Membranes of Multiwall Carbon Nanotubes in Chitosan–Starch with Mechanical and Compositional Properties Useful in Li-Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Synthesis
2.2. Characterization
3. Results and Discussion
3.1. Characterization of Carbon Nanotubes via FTIR
3.2. Characterization of Carbon Nanotubes via Raman Spectroscopy
3.3. Characterization of Carbon Nanotubes via XPS
3.4. Characterization of Carbon Nanotubes via HRTEM
3.5. Characterization of the Chitosan–Starch (ChSt) Membranes via DMA
3.6. Characterization of the Chitosan–Starch (ChSt) Membranes via FTIR
3.7. Characterization of the Chitosan–Starch (ChSt) Membranes via SEM
3.8. Electrochemical Characterization of the Chitosan–Starch (ChSt) Membranes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neumann, J.; Petranikova, M.; Meeus, M.; Gamarra, J.D.; Younesi, R.; Winter, M.; Nowak, S. Recycling of Lithium-Ion Batteries—Current State of the Art, Circular Economy, and Next Generation Recycling. Adv. Energy Mater. 2022, 12, 2102917. [Google Scholar] [CrossRef]
- Thauer, E.; Ottmann, A.; Schneider, P.; Möller, L.; Deeg, L.; Zeus, R.; Wilhelmi, F.; Schlestein, L.; Neef, C.; Ghunaim, R.; et al. Filled Carbon Nanotubes as Anode Materials for Lithium-Ion Batteries. Molecules 2020, 25, 1064. [Google Scholar] [CrossRef] [PubMed]
- Seman, R.N.A.R.; Azam, M.A.; Mohamad, A.A. Systematic Gap Analysis of Carbon Nanotube-Based Lithium-Ion Batteries and Electrochemical Capacitors. Renew. Sustain. Energy Rev. 2017, 75, 644–659. [Google Scholar] [CrossRef]
- Arya, A.; Sharma, A.L. Polymer Electrolytes for Lithium Ion Batteries: A Critical Study. Ionics 2017, 23, 497–540. [Google Scholar] [CrossRef]
- Long, L.; Wang, S.; Xiao, M.; Meng, Y. Polymer Electrolytes for Lithium Polymer Batteries. J. Mater. Chem. A 2016, 4, 10038–10069. [Google Scholar] [CrossRef]
- Croce, F.; Curini, R.; Martinelli, A.; Persi, L.; Ronci, F.; Scrosati, B.; Caminiti, R. Physical and Chemical Properties of Nanocomposite Polymer Electrolytes. J. Phys. Chem. B 1999, 103, 10632–10638. [Google Scholar] [CrossRef]
- Chávez, E.L.; Oviedo-Roa, R.; Contreras-Pérez, G.; Martínez-Magadán, J.M.; Castillo-Alvarado, F.L. Theoretical Studies of Ionic Conductivity of Crosslinked Chitosan Membranes. Int. J. Hydrogen Energy 2010, 35, 12141–12146. [Google Scholar] [CrossRef]
- Ma, J.; Sahai, Y.; Buchheit, R.G. Evaluation of Multivalent Phosphate Cross-Linked Chitosan Biopolymer Membrane for Direct Borohydride Fuel Cells. J. Power Sources 2012, 202, 18–27. [Google Scholar] [CrossRef]
- Putri, Z.; Arcana, I.M. Biodegradation Test of SPS-LS Blends as Polymer Electrolyte Membrane Fuel Cells. In AIP Conference Proceedings, Proceedings of the 4th International Conference on Mathematics and Natural Sciences (ICMNS 2012): Science for Health, Food and Sustainable Energy, Bandung, Indonesia, 8–9 November 2012; American Institute of Physics Inc.: New York, NY, USA, 2014; Volume 1589, pp. 266–271. [Google Scholar]
- Ji, D.; Park, J.M.; Oh, M.S.; Nguyen, T.L.; Shin, H.; Kim, J.S.; Kim, D.; Park, H.S.; Kim, J. Superstrong, Superstiff, and Conductive Alginate Hydrogels. Nat. Commun. 2022, 13, 3019. [Google Scholar] [CrossRef]
- Liu, P.; Sherman, E.; Jacobsen, A. Design and Fabrication of Multifunctional Structural Batteries. J. Power Sources 2009, 189, 646–650. [Google Scholar] [CrossRef]
- Song, J.Y.; Wang, Y.Y.; Wan, C.C. Review of Gel-Type Polymer Electrolytes for Lithium-Ion Batteries. J. Power Sources 1999, 77, 183–197. [Google Scholar] [CrossRef]
- Shukur, M.F.; Ithnin, R.; Kadir, M.F.Z. Electrical Properties of Proton Conducting Solid Biopolymer Electrolytes Based on Starch–Chitosan Blend. Ionics 2013, 20, 977–999. [Google Scholar] [CrossRef]
- Isa, M.I.N.; Samsudin, A.S. Potential Study of Biopolymer-Based Carboxymethylcellulose Electrolytes System for Solid-State Battery Application. Int. J. Polym. Mater. Polym. Biomater. 2016, 65, 561–567. [Google Scholar] [CrossRef]
- Sudhakar, Y.N.; Selvakumar, M. Lithium Perchlorate Doped Plasticized Chitosan and Starch Blend as Biodegradable Polymer Electrolyte for Supercapacitors. Electrochim. Acta 2012, 78, 398–405. [Google Scholar] [CrossRef]
