Agro-Industrial Residues Used as Substrates for the Production of Bioaroma Compounds with Basidiomycetes: A Comprehensive Review
Abstract
:1. Introduction
2. Aryl Compounds
Basidiomycetes | Compounds | Yield | Substrates | References |
---|---|---|---|---|
Pycnoporus cinnabarinus | Vanillin | 8 mmol/L | Vanillic acid | [21] |
Phanerochaete chrysosporium | Vanillin | 503 mg/L | Vanillic acid | [22] |
Pycnoporus cinnabarinus | Vanillin | 1575 mg/L | Vanillic acid | [17] |
Pycnoporus cinnabarinus | Vanillin | 64 mg/L | Ferulic acid | [23] |
Pycnoporous cinnabarinus | Vanillin | 1.15 µmol/L | [5-2H]-labeled ferulic acid | [24] |
Pycnoporous cinnabarinus | Vanillin | 12.3 mg/L | [5-2H]-labeled ferulic acid | [24] |
Pycnoporus cinnabarinus | Vanillin | 560 mg/L | Vanillic acid | [25] |
Pycnoporus cinnabarinus | Vanillin | 237 mg/L | Vanillic acid | [26] |
Pycnoporus cinnabarinus | Vanillin | 760 mg/L | Vanillic acid | [19] |
Phanerochaete chrysosporium | Vanillin | 6.61 mg/L | Ferulic acid | [18] |
Pycnoporous cinnabarinus | Vanillin | 126 mg/L | Ferulic acid | [16] |
Polyporus tuberaster | Benzaldehyde | 7.89 mM | L-phenylalanine | [27] |
Ischnoderma benzoinum | Benzaldehyde | 114 mg/L | L-phenylalanine | [28] |
Bjerkandera adusta | Benzaldehyde | 1.56 g/kg | L-phenylalanine | [29] |
Bjerkandera adusta | Benzaldehyde | 587 mg/L | L-phenylalanine | [30] |
Bjerkandera adusta | Benzaldehyde | 71 mg/L | L-phenylalanine | [31] |
Bjerkandera adusta | Benzaldehyde | 404 mg/L | L-phenylalanine | [32] |
Pleurotus florida | Benzaldehyde | 20–220 µg/L | - | [33] |
Ischnoderma resinosum | Benzaldehyde | 12.0 mg/kg | D-Glucose; D-fructose | [34] |
Pycnoporus cinnabarinus | Benzaldehyde | 790 mg/L | L-phenylalanine | [35] |
Trametes suaveolens | Benzaldehyde | 710 mg/L | L-phenylalanine | [36] |
Tricholoma matsutake | Benzaldehyde | 3.25 nM | - | [37] |
Tricholoma matsutake | Benzaldehyde | 13.7 µm | L-phenylalanine | [37] |
Polyporus tuberaster | Benzyl alcohol | 11.93 mM | L-phenylalanine | [27] |
Bjerkandera adusta | Benzyl alcohol | 3.75 g/kg | L-phenylalanine | [29] |
Ischnoderma benzoinum | Benzyl alcohol | 500 mg/L | L-phenylalanine | [30] |
Bjerkandera adusta | Benzyl alcohol | 484 mg/L | L-phenylalanine | [31] |
Bjerkandera adusta | Benzyl alcohol | 338 mg/L | L-phenylalanine | [32] |
Pleurotus ostreatus | 4-Methoxybenzaldehyde | 2610 µM | L-tyrosine | [38] |
Pleurotus florida | 4-Methoxybenzaldehyde | 130–1450 µg/L | - | [33] |
Ischnoderma resinosum | 4-Methoxybenzaldehyde | 104.9 mg/kg | - | [11] |
Ischnoderma resinosum | 4-Methoxybenzaldehyde | 239.6 mg/kg | D-Glucose; D-fructose | [34] |
Volvariella volvacea | 4-Vinyl guaiacol | 637.8 mg/L | Ferulic acid | [39] |
Schizophyllum commune | 4-Vinyl guaiacol | 0.04 mmol/L | Ferulic acid | [40] |
Ischnoderma resinosum | 3,4-Dimethoxybenzaldehyde | 27.8 mg/kg | D-Glucose; D-fructose | [34] |
