTM(0, y) ≈ 1− 2y
Π̃00,0(1)

, (23)

i.e., the TM reflection coefficient takes exactly the same approximate form as was found
earlier for the freestanding graphene sheet [44].

After substitution of (23) in (14) and integration, the desired asymptotic expression
takes the same form as in [44]

Fas
sub,0(a, T) = Fas

0 (a, T) = FIM
0 (a, T)

[
1− 8

Π̃00,0(1)

]
, (24)

where FIM
0 (a, T) is defined in (19).

The expression (24) should be supplemented by the approximate expression for
Π̃00,0(1) found in [44] under the condition (21)

Π̃00,0(1) ≈
16αakBT

ṽ2
F h̄c

[
ln
(

4 cosh
∆ + 2µ

4kBT
cosh

∆− 2µ

4kBT

)
− ∆

4kBT

(
tanh

∆ + 2µ

4kBT
+ tanh

∆− 2µ

4kBT

)]
. (25)

We are coming now to a detailed comparison between the asymptotic expression
for the Casimir–Polder force Fas

0 provided by (24) and (25) and the numerically
computed large-separation force Fsub,0(a, T) from a graphene-coated substrate using
Equations (14), (15) and (17). This comparison can be made by considering the ratio Fsub,0/Fas

0
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for different values of the graphene parameters. All computations are again performed at
room temperature T = 300 K.

First, we consider an undoped graphene coating with µ = 0 and compute the ratio
Fsub,0/Fas

0 for two different values of the energy gap ∆ = 0.15 eV and 0.2 eV. The computa-
tional results are shown in Figure 4 as the function of separation by the top and bottom solid
lines, respectively. For comparison purposes, the ratio F0/Fas

0 for a freestanding graphene
sheet (i.e., with no substrate) with the same values of ∆ is plotted by the dashed lines.

10 15 20 25 30 35 40

0.92

0.94

0.96

0.98

1.00

a (µm)

F
su

b
,0
/F

a
s

0

µ = 0

∆ = 0.15 eV

∆ = 0.2 eV

Figure 4. The ratio of the numerically computed large-separation Casimir–Polder force from the
graphene-coated SiO2 substrate to its asymptotic value for the zero chemical potential of graphene at
T = 300 K is shown as the function of separation by the top and bottom solid lines for the energy gap
equal to 0.15 and 0.2 eV, respectively. The similar ratio for the freestanding graphene sheets with the
same parameters is shown by the dashed lines.

As seen in Figure 4, for a graphene coating with µ = 0, ∆ = 0.15 eV, the asymptotic
results reproduce the results of the numerical computations with better than 1% accuracy at
separations exceeding 14.5 µm. With increasing energy gap, the accuracy of the asymptotic
expressions becomes lower. Thus, for a graphene coating with µ = 0, ∆ = 0.2 eV, the
asymptotic expression is accurate within 1% starting from 25 µm separation. From Figure 4,
it can be seen that in spite of the fact that the asymptotic expression used does not depend on
the dielectric permittivity of a substrate it reproduces the results of numerical computations
somewhat better than for a freestanding graphene sheet. This is illustrated by the solid
lines, which lie slightly above the dashed ones.

Next, we consider a graphene coating with a reasonably large energy gap ∆ = 0.2 eV
and consider the relationship between the asymptotic and numerical results for a large-
separation Casimir–Polder force from a graphene-coated substrate for different values
of the chemical potential. The computational results for the ratio Fsub,0/Fas

0 in this case
at T = 300 K are presented in Figure 5 by the three solid lines from bottom to top for the
chemical potential equal to µ = 0.025, 0.05, and 0.075 eV, respectively. The dashed lines
show the ratio F0/Fas

0 for the freestanding graphene sheets with the same values of µ. In
the inset, the two pairs of solid and dashed lines for µ = 0.05 and 0.075 eV are reproduced
on an enlarged scale within a narrower separation region for better visualization.

From Figure 5, it can be seen that with increasing µ the agreement between the
asymptotic and numerically computed Casimir–Polder forces from the graphene-coated
substrate becomes better. Thus, if for a graphene coating with µ = 0.025 eV the 1%
agreement is reached only at separations exceeding 41 µm, for µ = 0.05 eV this measure
of agreement is observed at a > 13.5 µm. As to the graphene coating with µ = 0.075 eV,
the better than 1% agreement between the asymptotic and numerical results holds over the
entire range of large separations a ≥ 5.6 µm. According to Figure 5 (see the inset as well), the
solid lines lie above the dashed ones for all µ, i.e., the asymptotic expression (24) and (25)
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is slightly more exact in the case of graphene-coated substrates than for freestanding
graphene sheets.

10 15 20 25 30 35 40

0.95
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0.99

1.00

6 8 10 12 14
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0.985

0.990
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a (µm)

F
su
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,0
/F

a
s

0

∆ = 0.2 eV

µ = 0.025 eV

µ = 0.05 eV
µ = 0.075 eV

µ = 0.05 eV

µ = 0.075 eV

Figure 5. The ratio of the numerically computed large-separation Casimir–Polder force from the
graphene-coated SiO2 substrate to its asymptotic value for the energy gap of graphene equal to 0.2 eV
at T = 300 K is shown as the function of separation by the three solid lines counted from bottom
to top for the chemical potential equal to 0.025, 0.05, and 0.075 eV, respectively. The dashed lines
show similar ratio for a freestanding graphene sheet with the same parameters. The region of short
separations is reproduced in the inset on an enlarged scale for graphene sheets with a chemical
potential of 0.05 eV (bottom) and 0.075 eV (top).