- Raffaelle, R.P.; Gennett, T.; Maranchi, J.; Kumta, P.; Hepp, A.F.; Heben, M.J.; Dillon, A.C.; Jones, K.C. Carbon Nanotube Anodes for Lithium Ion Batteries. Mater. Res. Soc. Symp. Proc. 2002, 706, 343–349. [Google Scholar] [CrossRef]
- Touhara, H.; Komiyama, S. Potential Use of Carbon Nanotubes as Anode Materials for Lithium Batteries. Electrochemistry 2003, 71, 877–882. [Google Scholar] [CrossRef]
- Prompun, P.; Ratchahat, S.; Kaveevivitchai, W.; Kooamornpattana, W. Carbon Nanotube (CNTs) Production from Waste Cooking Oil As Anode Material for Li-Ion Batteries. J. Phys. Conf. Ser. 2022, 2175, 012041. [Google Scholar] [CrossRef]
- Liang, M.; Liu, J.; O’Shea, A.; Nicolosi, V. Constructing Hierarchical Porous Structure in Microsized Silicon/Carbon Nanotubes Composite Anode with LiF-Rich Solid-Electrolyte Interfaces for Highly Stable Lithium-Ion Batteries. J. Phys. Mater. 2023, 6, 014003. [Google Scholar] [CrossRef]
- Christwardana, M.; Septevani, A.A.; Yoshi, L.A. Sustainable Electricity Generation from Photo-Bioelectrochemical Cell Based on Carbon Nanotubes and Chlorophyll Anode. Sol. Energy 2021, 227, 217–223. [Google Scholar] [CrossRef]
- Liu, Z. Fabrication of Polymer Based on Carbon Nanotube Electrospun Nanofibers as Anode for High-Performance Li-Ion Battery. Int. J. Electrochem. Sci. 2022, 17, 221125. [Google Scholar] [CrossRef]
- Li, X.; Xue, C.; Liu, Y.; Zhao, J.; Zhang, J.; Zhang, J. Amorphous Structure and Sulfur Doping Synergistically Inducing Defect-Rich Short Carbon Nanotubes as a Superior Anode Material in Lithium-Ion Batteries. Electrochim. Acta 2023, 440, 141697. [Google Scholar] [CrossRef]
- Varshney, P.K.; Gupta, S. Natural Polymer-Based Electrolytes for Electrochemical Devices: A Review. Ionics 2011, 17, 479–483. [Google Scholar] [CrossRef]
- Muthukrishnan, M.; Shanthi, C.; Selvasekarapandian, S.; Premkumar, R. Biodegradable Flexible Proton Conducting Solid Biopolymer Membranes Based on Pectin and Ammonium Salt for Electrochemical Applications. Int. J. Hydrogen Energy 2023, 48, 5387–5401. [Google Scholar] [CrossRef]
- Awang, F.F.; Hassan, M.F.; Kamarudin, K.H. Investigation of Structural and Electrical Properties of a Biopolymer Materials with Its Potential Application in Solid-State Batteries. Polym. Bull. 2023, 80, 1463–1476. [Google Scholar] [CrossRef]
- Vásconez, M.B.; Flores, S.K.; Campos, C.A.; Alvarado, J.; Gerschenson, L.N. Antimicrobial Activity and Physical Properties of Chitosan–Tapioca Starch Based Edible Films and Coatings. Food Res. Int. 2009, 42, 762–769. [Google Scholar] [CrossRef]
- Castrejón-Parga, K.Y.; Camacho-Montes, H.; Rodríguez-González, C.A.; Velasco-Santos, C.; Martínez-Hernández, A.L.; Bueno-Jaquez, D.; Rivera-Armenta, J.L.; Ambrosio, C.R.; Conzalez, C.C.; Mendoza-Duarte, M.E. Chitosan–Starch Film Reinforced with Magnetite-Decorated Carbon Nanotubes. J. Alloys Compd. 2014, 615, S505–S510. [Google Scholar] [CrossRef]
- Liu, H.; Adhikari, R.; Guo, Q.; Adhikari, B. Preparation and Characterization of Glycerol Plasticized (High-Amylose) Starch–Chitosan Films. J. Food Eng. 2013, 116, 588–597. [Google Scholar] [CrossRef]
- Yan, L.; Chang, P.R.; Zheng, P. Preparation and Characterization of Starch-Grafted Multiwall Carbon Nanotube Composites. Carbohydr. Polym. 2011, 84, 1378–1383. [Google Scholar] [CrossRef]
- Deepthi, M.V.; Ananthapadmanabha, G.S.; Sampathkumaran, P.; Seetharamu, S.; Pattenshetti, V.V.; Ganga, S.; Asai Thambi, V.; Sailaja, R.R.N. Preparation of Bio-Nanocomposites of Chitosan/Thermoplastic Starch Reinforced with Multiwalled Carbon Nanotubes. In Proceedings of the 2012 IEEE 10th International Conference on the Properties and Applications of Dielectric Materials (ICPADM), Bangalore, India, 24–28 July 2012; IEEE: New York, NY, USA, 2012; pp. 1–4. [Google Scholar]
- Xie, F.; Pollet, E.; Halley, P.J.; Averous, L. Starch-Based Nano-Biocomposites. Prog. Polym. Sci. 2013, 38, 1590–1628. [Google Scholar] [CrossRef]
- Wan, Y.; Creber, K.A.M.; Peppley, B.; Bui, V.T. Ionic Conductivity of Chitosan Membranes. Polymer 2003, 44, 1057–1065. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, J.; Zhang, J.; Hao, S.; Duan, X.; Song, H.; Zhang, J. Novel Chemically Cross-Linked Chitosan-Cellulose Based Ionogel with Self-Healability, High Ionic Conductivity, and High Thermo-Mechanical Stability. Cellulose 2020, 27, 5121–5133. [Google Scholar] [CrossRef]