Pycnoporus cinnabarinus | p-Hydroxybenzaldehyde | 155 mg/L | Phospholipids/p-coumaric acid | [41] |
Schizophyllum commune | p-Hydroxybenzaldehyde | 0.16 mM | - | [42] |
Pycnoporus cinnabarinus | Methylanthranilate | 18.7 mg/L | - | [43] |
Pleurotus sapidus | (+)-Nootkatone | 280 mg/L | (+)-Valencene | [44] |
Funalia trogii | (+)-Nootkatone | 1100 mg/L | (+)-Valencene | [45] |
Pleurotus sapidus | (+)-Nootkatone + β-nootkatol | 284 mg/L | (+)-Valenceno | [46] |
Pleurotus sapidus | (E)-verbenol | 152.2 mg/L | α-Pineno | [47] |
Tyromyces floriformis | α-Ylangene | >40 mg/L | - | [48] |
Pleurotus sapidus | Carveol | 9.8 mg/L | R-(+)-limonene | [49] |
Pleurotus sapidus | Carveol | 59 mg/L | Limonene | [50] |
Pleurotus sapidus | Carvone | 39 mg/L | Limonene | [50] |
Trametes elegans | cis-Verbenol | 2.9 mg/g | α-Pinene | [51] |
Pleurotus sapidus | α-Nootkatol | 62 mg/L | (+)-Valencene | [44] |
Pleurotus sapidus | β-Nootkatol | 14 mg/L | (+)-Valencene | [44] |
Pleurotus ostreatus | Perillene | 80.3 mg/L | α-(Z)-acaridiol | [52] |
Pleurotus ostreatus | Perillene | 5 mg/L | β-Myrcene | [53] |
Pleurotus ostreatus | Perillene | 3.8 mg/L | α-(Z)-acaridiol | [52] |
Pleurotus ostreatus | Perillene | 24.0 mg/L | α,α-Acarylactol | [52] |
Pleurotus sapidus | Perillene | 32.8 mg/L | β-Myrcene | [54] |
Pleurotus sapidus | Rosefurane | 13.3 mg/L | β-Myrcene | [54] |
Pleurotus sapidus | Verbenone | 149.3 mg/L | α-Pinene | [47] |
Rhodotorula aurantiaca | γ-Decalactone | 6.5 g/L | Ricinoleic acid | [55] |
Rhodotorula aurantiaca | γ-Decalactone | 6.6 g/L | Ricinoleic acid | [56] |
Sporidiobolus salmonicolor | γ-Decalactone | 12 mg/L | Ricinoleic acid | [57] |
Sporidiobolus ruinenii | γ-Decalactone | 40 mg/L | Ricinoleic acid | [57] |
Sporidiobolus ruinenii | γ-Decalactone | 200 mg/L | Ricinoleic acid | [58] |
Tyromyces sambuceus | γ-Decalactone | 880 mg/L | - | [59] |
Piptoporus soloniensis | γ-Decalactone | 14 mg/L | Ricinoleic acid | [60] |
Piptoporus soloniensis | γ-Decalactone | 16mg/L | 12-hydroxystearic acid | [60] |
Sporidiobolus salmonicolor | γ-Decalactone | 135 mg/L | - | [61] |
Sporidiobolus salmonicolor | γ-Decalactone | 131.8 mg/L | Ricinoleic acid | [62] |
Sporobolomyces odorus | γ-Decalactone | 54.6 mg/L | Castor oil | [63] |
Sporobolomyces odorus | γ-Decalactone | 71.8 mg/L | Ricinoleic acid | [64] |
Tyromyces sambuceus | γ-Decalactone | 120 mg/L | Castor oil | [65] |
Sporidiobolus johnsonii | γ-Decalactone | >200 mg/L | Ricinoleic acid | [66] |
Sporidiobolus ruinenii | γ-Decalactone | >200 mg/L | Ricinoleic acid | [66] |
Sporidiobolus salmonicolor | γ-Decalactone | 1.6 mg/L | - | [67] |
Rhodotorula aurantiaca | γ-Decalactone | 6.5 g/L | 4-hydroxydecanoic acid | [55] |
Sporobolomyces odorus | γ-Dodecanolactone | 1.1 ppm | Oleic acid | [68] |
Sporobolomyces odorus | (R)-γ-decanolactone | 10.8 ppm | Oleic acid | [68] |
Sporobolomyces odorus | (Z)-6-γ-dodecenolactone | 28.7 ppm | Oleic acid | [68] |
