Electronic and Magnetic Properties of FeCl3 Intercalated Bilayer Graphene
Abstract
:1. Introduction
2. Computational Detail
3. Results
3.1. Structural Properties
3.2. Magnetic and Electronic Properties
3.3. Pressure Dependence
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DFT | Density functional theory |
BLG | Bilayer graphene |
SLG | Single-layer graphene |
FLG | Few-layer graphene |
GICs | Graphite intercalation compounds |
DOS | Density of state |
Appendix A
References
- Rüdorff, W. Graphite intercalation compounds. In Advances in Inorganic Chemistry and Radiochemistry; Elsevier: Amsterdam, The Netherlands, 1959; Volume 1, pp. 223–266. [Google Scholar]
- Selig, H.; Ebert, L.B. Graphite intercalation compounds. In Advances in Inorganic Chemistry and Radiochemistry; Elsevier: Amsterdam, The Netherlands, 1980; Volume 23, pp. 281–327. [Google Scholar]
- Nobuhara, K.; Nakayama, H.; Nose, M.; Nakanishi, S.; Iba, H. First-principles study of alkali metal-graphite intercalation compounds. J. Power Sources 2013, 243, 585–587. [Google Scholar] [CrossRef]
- Dresselhaus, M.S. Intercalation in layered materials. MRS Bull. 1987, 12, 24–28. [Google Scholar] [CrossRef]
- Besenhard, J. The electrochemical preparation and properties of ionic alkali metal-and NR4-graphite intercalation compounds in organic electrolytes. Carbon 1976, 14, 111–115. [Google Scholar] [CrossRef]
- Pruvost, S.; Hérold, C.; Hérold, A.; Lagrange, P. Co-intercalation into graphite of lithium and sodium with an alkaline earth metal. Carbon 2004, 42, 1825–1831. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys. 2002, 51, 1–186. [Google Scholar] [CrossRef]
- Noel, M.; Santhanam, R. Electrochemistry of graphite intercalation compounds. J. Power Sources 1998, 72, 53–65. [Google Scholar] [CrossRef]
- Jiang, H. Chemical preparation of graphene-based nanomaterials and their applications in chemical and biological sensors. Small 2011, 7, 2413–2427. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.S.; Moon, S.Y.; Bang, S.Y.; Choi, B.G.; Ham, H.; Sekino, T.; Shim, K.B. Fabrication of graphene layers from multiwalled carbon nanotubes using high dc pulse. Appl. Phys. Lett. 2009, 95, 083103. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200. [Google Scholar] [CrossRef]
- Wang, H.; Strait, J.H.; George, P.A.; Shivaraman, S.; Shields, V.B.; Chandrashekhar, M.; Hwang, J.; Rana, F.; Spencer, M.G.; Ruiz-Vargas, C.S.; et al. Ultrafast relaxation dynamics of hot optical phonons in graphene. Appl. Phys. Lett. 2010, 96, 081917. [Google Scholar] [CrossRef]
- Kampfrath, T.; Perfetti, L.; Schapper, F.; Frischkorn, C.; Wolf, M. Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite. Phys. Rev. Lett. 2005, 95, 187403. [Google Scholar] [CrossRef]
- Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold, C.; Wirtz, L. Spatially resolved Raman spectroscopy of single-and few-layer graphene. Nano Lett. 2007, 7, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Lui, C.H.; Li, Z.; Chen, Z.; Klimov, P.V.; Brus, L.E.; Heinz, T.F. Imaging stacking order in few-layer graphene. Nano Lett. 2011, 11, 164–169. [Google Scholar] [CrossRef]
- Wei, D.; Wu, B.; Guo, Y.; Yu, G.; Liu, Y. Controllable chemical vapor deposition growth of few layer graphene for electronic devices. Accounts Chem. Res. 2013, 46, 106–115. [Google Scholar] [CrossRef]