- Yadav, M.; Verma, A.; Nautiyal, G.; Srivastava, N. Magnesium Perchlorate Mixed and Glutaraldehyde Crosslinked Potato Starch: An Economical and Flexible Electrolyte Membrane. Macromol. Sympos. 2019, 388, 1900033. [Google Scholar] [CrossRef]
- Koduru, H.K.; Marinov, Y.G.; Kaleemulla, S.; Rafailov, P.M.; Hadjichristov, G.B.; Scaramuzza, N. Fabrication and Characterization of Magnesium—Ion-Conducting Flexible Polymer Electrolyte Membranes Based on a Nanocomposite of Poly(Ethylene Oxide) and Potato Starch Nanocrystals. J. Solid State Electrochem. 2021, 25, 2409–2428. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, S.; Li, W.; Song, H.; Du, L.; Cui, Z. Highly Conductive Poly(ε-Caprolactone) and Chitosan Based Polymer Electrolyte for Lithium Metal Battery. J. Power Sources 2023, 553, 232271. [Google Scholar] [CrossRef]
- Yusof, Y.M.; Shukur, M.F.; Illias, H.A.; Kadir, M.F.Z. Conductivity and Electrical Properties of Corn Starch-Chitosan Blend Biopolymer Electrolyte Incorporated with Ammonium Iodide. Phys. Scr. 2014, 89, 035701. [Google Scholar] [CrossRef]
- Majumdar, S.; Sen, P.; Ray, R. Ionic Interactions and Transport Properties in Chitosan-Starch Based Blend Solid Biopolymer Electrolytes. Mater. Today Proc. 2019, 18, 4913–4920. [Google Scholar] [CrossRef]
- Majumdar, S.; Sen, P.; Ray, R. High-Performance Graphene Oxide-Grafted Chitosan-Starch Solid Biopolymer Electrolytes for Flexible Hybrid Supercapacitors. J. Solid State Electrochem. 2022, 26, 527–547. [Google Scholar] [CrossRef]
- Ding, L.; Leones, R.; Omar, A.; Guo, J.; Lu, Q.; Oswald, S.; Nielsch, K.; Giebeler, L.; Mikhailova, D. Highly Efficient Multicomponent Gel Biopolymer Binder Enables Ultrafast Cycling and Applicability in Diverse Battery Formats. ACS Appl. Mater. Interfaces 2020, 12, 53827–53840. [Google Scholar] [CrossRef]
- Zeng, X.; Sun, X.; Cheng, G.; Yan, X.; Xu, X. Production of Multi-Wall Carbon Nanotubes on a Large Scale. Phys. B Condens. Matter 2002, 323, 330–332. [Google Scholar] [CrossRef]
- Spitalsky, Z.; Tasis, D.; Papagelis, K.; Galiotis, C. Carbon Nanotube–Polymer Composites: Chemistry, Processing, Mechanical and Electrical Properties. Prog. Polym. Sci. 2010, 35, 357–401. [Google Scholar] [CrossRef]
- Osswald, S.; Havel, M.; Gogotsi, Y. Monitoring Oxidation of Multiwalled Carbon Nanotubes by Raman Spectroscopy. J. Raman Spectrosc. 2007, 38, 728–736. [Google Scholar] [CrossRef]
- Hong, C.-E.; Lee, J.-H.; Kalappa, P.; Advani, S.G. Effects of Oxidative Conditions on Properties of Multi-Walled Carbon Nanotubes in Polymer Nanocomposites. Compos. Sci. Technol. 2007, 67, 1027–1034. [Google Scholar] [CrossRef]
- Yu, H.; Jin, Y.; Peng, F.; Wang, H.; Yang, J. Kinetically Controlled Side-Wall Functionalization of Carbon Nanotubes by Nitric Acid Oxidation. J. Phys. Chem. C 2008, 112, 6758–6763. [Google Scholar] [CrossRef]
- Zhang, J.; Zou, H.; Qing, Q.; Yang, Y.; Li, Q.; Liu, Z.; Guo, X.; Du, Z. Effect of Chemical Oxidation on the Structure of Single-Walled Carbon Nanotubes. J. Phys. Chem. B 2003, 107, 3712–3718. [Google Scholar] [CrossRef]
- Hung, T.-C.; Chen, C.-F.; Chen, M.; Chen, C.-C. Quantitative Limitation of Active Site and Characteristics of Chemical Oxidized Well-Aligned Carbon Nanotubes. Thin Solid Film. 2008, 516, 5236–5240. [Google Scholar] [CrossRef]
- Jaunsen, J.R. The Behavior and Capabilities of Lithium Hydroxide Carbon Dioxide Scrubbers in a Deep Sea Environment; Naval Academy: Annapolis, MD, USA, 1989. [Google Scholar]
- Ai, J.; Rezaei-Tavirani, M.; Biazar, E.; Heidari, K.S.; Jahandideh, R. Mechanical Properties of Chitosan-Starch Composite Filled Hydroxyapatite Micro-and Nanopowders. J. Nanomater. 2011, 2011, 16. [Google Scholar] [CrossRef]
- Tuhin, M.O.; Rahman, N.; Haque, M.E.; Khan, R.A.; Dafader, N.C.; Islam, R.; Nurnabi, M.; Tonny, W. Modification of Mechanical and Thermal Property of Chitosan–Starch Blend Films. Radiat. Phys. Chem. 2012, 81, 1659–1668. [Google Scholar] [CrossRef]
- Espíndola-González, A.; Martínez-Hernández, A.L.; Fernández-Escobar, F.; Castaño, V.M.; Brostow, W.; Datashvili, T.; Velasco-Santos, C. Natural-Synthetic Hybrid Polymers Developed via Electrospinning: The Effect of PET in Chitosan/Starch System. Int. J. Mol. Sci. 2011, 12, 1908–1920. [Google Scholar] [CrossRef]