Sporidiobolus salmonicolor | (Z)-6-γ-dodecenolactone | 11 mg/L | - | [67] |
Trichosporon asahii | β-ionone | 327.6 μM; 63 mg/L | Lutein | [69] |
Trichosporon asahii | β-ionone | 60 mg/L | Lutein | [70] |
Marasmius scorodonius | β-ionone | 0.6 mg/L | β-carotene | [71] |
Nidula níveo-tomentosa | 4-(4-hydroxyphenyl)-butan-2-one | 3.2 mg/L | - | [72] |
Nidula níveo-tomentosa | 4-(4-hydroxyphenyl)-butan-2-one | 160 mg/L | L-phenylalanine | [72] |
Nidula níveo-tomentosa | 4-(4-hydroxyphenyl)-butan-2-one | 8.7 mg/L | L-phenylalanine | [73] |
3. Terpenes
4. Lactones and Ketones
5. Fermentation with Basidiomycetes Using Agro-Industrial Residues as Substrates for Production of Bioaromas
Basidiomycetes | Compounds | Productivity | Precursor | Substrates | References |
---|---|---|---|---|---|
Phanerochaete chrysosporium | Vanillin | 0.628 g/L | Ferulic acid | Coconut fiber | [102] |
Phanerochaete chrysosporium | Vanillin | 131 mg/L | Ferulic acid | Lemongrass leaves | [104] |
Phanerochaete chrysosporium | Vanillin | 93 mg/L | Ferulic acid | Lemongrass leaves | [105] |
Phanerochaete chrysosporium | Vanillin | 1.3 mg/L | Ferulic acid | Palm oil | [106] |
Phanerochaete chrysosporium | Vanillin | 0.192 g/L | Ferulic acid | Lemongrass leaves | [107] |
Phanerochaete chrysosporium | Vanillin | 52.5 µg/g | Ferulic acid | Green coconut residue | [103] |
Phanerochaete chrysosporium | Vanillin | 55 µg/mL | Ferulic acid | Groundnut shell | [108] |
Pycnoporus cinnabarinus | Vanillin | 141 mg/L | Ferulic acid | Pineapple waste | [109] |
Pycnoporus cinnabarinus | Vanillin | 2.8 g/L | Vanillic acid | Rice bran oil residues | [110] |
Pycnoporus cinnabarinus | Vanillin | 725 mg/L | Vanillic acid | - | [111] |
Pycnoporus cinnabarinus | Vanillin | 767 mg/L | Vanillic acid | Autoclaved corn bran | [112] |
Pycnoporus cinnabarinus | Vanillin | >100 mg/L | Ferulic acid | Sugar beet pulp | [113] |
Pycnoporus cinnabarinus | Vanillin | 90 mg/L | Ferulic acid | Wheat bran | [114] |
Pycnoporus cinnabarinus | Vanillin | 300 mg/L | Ferulic acid | Beet pulp | [114] |
Pleurotus pulmonarius | p-Anisaldehyde | 134.1 µM | p-Anisyl alcohol | Lignin and straw | [115] |
Fomitopsis betulina | (5E/Z,7E,9)-decatrien-2-ones | 1.1 mg/L | - | Cabbage residue extract | [116] |
Tyromyces chioneus | 3-phenylpropanal | 290 µg/L | (E)-cinnamic acid | Apple pomace | [12] |
Tyromyces chioneus | 3-phenyl-1-propanol | 270 µg/L | (E)-cinnamic acid | Apple pomace | [12] |
Tyromyces chioneus | Benzyl alcohol | 100 µg/L | - | Apple pomace | [12] |
Fistulina hepatica | 1-Octen-3-ol | 1000 µg/kg | - | Oak wood dust | [117] |
Pleurotus pulmonarius | 1-Octeno-3-ol | 700 ug/g | Linoleic acid | Soy flour and soy oil | [118] |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GlobeNewswire, G. GlobeNewswire: Mercado de Sabores alimentíCios Alcançará US$ 19.72 Bilhões até 2026. 2019. Available online: https://www.globenewswire.com/news-release/2019/10/10/1928250/0/en/Food-Flavors-Market-To-Reach-USD-19-72-Billion-By-2026-Reports-And-Data.html (accessed on 5 August 2020).