- Orsu, P.; Koyyada, A. Recent progresses and challenges in graphene based nano materials for advanced therapeutical applications: A comprehensive review. Mater. Today Commun. 2020, 22, 100823. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, P.X. Fabrication and characterization of few-layer graphene. Carbon 2010, 48, 359–364. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Z.; He, C.; Dai, L.; Liu, J.; Wang, L. Rationally designed surfactants for few-layered graphene exfoliation: Ionic groups attached to electron-deficient π-conjugated unit through alkyl spacers. ACS Nano 2014, 8, 6663–6670. [Google Scholar] [CrossRef] [PubMed]
- Nijamudheen, A.; Sarbapalli, D.; Hui, J.; Rodríguez-López, J.; Mendoza-Cortes, J.L. Impact of surface modification on the lithium, sodium, and potassium intercalation efficiency and capacity of few-layer graphene electrodes. ACS Appl. Mater. Interfaces 2020, 12, 19393–19401. [Google Scholar] [CrossRef]
- McCann, E.; Koshino, M. The electronic properties of bilayer graphene. Rep. Prog. Phys. 2013, 76, 056503. [Google Scholar] [CrossRef]
- Ohta, T.; Bostwick, A.; Seyller, T.; Horn, K.; Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science 2006, 313, 951–954. [Google Scholar] [CrossRef]
- Zhao, W.; Tan, P.H.; Liu, J.; Ferrari, A.C. Intercalation of few-layer graphite flakes with FeCl3: Raman determination of Fermi level, layer by layer decoupling, and stability. J. Am. Chem. Soc. 2011, 133, 5941–5946. [Google Scholar] [CrossRef]
- Sun, Y.; Han, F.; Zhang, C.; Zhang, F.; Zhou, D.; Liu, H.; Fan, C.; Li, X.; Liu, J. FeCl3 Intercalated microcrystalline graphite enables high volumetric capacity and good cycle stability for lithium-ion batteries. Energy Technol. 2019, 7, 1801091. [Google Scholar] [CrossRef]
- Millman, S.; Holmes, B.; Zimmerman, G. Magnetic susceptibility study of magnetic properties in low stage FeCl3 intercalated graphite. Solid State Commun. 1982, 43, 903–906. [Google Scholar] [CrossRef]
- Kim, N.; Kim, K.S.; Jung, N.; Brus, L.; Kim, P. Synthesis and electrical characterization of magnetic bilayer graphene intercalate. Nano Lett. 2011, 11, 860–865. [Google Scholar] [CrossRef]
- Nathaniel, J.; Wang, X.Q. Tunable electron and hole doping in FeCl3 intercalated graphene. Appl. Phys. Lett. 2012, 100, 213112. [Google Scholar] [CrossRef]
- Bonacum, J.P.; O’Hara, A.; Bao, D.L.; Ovchinnikov, O.S.; Zhang, Y.F.; Gordeev, G.; Arora, S.; Reich, S.; Idrobo, J.C.; Haglund, R.F.; et al. Atomic-resolution visualization and doping effects of complex structures in intercalated bilayer graphene. Phys. Rev. Mater. 2019, 3, 064004. [Google Scholar] [CrossRef]
- Zhan, D.; Sun, L.; Ni, Z.H.; Liu, L.; Fan, X.F.; Wang, Y.; Yu, T.; Lam, Y.M.; Huang, W.; Shen, Z.X. FeCl3-based few-layer graphene intercalation compounds: Single linear dispersion electronic band structure and strong charge transfer doping. Adv. Funct. Mater. 2010, 20, 3504–3509. [Google Scholar] [CrossRef]
- Zou, X.; Zhan, D.; Fan, X.; Lee, D.; Nair, S.K.; Sun, L.; Ni, Z.; Luo, Z.; Liu, L.; Yu, T.; et al. Ultrafast carrier dynamics in pristine and FeCl3-intercalated bilayer graphene. Appl. Phys. Lett. 2010, 97, 141910. [Google Scholar] [CrossRef]