- Liu, H.; Yu, L.; Dean, K.; Simon, G.; Petinakis, E.; Chen, L. Starch Gelatinization under Pressure Studied by High Pressure DSC. Carbohydr. Polym. 2009, 75, 395–400. [Google Scholar] [CrossRef]
- Belin, T.; Epron, F. Characterization Methods of Carbon Nanotubes: A Review. Mater. Sci. Eng. B 2005, 119, 105–118. [Google Scholar] [CrossRef]
- Kuhlmann, U.; Jantoljak, H.; Pfänder, N.; Bernier, P.; Journet, C.; Thomsen, C. Infrared Active Phonons in Single-Walled Carbon Nanotubes. Chem. Phys. Lett. 1998, 294, 237–240. [Google Scholar] [CrossRef]
- Aqel, A.; El-Nour, K.M.; Ammar, R.A.; Al-Warthan, A. Carbon Nanotubes, Science and Technology Part (I) Structure, Synthesis and Characterisation. Arab. J. Chem. 2012, 5, 1–23. [Google Scholar] [CrossRef]
- McCreery, R.L. Advanced Carbon Electrode Materials for Molecular Electrochemistry. Chem. Rev. 2008, 108, 2646–2687. [Google Scholar] [CrossRef] [PubMed]
- Estévez-Martínez, Y.; Velasco-Santos, C.; Martínez-Hernández, A.-L.; Delgado, G.; Cuevas-Yáñez, E.; Alaníz-Lumbreras, D.; Duron-Torres, S.; Castaño, V.M. Grafting of Multiwalled Carbon Nanotubes with Chicken Feather Keratin. J. Nanomater. 2013, 2013, 38. [Google Scholar] [CrossRef]
- Stobinski, L.; Lesiak, B.; Kövér, L.; Tóth, J.; Biniak, S.; Trykowski, G.; Judek, J. Multiwall Carbon Nanotubes Purification and Oxidation by Nitric Acid Studied by the FTIR and Electron Spectroscopy Methods. J. Alloys Compd. 2010, 501, 77–84. [Google Scholar] [CrossRef]
- Lehman, J.H.; Terrones, M.; Mansfield, E.; Hurst, K.E.; Meunier, V. Evaluating the Characteristics of Multiwall Carbon Nanotubes. Carbon 2011, 49, 2581–2602. [Google Scholar] [CrossRef]
- Verma, P.; Maire, P.; Novák, P. A Review of the Features and Analyses of the Solid Electrolyte Interphase in Li-Ion Batteries. Electrochim. Acta 2010, 55, 6332–6341. [Google Scholar] [CrossRef]
- Naudin, C.; Bruneel, J.L.; Chami, M.; Desbat, B.; Grondin, J.; Lassègues, J.C.; Servant, L. Characterization of the Lithium Surface by Infrared and Raman Spectroscopies. J. Power Sources 2003, 124, 518–525. [Google Scholar] [CrossRef]
- Karakassides, M.A.; Gournis, D.; Petridis, D. An Infrared Reflectance Study of Si-O Vibrations in Thermally Treated Alkalisaturated Montmorillonites. Clay Miner. 1999, 34, 429–438. [Google Scholar] [CrossRef]
- Morigaki, K.-I.; Ohta, A. Analysis of the Surface of Lithium in Organic Electrolyte by Atomic Force Microscopy, Fourier Transform Infrared Spectroscopy and Scanning Auger Electron Microscopy. J. Power Sources 1998, 76, 159–166. [Google Scholar] [CrossRef]
- Aurbach, D.; Markovsky, B.; Weissman, I.; Levi, E.; Ein-Eli, Y. On the Correlation between Surface Chemistry and Performance of Graphite Negative Electrodes for Li Ion Batteries. Electrochim. Acta 1999, 45, 67–86. [Google Scholar] [CrossRef]
- Radziemski, L.J.; Engleman, R., Jr.; Brault, J.W. Fourier-Transform-Spectroscopy Measurements in the Spectra of Neutral Lithium, I6 and I7 (Li I). Phys. Rev. A 1995, 52, 4462–4470. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, M.; Noh, S.; Lee, G.; Shin, D. Enhanced Electrochemical Performance of Surface Modified LiCoO2 for All-Solid-State Lithium Batteries. Ceram. Int. 2016, 42, 2140–2146. [Google Scholar] [CrossRef]
- Ferraro, J.R. Introductory Raman Spectroscopy; Academic Press: New York, NY, USA, 2003; ISBN 0-08-05091-26. [Google Scholar]
- Jantoljak, H.; Salvetat, J.-P.; Forró, L.; Thomsen, C. Low-Energy Raman-Active Phonons of Multiwalled Carbon Nanotubes. Appl. Phys. A Mater. Sci. Process. 1998, 67, 113–116. [Google Scholar] [CrossRef]
- Efremov, E.V.; Ariese, F.; Gooijer, C. Achievements in Resonance Raman Spectroscopy. Review of a Technique with a Distinct Analytical Chemistry Potential. Anal. Chim. Acta 2008, 606, 119–134. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, C.; Cheng, L.; Lee, S.-T.; Liu, Z. Noble Metal Coated Single-Walled Carbon Nanotubes for Applications in Surface Enhanced Raman Scattering Imaging and Photothermal Therapy. J. Am. Chem. Soc. 2012, 134, 7414–7422. [Google Scholar] [CrossRef]