- Ben Akacha, N.; Gargouri, M. Microbial and enzymatic technologies used for the production of natural aroma compounds: Synthesis, recovery modeling, and bioprocesses. Food Bioprod. 2015, 94, 675–706. [Google Scholar] [CrossRef]
- Oliveira Felipe, L.; Oliveira, A.M.; Bicas, J.L. Bioaromas–Perspectives for sustainable development. Trends. Food Sci. Technol. 2017, 62, 141–153. [Google Scholar] [CrossRef]
- Silveira, B.M.P.; Barcelos, M.C.S.; Vespermann, K.A.C.; Pelissari, F.M.; Molina, G. An Overview of Biotechnological Processes in the Food Industry. In Bioprocessing for Biomolecules Production; Molina, G., Gupta, V., Singh, B., Gathergood, N., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; pp. 1–19. [Google Scholar] [CrossRef]
- Paulino, B.N.; Sales, A.; Felipe, L.; Pastore, G.M.; Molina, G.; Bicas, J.L. Recent advances in the microbial and enzymatic production of aroma compounds. Curr. Opin. Food Sci. 2021, 37, 98–106. [Google Scholar] [CrossRef]
- de Melo Pereira, G.V.; Medeiros, A.B.P.; Camara, M.C.; Magalhães, A.I., Jr.; de Carvalho Neto, D.P.; Bier, M.C.J.; Soccol, C.R. Chapter 11—Production and recovery of bioaromas synthesized by microorganisms. In The Role of Alternative and Innovative Food Ingredients and Products in Consumer Wellness; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 315–338. [Google Scholar]
- Tang, P.L.; Hassan, O. Bioconversion of ferulic acid attained from pineapple peels and pineapple crown leaves into vanillic acid and vanillin by Aspergillus niger I-1472. BMC Chem. 2020, 14, 7. [Google Scholar] [CrossRef] [PubMed]
- Bier, M.C.J.; Medeiros, A.B.P.; Soccol, C.R. Biotransformation of limonene by an endophytic fungus using synthetic and orange residue-based media. Fungal Biol. 2017, 121, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Martínez, O.; Sánchez, A.; Font, X.; Barrena, R. Bioproduction of 2-phenylethanol and 2-phenethyl acetate by Kluyveromyces marxianus through the solid-state fermentation of sugarcane bagasse. Appl. Microbiol. Biotechnol. 2018, 102, 4703–4716. [Google Scholar] [CrossRef] [PubMed]
- Güneşer, O.; Karagül-Yüceer, Y.; Wilkowska, A.; Kregiel, D. Volatile metabolites produced from agro-industrial wastes by Na-alginate entrapped Kluyveromyces marxianus. Braz. J. Microbiol. 2016, 47, 965–972. [Google Scholar] [CrossRef]
- Wickramasinghe, P.C.K.; Munafo, J.P. Key Odorants from the Fermentation Broth of the Edible Mushroom Ischnoderma resinosum. J. Agric. Food Chem. 2019, 67, 2036–2042. [Google Scholar] [CrossRef]
- Bosse, A.K.; Fraatz, M.A.; Zorn, H. Formation of complex natural flavours by biotransformation of apple pomace with basidiomycetes. Food Chem. 2013, 141, 2952–2959. [Google Scholar] [CrossRef]