At the end of this section, we consider the case of a graphene coating with a larger
energy gap ∆ = 0.3 eV, such as that used in the experiment measuring the Casimir force
from a graphene-coated substrate in [51,52]. Here, we calculate the ratio Fsub,0/Fas

0 over the
wider range of µ up to µ = 0.25 eV (the latter value was measured for the sample used in
the experiment [51,52]). In Figure 6a,b, we present the computational results for this ratio
at T = 300 K as a function of separation. The obtained results are shown by (a) the five
lines labeled 1, 2, 3, 4, and 5 for µ = 0, 0.025, 0.05, 0.075, and 0.1 eV, respectively, over the
separation interval from 5.6 µm to 100 µm and (b) by the three lines labeled 6, 7, and 8 for
µ = 0.15, 0.2, and 0.25 eV, respectively, over the interval from 5.6 to 30 µm.

As seen in Figure 6a, for lines 1, 2, and 3 (i.e., for the graphene coatings with µ = 0,
0.025, and 0.05 eV, respectively) the 1% agreement between the asymptotic and numerical
results is not reached up to the separation of 100 µm. As for the lines 4 and 5 (µ = 0.075,
and 0.1 eV, respectively) the 1% agreement is reached at separation distances exceeding
approximately 60 and 24 µm. Thus, the agreement between the asymptotic and numerical
results again becomes better with increasing value of the chemical potential.

From Figure 6b, an inference can be drawn that sufficiently large values of µ can fully
compensate the negative role played by large ∆ in an agreement between the asymptotic
and numerical values of the large-separation Casimir–Polder force from graphene-coated
substrates. According to Figure 6b, for all the three graphene coatings with µ = 0.15, 0.2,
and 0.25 eV the asymptotic results are within 1% agreement with the results of numerical
computations at all separations exceeding the border of the large-separation region equal to
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5.6 µm. These results make possible the reliable use of the analytic asymptotic expression
for the Casimir–Polder force from graphene-coated substrates with the proper combination
of the values of ∆ and µ.
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Figure 6. The ratio of the numerically computed large-separation Casimir–Polder force from the
graphene-coated SiO2 substrate to its asymptotic value for the energy gap of graphene equal to
0.3 eV at T = 300 K is shown as the function of separation by the solid lines counted from bottom
to top (a) labeled 1, 2, 3, 4, and 5 for the chemical potential of graphene equal to 0, 0.025, 0.05,
0.075, and 0.1 eV, respectively and (b) labeled 6, 7, and 8 for the chemical potential equal to 0.15, 0.2,
and 0.25 eV, respectively.

5. Discussion

The Casimir–Polder force considered in this paper is both a quantum and relativistic
phenomenon which has no explanation on the basis of classical physics even in the case of
atoms and nanoparticles interacting with conventional metallic and dielectric materials.
It has been commonly believed, however, that at separations of a few micrometers the
Casimir–Polder force takes its limiting form of large separations where it becomes classical
and no longer depends on either the Planck constant or the speed of light.

The new two-dimensional material called graphene possesses many unusual proper-
ties. One of these properties is a giant thermal effect in the Casimir force at short separations,
predicted in [54] and experimentally discovered in [51,52]. Another unusual property, first
discussed in [44] using the simplified example of a freestanding graphene sheet in a vac-
uum, is that while the Casimir–Polder force between atoms, nanoparticles, and graphene
reaches its limiting form of large separations at distances of 2–3 µm, this form may signifi-
cantly deviate from being classical at distances up to tens of micrometers depending on the
values of the energy gap and the chemical potential of graphene.

Here, we demonstrate that this unusual property is fully preserved in the case of
graphene-coated dielectric substrates, which is of great physical significance. It is shown
that although the limit of large separations for the Casimir–Polder force is reached at
larger separations approximately equal to 5.6 µm in this case, the classical limit may be
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reached at tens and even at hundreds of micrometers if the energy gap of the graphene
coating is rather high and its chemical potential is rather low. As long as the classical limit
is not reached, the Casimir–Polder force from a graphene-coated substrate depends on
both the Planck constant and the speed of light, i.e., it remains a quantum and relativistic
phenomenon. This effect is most pronounced in the application region of the analytic
asymptotic expression in (24) and (25), which depends on both h̄ and c. By manufacturing
graphene sheets with a small energy gap and sufficiently large chemical potential, it is
possible to obtain the large-separation Casimir–Polder force from the graphene-coated
substrate that is close to that from an ideal metal plane.

6. Conclusions

In the foregoing, we have analyzed the behavior of the Casimir–Polder force acting
on atoms or nanoparticles from a graphene-coated substrate spaced at a separation of a
few micrometers. We have shown that the limit of large separations is reached in this
case at a distance of approximately 5.6 µm, which is almost independent on the energy
gap and chemical potential of a graphene sheet. Although the limit of large separations is
reached at a distance similar to that for conventional dielectric and metallic materials, we
demonstrate that for graphene-coated substrates the Casimir–Polder force may attain the
classical regime at much larger distances depending on the values of the energy gap and
chemical potential of the graphene coating.

In addition, we find the analytic asymptotic expression for the Casimir–Polder force
between atoms (nanoparticles) and graphene-coated substrates at large separations and
determine the region of its applicability. The obtained expressions allow simple calculation
of the Casimir–Polder force for substrates made of various materials and graphene coatings
with any energy gap and chemical potential values.

The above results are derived in the framework of rigorous fundamental theory using
the polarization tensor of graphene in the application region of the Dirac model. The results
can be used in numerous applications of graphene in nanotechnology and bioelectronics,
including such areas as field-effect transistors, interaction with lipid membranes, and
graphene–semiconductor nanocomposites.
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