- Sato-Berrú, R.Y.; Basiuk, E.V.; Saniger, J.M. Application of Principal Component Analysis to Discriminate the Raman Spectra of Functionalized Multiwalled Carbon Nanotubes. J. Raman Spectrosc. 2006, 37, 1302–1306. [Google Scholar] [CrossRef]
- Thomsen, C.; Reich, S. Raman Scattering in Carbon Nanotubes; Topics in Applied Physics: Berlin, Germany, 2006; Volume 108. [Google Scholar]
- Kataura, H.; Achiba, Y.; Zhao, X.; Ando, Y. Resonance Raman Scattering of Multi-Walled Carbon Nanotubes. MRS Online Proc. Libr. 2000, 593, 113–118. [Google Scholar] [CrossRef]
- Athalin, H.; Lefrant, S. A Correlated Method for Quantifying Mixed and Dispersed Carbon Nanotubes: Analysis of the Raman Band Intensities and Evidence of Wavenumber Shift. J. Raman Spectrosc. 2005, 36, 400–408. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Dresselhaus, G.; Hofmann, M. The Big Picture of Raman Scattering in Carbon Nanotubes. Vib. Spectrosc. 2007, 45, 71–81. [Google Scholar] [CrossRef]
- Gupta, S.; Patel, R.J. Changes in the Vibrational Modes of Carbon Nanotubes Induced by Electron-Beam Irradiation: Resonance Raman Spectroscopy. J. Raman Spectrosc. 2007, 38, 188–199. [Google Scholar] [CrossRef]
- Jorio, A.; Saito, R.; Dresselhaus, G.; Dresselhaus, M.S. Determination of Nanotubes Properties by Raman Spectroscopy. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2004, 362, 2311–2336. [Google Scholar] [CrossRef] [PubMed]
- Delhaes, P.; Couzi, M.; Trinquecoste, M.; Dentzer, J.; Hamidou, H.; Vix-Guterl, C. A Comparison between Raman Spectroscopy and Surface Characterizations of Multiwall Carbon Nanotubes. Carbon 2006, 44, 3005–3013. [Google Scholar] [CrossRef]
- Heise, H.M.; Kuckuk, R.; Ojha, A.K.; Srivastava, A.; Srivastava, V.; Asthana, B.P. Characterisation of Carbonaceous Materials Using Raman Spectroscopy: A Comparison of Carbon Nanotube Filters, Single- and Multi-Walled Nanotubes, Graphitised Porous Carbon and Graphite. J. Raman Spectrosc. 2009, 40, 344–353. [Google Scholar] [CrossRef]
- Zdrojek, M.; Gebicki, W.; Jastrzebski, C.; Melin, T.; Huczko, A. Studies of Multiwall Carbon Nanotubes Using Raman Spectroscopy and Atomic Force Microscopy. Solid State Phenom. 2004, 99–100, 265–268. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman Spectroscopy of Carbon Nanotubes. Phys. Rep. 2005, 409, 47–99. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Jorio, A.; Souza Filho, A.G.; Saito, R. Defect Characterization in Graphene and Carbon Nanotubes Using Raman Spectroscopy. Philos. Trans. R. Soc. A 2010, 368, 5355–5377. [Google Scholar] [CrossRef]
- Nishide, D.; Miyata, Y.; Yanagi, K.; Tanaka, T.; Kataura, H. PERIPUTOS: Purity Evaluated by Raman Intensity of Pristine and Ultracentrifuged Topping of Single-Wall Carbon Nanotubes. Phys. Status Solidi B Basic Res. 2009, 246, 2728–2731. [Google Scholar] [CrossRef]
- Irurzun, V.M.; Ruiz, M.P.; Resasco, D.E. Raman Intensity Measurements of Single-Walled Carbon Nanotube Suspensions as a Quantitative Technique to Assess Purity. Carbon 2010, 48, 2873–2881. [Google Scholar] [CrossRef]
- Kataura, H.; Miyata, Y.; Mizuno, K. Purity and Defect Characterization of Single-Wall Carbon Nanotubes Using Raman Spectroscopy. J. Nanomater. 2011, 2011, 786763. [Google Scholar]
- Dillon, A.C.; Yudasaka, M.; Dresselhaus, M.S. Employing Raman Spectroscopy to Qualitatively Evaluate the Purity of Carbon Single-Wall Nanotube Materials. J. Nanosci. Nanotechnol. 2004, 4, 691–703. [Google Scholar] [CrossRef] [PubMed]
- DiLeo, R.A.; Landi, B.J.; Raffaelle, R.P. Purity Assessment of Multiwalled Carbon Nanotubes by Raman Spectroscopy. J. Appl. Phys. 2007, 101, 064307. [Google Scholar] [CrossRef]
- Hernandez-Ortiz, M.; Estevez-Martínez, Y.; Durón, S.; Escalante-García, I.; Vega-González, M.; Castaño, V. Morphology and Surface Structure of Nanocarbon Allotropes: A Comparative Study. Fuller. Nanotub. Carbon Nanostruct. 2016, 24, 345–352. [Google Scholar] [CrossRef]
- Rocha, R.P.; Sousa, J.P.S.; Silva, A.M.T.; Pereira, M.F.R.; Figueiredo, J.L. Catalytic Activity and Stability of Multiwalled Carbon Nanotubes in Catalytic Wet Air Oxidation of Oxalic Acid: The Role of the Basic Nature Induced by the Surface Chemistry. Appl. Catal. B Environ. 2011, 104, 330–336. [Google Scholar] [CrossRef]