- Zhang, Y.; Fraatz, M.A.; Horlamus, F.; Quitmann, H.; Zorn, H. Identification of Potent Odorants in a Novel Nonalcoholic Beverage Produced by Fermentation of Wort with Shiitake (Lentinula edodes). J. Agric. Food Chem. 2014, 62, 4195–4203. [Google Scholar] [CrossRef]
- Lomascolo, A.; Stentelaire, C.; Asther, M.; Lesage-Meessen, L. Basidiomycetes as new biotechnological tools to generate natural aromatic flavours for the food industry. Trends Biotechnol. 1999, 17, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Baqueiro-Peña, I.; Guerrero-Beltrán, J.Á. Vanilla (Vanilla planifolia Andr.), its residues and other industrial by-products for recovering high value flavor molecules: A review. J. Appl. Res. Med. Aromat. Plants 2017, 6, 1–9. [Google Scholar] [CrossRef]
- Tilay, A.; Bule, M.; Annapure, U. Production of Biovanillin by One-Step Biotransformation Using Fungus Pycnoporous cinnabarinus. J. Agric. Food Chem. 2010, 58, 4401–4405. [Google Scholar] [CrossRef] [PubMed]
- Stentelaire, C.; Lesage-Meessen, L.; Oddou, J.; Bernard, O.; Bastin, G.; Ceccaldi, B.C.; Asther, M. Design of a fungal bioprocess for vanillin production from vanillic acid at scalable level by Pycnoporus cinnabarinus. J. Biosci. Bioeng. 2000, 89, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Patil, P.D.; Yadav, G.D. Comparative Studies of White-Rot Fungal Strains (Trametes hirsuta MTCC-1171 and Phanerochaete chrysosporium NCIM-1106) for Effective Degradation and Bioconversion of Ferulic Acid. ACS Omega 2018, 3, 14858–14868. [Google Scholar] [CrossRef] [PubMed]
- Oddou, J.; Stentelaire, C.; Lesage-Meessen, L.; Asther, M.; Colonna Ceccaldi, B. Improvement of ferulic acid bioconversion into vanillin by use of high-density cultures of Pycnoporus cinnabarinus. Appl. Microbiol. Biotechnol. 1999, 53, 1–6. [Google Scholar] [CrossRef]
- Ghosh, S.; Sachan, A.; Mitra, A. Degradation of ferulic acid by a white rot fungus Schizophyllum commune. World J. Microbiol. Biotechnol. 2005, 21, 385–388. [Google Scholar] [CrossRef]
- Bernard, O.; Bastin, G.; Stentelaire, C.; Lesage-Meessen, L.; Asther, M. Mass balance modeling of vanillin production from vanillic acid by cultures of the fungus Pycnoporus cinnabarinus in bioreactors. Biotechnol. Bioeng. 1999, 65, 558–571. [Google Scholar] [CrossRef]
- Stentelaire, C.; Lesage-Meessen, L.; Delattre, M.; Haon, M.; Sigoillot, J.; Ceccaldi, B.C.; Asther, M. By-passing of unwanted vanillyl alcohol formation using selective adsorbents to improve vanillin production with Phanerochaete chrysosporium. World J. Microbiol. Biotechnol. 1998, 14, 285. [Google Scholar] [CrossRef]
- Falconnier, B.; Lapierre, C.; Lesage-Meessen, L.; Yonnet, G.; Brunerie, P.; Colonna-Ceccaldi, B.; Corrieu, G.; Asther, M. Vanillin as a product of ferulic acid biotransformation by the white-rot fungus Pycnoporus cinnabarinus I-937: Identification of metabolic pathways. J. Biotechnol. 1994, 37, 123–132. [Google Scholar] [CrossRef]