- Li, Y.; Yue, Q. First-principles study of electronic and magnetic properties of FeCl3-based graphite intercalation compounds. Phys. B Condens. Matter 2013, 425, 72–77. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef]
- Blöchl, P.E.; Jepsen, O.; Andersen, O.K. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 1994, 49, 16223. [Google Scholar] [CrossRef]
- Anisimov, V.I.; Aryasetiawan, F.; Lichtenstein, A. First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA+ U method. J. Phys. Condens. Matter 1997, 9, 767. [Google Scholar] [CrossRef]
- Dudarev, S.L.; Botton, G.A.; Savrasov, S.Y.; Humphreys, C.; Sutton, A.P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+ U study. Phys. Rev. B 1998, 57, 1505. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Trinkle, D.R. Accurate and efficient algorithm for Bader charge integration. J. Chem. Phys. 2011, 134, 064111. [Google Scholar] [CrossRef] [PubMed]
Material | Stacking Pattern | Magnetic Configuration | Lattice Constant a (Å) | Energy (eV) | (eV) | Magnetic Momentum () | (Å) | (Å) | Charge Transfer (e) |
---|---|---|---|---|---|---|---|---|---|
Graphene | - | - | 12.339 | −462.874 | - | 0.000 | - | 0 | - |
BLG | AA | - | 12.337 | −927.804 | −2.056 | 0.000 | 3.656 | 0 | - |
AB | - | 12.336 | −928.065 | −2.308 | 0.000 | 3.486 | 0 | - | |
Graphite | AA | - | 12.337 | −928.351 | −2.604 | 0.000 | 3.621 | 0 | - |
AB | - | 12.336 | −928.939 | −3.120 | 0.000 | 3.485 | 0 | - | |
FeCl | - | FM | 12.316 | −122.800 | - | 40.000 | - | - | - |
AFM | 12.316 | −122.817 | - | 0.000 | - | - | - | ||
FeCl-BLG | AA | FM | 12.331 | −1053.586 | −2.982 | 39.006 | 9.550 | 0.007/0.011 | 0.982 |
AFM | 12.332 | −1053.571 | −2.950 | 1.001 | 9.549 | 0.007/0.010 | 0.975 | ||
AB | FM | 12.332 | −1053.579 | −2.714 | 39.005 | 9.567 | 0.010/0.026 | 0.984 | |
AFM | 12.332 | −1053.572 | −2.690 | 1.001 | 9.563 | 0.006/0.025 | 0.975 | ||
FeCl-GIC | AB | FM | 12.333 | −2112.323 | −4.422 | 78.001 | 9.510 | 0.005/0.035 | 2.003 |
AFM | 12.333 | −2112.323 | −4.405 | 0.000 | 9.510 | 0.005/0.035 | 1.985 | ||
AFM2 | 12.333 | −2112.357 | −4.439 | 2.000 | 9.510 | 0.005/0.034 | 1.968 |
(Å) | (eV) | Shift of Dirac Point/ Charge Transfer Value | (eV) | Shift of Dirac Point/ Charge Transfer Value |
---|---|---|---|---|
9.5 | −1053.572 | 0.7579/0.9907 | −1053.549 | 0.6919/0.9799 |
9.4 | −1053.521 | 0.7648/0.9988 | −1053.498 | 0.7021/0.9865 |
9.3 | −1053.448 | 0.7666/1.0144 | −1053.429 | 0.7065/0.9993 |
9.2 | −1053.330 | 0.7734/1.0247 | −1053.306 | 0.7180/1.0033 |
9.1 | −1053.151 | 0.7740/1.0391 | −1053.124 | 0.7249/1.0134 |
9.0 | −1052.915 | 0.7753/1.0579 | −1052.886 | 0.7259/1.0307 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, J.; Yadav, S.; Paulus, B. Electronic and Magnetic Properties of FeCl3 Intercalated Bilayer Graphene. C 2023, 9, 95. https://doi.org/10.3390/c9040095
Dai J, Yadav S, Paulus B. Electronic and Magnetic Properties of FeCl3 Intercalated Bilayer Graphene. C. 2023; 9(4):95. https://doi.org/10.3390/c9040095
Chicago/Turabian StyleDai, Jiajun, Shilpa Yadav, and Beate Paulus. 2023. "Electronic and Magnetic Properties of FeCl3 Intercalated Bilayer Graphene" C 9, no. 4: 95. https://doi.org/10.3390/c9040095
APA StyleDai, J., Yadav, S., & Paulus, B. (2023). Electronic and Magnetic Properties of FeCl3 Intercalated Bilayer Graphene. C, 9(4), 95. https://doi.org/10.3390/c9040095