- Liu, X.; Wang, R.; Song, L.; He, H.; Zhang, G.; Zi, X.; Qiu, W. The Oxidation of Carbon Monoxide over the Palladium Nanocube Catalysts: Effect of the Basic-Property of the Support. Catal. Commun. 2014, 46, 213–218. [Google Scholar] [CrossRef]
- Ingrosso, C.; Bianco, G.V.; Lopalco, P.; Tamborra, M.; Curri, M.L.; Corcelli, A.; Bruno, G.; Agostiano, A.; Siciliano, P.; Striccoli, M. Surface Chemical Functionalization of Single Walled Carbon Nanotubes with a Bacteriorhodopsin Mutant. Nanoscale 2012, 4, 6434–6441. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Buldum, A.; Han, J.; Lu, J.P. First-Principles Study of Li-Intercalated Carbon Nanotube Ropes. Phys. Rev. Lett. 2000, 85, 1706–1709. [Google Scholar] [CrossRef]
- Maurin, G.; Bousquet, C.; Henn, F.; Bernier, P.; Almairac, R.; Simon, B. Electrochemical Lithium Intercalation into Multiwall Carbon Nanotubes: A Micro-Raman Study. Solid State Ion. 2000, 136–137, 1295–1299. [Google Scholar] [CrossRef]
- Kim, Y.A.; Kojima, M.; Muramatsu, H.; Umemoto, S.; Watanabe, T.; Yoshida, K.; Sato, K.; Ikeda, T.; Hayashi, T.; Endo, M.; et al. In Situ Raman Study on Single- and Double-Walled Carbon Nanotubes as a Function of Lithium Insertion. Small 2006, 2, 667–676. [Google Scholar] [CrossRef]
- Maurin, G.; Henn, F.; Simon, B.; Colomer, J.-F.; Nagy, J.B. Lithium Doping of Multiwalled Carbon Nanotubes Produced by Catalytic Decomposition. Nano Lett. 2001, 1, 75–79. [Google Scholar] [CrossRef]
- Li, J.; Wu, C.; Guan, L. Lithium Insertion/Extraction Properties of Nanocarbon Materials. J. Phys. Chem. C 2009, 113, 18431–18435. [Google Scholar] [CrossRef]
- Ye, J.T.; Li, Z.M.; Tang, Z.K.; Saito, R. Raman Spectra of Lithium Doped Single-Walled 0.4 Nm Carbon Nanotubes. Phys. Rev. B 2003, 67, 1134041–1134044. [Google Scholar] [CrossRef]
- Yoong, A.K.; Kojima, M.; Muramatsu, H.; Shimamoto, D.; Hayashi, T.; Endo, M.; Terrones, M.; Dresselhaus, M.S. Raman Study on Electrochemical Lithium Insertion into Multiwalled Carbon Nanotubes. J. Raman Spectrosc. 2008, 39, 1183–1188. [Google Scholar]
- Müller, M.; Meinke, R.; Maultzsch, J.; Gebhardt, B.; Hauke, F.; Hirsch, A.; Thomsen, C. Resonant Raman Scattering on Carbon Nanotubes Covalently Functionalized with Lithium Decyne. Phys. Status Solidi B Basic Res. 2010, 247, 2863–2866. [Google Scholar] [CrossRef]
- Porto, A.B.; Silva, G.G.; Dos Santos, H.F.; De Oliveira, L.F.C. Oxidation of Single-Walled Carbon Nanotubes under Controlled Chemical Conditions. J. Braz. Chem. Soc. 2018, 29, 2387–2396. [Google Scholar] [CrossRef]
- Venkateswer Rao, M.; Dhand, V.; Sarada Prasad, J.; Naga Mahesh, K.; Himabindu, V.; Yerramilli, A.; Sreedhar, B. In Situ Lithium Intercalation of Carbon Nanorods Using Flame Synthesis. Compos. Sci. Technol. 2010, 70, 255–259. [Google Scholar] [CrossRef]
- Santamaría-Juárez, G.; Gómez-Barojas, E.; Quiroga-González, E.; Sánchez-Mora, E.; Quintana-Ruiz, M.; Santamaría-Juárez, J.D. Safer Modified Hummers’ Method for the Synthesis of Graphene Oxide with High Quality and High Yield. Mater. Res. Express 2020, 6, 125631. [Google Scholar] [CrossRef]
- Maruyama, S.; Fukutsuka, T.; Miyazaki, K.; Abe, T. Solvated Lithium Ion Intercalation Behavior of Graphitized Carbon Nanospheres. Electrochemistry 2020, 88, 79–82. [Google Scholar] [CrossRef]
- Schechter, A.; Aurbach, D.; Cohen, H. X-Ray Photoelectron Spectroscopy Study of Surface Films Formed on Li Electrodes Freshly Prepared in Alkyl Carbonate Solutions. Langmuir 1999, 15, 3334–3342. [Google Scholar] [CrossRef]
- Kanamura, K.; Shiraishi, S.; Takezawa, H.; Takehara, Z. XPS Analysis of the Surface of a Carbon Electrode Intercalated by Lithium Ions. Chem. Mater. 1997, 9, 1797–1804. [Google Scholar] [CrossRef]
- Aurbach, D.; Weissman, I.; Schechter, A.; Cohen, H. X-Ray Photoelectron Spectroscopy Studies of Lithium Surfaces Prepared in Several Important Electrolyte Solutions. A Comparison with Previous Studies by Fourier Transform Infrared Spectroscopy. Langmuir 1996, 12, 3991–4007. [Google Scholar] [CrossRef]
- Ismail, I.; Noda, A.; Nishimoto, A.; Watanabe, M. XPS Study of Lithium Surface after Contact with Lithium-Salt Doped Polymer Electrolytes. Electrochim. Acta 2001, 46, 1595–1603. [Google Scholar] [CrossRef]