- Krings, U.; Pilawa, S.; Theobald, C.; Berger, R.G. Phenyl propenoic side chain degradation of ferulic acid by Pycnoporus cinnabarinus—Elucidation of metabolic pathways using [5-2H]-ferulic acid. J. Biotechnol. 2001, 85, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Lesage-Meessen, L.; Haon, M.; Delattre, M.; Thibault, J.F.; Ceccaldi, B.C.; Asther, M. An attempt to channel the transformation of vanillic acid into vanillin by controlling methoxyhydroquinone formation in Pycnoporus cinnabarinus with cellobiose. Appl. Microbiol. Biotechnol. 1997, 47, 393–397. [Google Scholar] [CrossRef]
- Lesage-Meessen, L.; Delattre, M.; Haon, M.; Thibault, J.-F.; Ceccaldi, B.C.; Brunerie, P.; Asther, M. A two-step bioconversion process for vanillin production from ferulic acid combining Aspergillus niger and Pycnoporus cinnabarinus. J. Biotechnol. 1996, 50, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Kawabe, T.; Morita, H. Production of Benzaldehyde and Benzyl Alcohol by the Mushroom Polyporus tuberaster K2606. J. Agric. Food Chem. 1994, 42, 2556–2560. [Google Scholar] [CrossRef]
- Krings, U.; Hinz, M.; Berger, R.G. Degradation of [2H]phenylalanine by the basidiomycete Ischnoderma benzoinum. J. Biotechnol. 1996, 51, 123–129. [Google Scholar] [CrossRef]
- Lapadatescu, C.; Bonnarme, P. Production of aryl metabolites in solid-state fermentations of the white-rot fungus Bjerkandera adusta. Biotechnol. Lett. 1999, 21, 763–769. [Google Scholar] [CrossRef]
- Lapadatescu, C.; Feron, G.; Vergoignan, C.; Djian, A.; Durand, A.; Bonnarme, P. Influence of cell immobilization on the production of benzaldehyde and benzyl alcohol by the white-rot fungi Bjerkandera adusta, Ischnoderma benzoinum and Dichomitus squalens. Appl. Microbiol. Biotechnol. 1997, 47, 708–714. [Google Scholar] [CrossRef]
- Lapadatescu, C.; Giniès, C.; Le Quéré, J.-L.; Bonnarme, P. Novel Scheme for Biosynthesis of Aryl Metabolites from L-Phenylalanine in the Fungus Bjerkandera adusta. Appl. Environ. Microbiol. 2000, 66, 1517. [Google Scholar] [CrossRef]
- Lapadatescu, C.; Giniès, C.; Djian, A.; Spinnler, H.-E.; Le Quéré, J.-L.; Bonnarme, P. Regulation of the synthesis of aryl metabolites by phospholipid sources in the white-rot fungus Bjerkandera adusta. Arch. Microbiol. 1999, 171, 151–158. [Google Scholar] [CrossRef]
- Venkateshwarlu, G.; Chandravadana, M.V.; Pandey, M.; Tewari, R.P.; Selvaraj, Y. Volatile flavour compounds from oyster mushroom (Pleurotus florida) in submerged culture. Flavour Fragr. J. 2000, 15, 320–322. [Google Scholar] [CrossRef]
- Wickramasinghe, P.C.K.; Munafo, J.P. Fermentation Dynamics and Benzylic Derivative Production in Ischnoderma resinosum Isolates. ACS Omega 2020, 5, 22268–22277. [Google Scholar] [CrossRef] [PubMed]
- Lomascolo, A.; Lesage-Meessen, L.; Labat, M.; Navarro, D.; Delattre, M.; Asther, M. Enhanced benzaldehyde formation by a monokaryotic strain of Pycnoporus cinnabarinus using a selective solid adsorbent in the culture medium. Can. J. Microbiol. 1999, 45, 653–657. [Google Scholar] [CrossRef] [PubMed]