- Wu, Y.; Okajima, T.; Ohsaka, T. Lithium Intercalation into Graphene Ribbons of Glassy Carbon. Int. J. Electrochem. Sci. 2017, 12, 1004–1013. [Google Scholar] [CrossRef]
- Canobre, S.C.; Bocchi, N.; Rocha-Filho, R.C.; Biaggio, S.R. Carbon-Fiber Composites of Organometallic Intercalated Polyaniline and Polypyrrole Doped with Sodium Polystyrene Sulfonate as Electrodes for Lithium-Ion Batteries. Mater. Chem. Phys. 2013, 139, 47–54. [Google Scholar] [CrossRef]
- Reddy, S.S.; Shukla, B.; Srihari, V.; Bhalerao, G.M.; Shekar, N.V.C. Realization of Diamond Nucleation within the Multi-Walled Carbon Nanotubes Matrix upon Electron Irradiation. Carbon Lett. 2022, 32, 1119–1130. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, C.H.; Li, F.; Li, H.X.; Cheng, H.M. Purification of Multiwalled Carbon Nanotubes by Annealing and Extraction Based on the Difference in van Der Waals Potential. J. Phys. Chem. B 2006, 110, 9477–9481. [Google Scholar] [CrossRef]
- Okoro, A.M.; Machaka, R.; Lephuthing, S.S.; Awotunde, M.A.; Olubambi, P.A. Microstructural Evolution and Mechanical Properties of Multiwall Carbon Nanotubes Reinforced Titanium-Based Nanocomposites Developed by Spark Plasma Sintering. Met. Mater. Int. 2021, 27, 4869–4885. [Google Scholar] [CrossRef]
- Estévez-Martíneza, Y.; Velasco-Santos, C.; Martínez-Hernández, A.-L.; Delgado, G.; Arenas-Alatorre, J.; Durón-Torres, S.; Alaniz-Lumbreras, D.; Castaño, V.M. Characterization of Nanostructures of Oxidized Multiwalled Carbon Nanotubes –G–Keratin Hybrids by Transmission Electron Microscopy. J. Nanosci. Lett. 2015, 5, 10. [Google Scholar]
- Bhattacharya, S.; Riahi, A.R.; Alpas, A.T. A Transmission Electron Microscopy Study of Crack Formation and Propagation in Electrochemically Cycled Graphite Electrode in Lithium-Ion Cells. J. Power Sources 2011, 196, 8719–8727. [Google Scholar] [CrossRef]
- Che, B.D.; Nguyen, B.Q.; Nguyen, L.-T.T.; Nguyen, H.T.; Nguyen, V.Q.; Van Le, T.; Nguyen, N.H. The Impact of Different Multi-Walled Carbon Nanotubes on the X-Band Microwave Absorption of Their Epoxy Nanocomposites. Chem. Cent. J. 2015, 9, 10. [Google Scholar] [CrossRef]
- Shah, M. Growth of Uniform Nanoparticles of Platinum by an Economical Approach at Relatively Low Temperature. Sci. Iran 2012, 19, 964–966. [Google Scholar] [CrossRef]
- Johnsen, R.E.; Norby, P. Capillary-Based Micro-Battery Cell for in Situ X-Ray Powder Diffraction Studies of Working Batteries: A Study of the Initial Intercalation and Deintercalation of Lithium into Graphite. J. Appl. Crystallog. 2013, 46, 1537–1543. [Google Scholar] [CrossRef]
- Brown, M.E.; Gallagher, P.K. Handbook of Thermal Analysis and Calorimetry: Recent Advances, Techniques and Applications; Elsevier: New York, NY, USA, 2011; Volume 5, ISBN 0-08-05563-10. [Google Scholar]
- Skoog, D.A.; Holler, F.J.; Nieman, T.A.; del Gómez, M.C.M. Principios de Análisis Instrumental; McGraw-Hill Madrid: Madrid, Spain, 2001; ISBN 8-44-81277-57. [Google Scholar]
- Flores-Hernández, C.G.; Martínez-Hernández, A.L.; Velasco-Santos, C. Chitosan-Starch Ecocomposites: Sustainable Biopolymer Matrix Reinforced with Green Fibers. In Handbook of Sustainable Polymers: Structure and Chemistry; Pan Stanford Publishing Pte Ltd.: Singapore, 2016; pp. 509–557. ISBN 978-9-81461-356-9. [Google Scholar]
- Lazaridou, A.; Biliaderis, C.G. Thermophysical Properties of Chitosan, Chitosan-Starch and Chitosan-Pullulan Films near the Glass Transition. Carbohydr. Polym. 2002, 48, 179–190. [Google Scholar] [CrossRef]
- Nicotera, I.; Simari, C.; Agostini, M.; Enotiadis, A.; Brutti, S. A Novel Li+-Nafion-Sulfonated Graphene Oxide Membrane as Single Lithium-Ion Conducting Polymer Electrolyte for Lithium Batteries. J. Phys. Chem. C 2019, 123, 27406–27416. [Google Scholar] [CrossRef]
- Stephan, A.M.; Kumar, T.P.; Kulandainathan, M.A.; Lakshmi, N.A. Chitin-Incorporated Poly(Ethylene Oxide)-Based Nanocomposite Electrolytes for Lithium Batteries. J. Phys. Chem. B 2009, 113, 1963–1971. [Google Scholar] [CrossRef] [PubMed]
- Brouillet-Fourmann, S.; Carrot, C.; Mignard, N. Gelatinization and Gelation of Corn Starch Followed by Dynamic Mechanical Spectroscopy Analysis. Rheol. Acta 2003, 42, 110–117. [Google Scholar] [CrossRef]