- Lomascolo, A.; Lesage-Meessen, L.; Haon, M.; Navarro, D.; Antona, C.; Faulds, C.; Marcel, A. Evaluation of the potential of Aspergillus niger species for the bioconversion of L-phenylalanine into 2-phenylethanol. World J. Microbiol. Biotechnol. 2001, 17, 99–102. [Google Scholar] [CrossRef]
- Hattori, T.; Tsuzuki, H.; Nakai, H.; Tanaka, C. The ectomycorrhizal fungus Tricholoma matsutake biosynthesizes benzoic acid and benzaldehyde independently. Mycoscience 2019, 60, 54–62. [Google Scholar] [CrossRef]
- Okamoto, K.; Narayama, S.; Katsuo, A.; Shigematsu, I.; Yanase, H. Biosynthesis of p-anisaldehyde by the white-rot basidiomycete Pleurotus ostreatus. J. Biosci. Bioeng. 2002, 93, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Tanruean, K.; Rakariyatham, N. Optimization of Culture Conditions for Maximal Production of 4-vinyl Guaiacol from Ferulic Acid by Volvariella volvacea. Chiang. Mai. J. Sci. 2016, 43, 1027–1036. [Google Scholar]
- Tsujiyama, S.-i.; Ueno, M. Formation of 4-Vinyl Guaiacol as an Intermediate in Bioconversion of Ferulic Acid by Schizophyllum commune. Biosci. Biotechnol. Biochem. 2008, 72, 212–215. [Google Scholar] [CrossRef]
- Estrada Alvarado, I.; Lomascolo, A.; Navarro, D.; Delattre, M.; Asther, M.; Lesage-Meessen, L. Evidence of a new biotransformation pathway of p-coumaric acid into p-hydroxybenzaldehyde in Pycnoporus cinnabarinus. Appl. Microbiol. Biotechnol. 2001, 57, 725–730. [Google Scholar] [CrossRef]
- Nimura, Y.; Tsujiyama, S.-i.; Ueno, M. Bioconversion of cinnamic acid derivatives by Schizophyllum commune. J. Gen. Appl. Microbiol. 2010, 56, 381–387. [Google Scholar] [CrossRef]
- Gross, B.; Yonnet, G.; Picque, D.; Brunerie, P.; Corrieu, G.; Asther, M. Production of methylanthranilate by the basidiomycete Pycnoporus cinnabarinus (Karst.). Appl. Microbiol. Biotechnol. 1990, 34, 387–391. [Google Scholar] [CrossRef]
- Krügener, S.; Krings, U.; Zorn, H.; Berger, R.G. A dioxygenase of Pleurotus sapidus transforms (+)-valencene regio-specifically to (+)-nootkatone via a stereo-specific allylic hydroperoxidation. Bioresour. Technol. 2010, 101, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Kolwek, J.; Behrens, C.; Linke, D.; Krings, U.; Berger, R.G. Cell-free one-pot conversion of (+)-valencene to (+)-nootkatone by a unique dye-decolorizing peroxidase combined with a laccase from Funalia trogii. J. Ind. Microbiol. Biotechnol. 2018, 45, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Fraatz, M.A.; Riemer, S.J.L.; Stöber, R.; Kaspera, R.; Nimtz, M.; Berger, R.G.; Zorn, H. A novel oxygenase from Pleurotus sapidus transforms valencene to nootkatone. J. Mol. Catal. B Enzym. 2009, 61, 202–207. [Google Scholar] [CrossRef]