- Mathew, S.; Brahmakumar, M.; Abraham, T.E. Microstructural Imaging and Characterization of the Mechanical, Chemical, Thermal, and Swelling Properties of Starch-Chitosan Blend Films. Biopolymers 2006, 82, 176–187. [Google Scholar] [CrossRef]
- Liu, F.; Qin, B.; He, L.; Song, R. Novel Starch/Chitosan Blending Membrane: Antibacterial, Permeable and Mechanical Properties. Carbohydr. Polym. 2009, 78, 146–150. [Google Scholar] [CrossRef]
- Bourtoom, T.; Chinnan, M.S. Preparation and Properties of Rice Starch-Chitosan Blend Biodegradable Film. LWT Food Sci. Technol. 2008, 41, 1633–1641. [Google Scholar] [CrossRef]
- López, F.A.; Mercê, A.L.R.; Alguacil, F.J.; López-Delgado, A. A Kinetic Study on the Thermal Behaviour of Chitosan. J. Therm. Anal. Calorim. 2008, 91, 633–639. [Google Scholar] [CrossRef]
- Souza, N.L.G.D.; Brandão, H.M.; De Oliveira, L.F.C. Spectroscopic and Thermogravimetric Study of Chitosan after Incubation in Bovine Rumen. J. Mol. Struct. 2011, 1005, 186–191. [Google Scholar] [CrossRef]
- Sugimoto, M.; Morimoto, M.; Sashiwa, H.; Saimoto, H.; Shigemasa, Y. Preparation and Characterization of Water-Soluble Chitin and Chitosan Derivatives. Carbohydr. Polym. 1998, 36, 49–59. [Google Scholar] [CrossRef]
- Zou, M.-M.; Ai, D.-J.; Liu, K.-Y. Template Synthesis of MnO2/CNT Nanocomposite and Its Application in Rechargeable Lithium Batteries. Trans. Nonferrous Met. Soc. China 2011, 21, 2010–2014. [Google Scholar] [CrossRef]
- Kusuma, K.B.; Manju, M.; Ravikumar, C.R.; Nagaswarupa, H.P.; Amulya, M.A.S.; Anilkumar, M.R.; Avinash, B.; Gurushantha, K.; Ravikantha, N. Photocatalytic and Electrochemical Sensor for Direct Detection of Paracetamol Comprising γ-Aluminium Oxide Nanoparticles Synthesized via Sonochemical Route. Sens. Int. 2020, 1, 100039. [Google Scholar] [CrossRef]
- Poinern, G.E.J.; Ali, N.; Fawcett, D. Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development. Materials 2011, 4, 487–526. [Google Scholar] [CrossRef] [PubMed]
- Hudak, N.; Huber, D. Nanostructured Lithium-Aluminum Alloy Electrodes for Lithium-Ion Batteries. ECS Trans. 2011, 33, 1–13. [Google Scholar] [CrossRef]
- Badi, N.; Theodore, A.M.; Alghamdi, S.A.; Al-Aoh, H.A.; Lakhouit, A.; Singh, P.K.; Norrrahim, M.N.F.; Nath, G. The Impact of Polymer Electrolyte Properties on Lithium-Ion Batteries. Polymers 2022, 14, 3101. [Google Scholar] [CrossRef]
Samples | D | G | G’ | G’/G | G’/D | D/G |
---|---|---|---|---|---|---|
MWNTs | 72,068 | 79,955 | 81,314 | 1.02 | 1.13 | 0.90 |
MWOHs | 40,546 | 52,738 | 51,791 | 0.98 | 1.28 | 0.77 |
RLi | 64,666 | 80,951 | 77,683 | 0.96 | 1.20 | 0.80 |
SLi | 98,968 | 117,520 | 108,288 | 0.92 | 1.09 | 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estévez-Martínez, Y.; Quiroga-González, E.; Cuevas-Yañez, E.; Durón-Torres, S.; Alaníz-Lumbreras, D.; Chavira-Martínez, E.; Posada-Gómez, R.; Bravo-Tapia, J.; Castaño-Meneses, V. Membranes of Multiwall Carbon Nanotubes in Chitosan–Starch with Mechanical and Compositional Properties Useful in Li-Ion Batteries. C 2023, 9, 87. https://doi.org/10.3390/c9030087
Estévez-Martínez Y, Quiroga-González E, Cuevas-Yañez E, Durón-Torres S, Alaníz-Lumbreras D, Chavira-Martínez E, Posada-Gómez R, Bravo-Tapia J, Castaño-Meneses V. Membranes of Multiwall Carbon Nanotubes in Chitosan–Starch with Mechanical and Compositional Properties Useful in Li-Ion Batteries. C. 2023; 9(3):87. https://doi.org/10.3390/c9030087
Chicago/Turabian StyleEstévez-Martínez, Yoxkin, Enrique Quiroga-González, Erick Cuevas-Yañez, Sergio Durón-Torres, Daniel Alaníz-Lumbreras, Elizabeth Chavira-Martínez, Rubén Posada-Gómez, Jeremias Bravo-Tapia, and Víctor Castaño-Meneses. 2023. "Membranes of Multiwall Carbon Nanotubes in Chitosan–Starch with Mechanical and Compositional Properties Useful in Li-Ion Batteries" C 9, no. 3: 87. https://doi.org/10.3390/c9030087
APA StyleEstévez-Martínez, Y., Quiroga-González, E., Cuevas-Yañez, E., Durón-Torres, S., Alaníz-Lumbreras, D., Chavira-Martínez, E., Posada-Gómez, R., Bravo-Tapia, J., & Castaño-Meneses, V. (2023). Membranes of Multiwall Carbon Nanotubes in Chitosan–Starch with Mechanical and Compositional Properties Useful in Li-Ion Batteries. C, 9(3), 87. https://doi.org/10.3390/c9030087