- Krings, U.; Lehnert, N.; Fraatz, M.A.; Hardebusch, B.; Zorn, H.; Berger, R.G. Autoxidation versus Biotransformation of α-Pinene to Flavors with Pleurotus sapidus: Regioselective Hydroperoxidation of α-Pinene and Stereoselective Dehydrogenation of Verbenol. J. Agric. Food Chem. 2009, 57, 9944–9950. [Google Scholar] [CrossRef] [PubMed]
- Grosse, M.; Strauss, E.; Krings, U.; Berger, R.G. Response of the sesquiterpene synthesis in submerged cultures of the Basidiomycete Tyromyces floriformis to the medium composition. Mycologia 2019, 111, 885–894. [Google Scholar] [CrossRef] [PubMed]
- Kaspera, R.; Krings, U.; Pescheck, M.; Sell, D.; Schrader, J.; Berger Ralf, G. Regio- and Stereoselective Fungal Oxyfunctionalisation of Limonenes. Z. Naturforsch. C 2005, 60, 459. [Google Scholar] [CrossRef] [PubMed]
- Onken, J.; Berger, R.G. Effects of R-(+)-limonene on submerged cultures of the terpene transforming basidiomycete Pleurotus sapidus. J. Biotechnol. 1999, 69, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo, D.A.; Méndez, M.J.; Vargas, G.; Stashenko, E.E.; Vasco-Palacios, A.-M.; Ceballos, A.; Caicedo, N.H. Biocatalytic Potential of Native Basidiomycetes from Colombia for Flavour/Aroma Production. Molecules 2020, 25, 4344. [Google Scholar] [CrossRef]
- Krings, U.; Hapetta, D.; Berger, R.G. A labeling study on the formation of perillene by submerged cultured oyster mushroom, Pleurotus ostreatus. Appl. Microbiol. Biotechnol. 2008, 78, 533–541. [Google Scholar] [CrossRef]
- Krings, U.; Hapetta, D.; Berger, R.G. Bioconversion of β-myrcene to perillene by Pleurotus ostreatus. Biocatal. Biotransformation 2008, 26, 288–295. [Google Scholar] [CrossRef]
- Krügener, S.; Schaper, C.; Krings, U.; Berger, R.G. Pleurotus species convert monoterpenes to furanoterpenoids through 1,4-endoperoxides. Bioresour. Technol. 2009, 100, 2855–2860. [Google Scholar] [CrossRef] [PubMed]
- Alchihab, M.; Aldric, J.-M.; Aguedo, M.; Destain, J.; Wathelet, J.-P.; Thonart, P. The use of Macronet resins to recover γ-decalactone produced by Rhodotorula aurantiaca from the culture broth. J. Ind. Microbiol. Biotechnol. 2010, 37, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Alchihab, M.; Destain, J.; Aguedo, M.; Majad, L.; Ghalfi, H.; Wathelet, J.-P.; Thonart, P. Production of γ-Decalactone by a Psychrophilic and a Mesophilic Strain of the Yeast Rhodotorula aurantiaca. Appl. Biochem. Biotechnol. 2009, 158, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Dufossé, L.; Feron, G.; Mauvais, G.; Bonnarme, P.; Durand, A.; Spinnler, H.-E. Production of γ-decalactone and 4-hydroxy-decanoic acid in the genus Sporidiobolus. J. Biosci. Bioeng. 1998, 86, 169–173. [Google Scholar] [CrossRef]
- Feron, G.; Mauvais, G.; Martin, F.; Sémon, E.; Blin-Perrin, C. Microbial production of 4-hydroxybenzylidene acetone, the direct precursor of raspberry ketone. Lett. Appl. Microbiol. 2007, 45, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Kapfer, G.-F.; Berger, R.; Drawert, F. Production of 4-decanolide by semicontinuous fermentation of Tyromyces sambuceus. Biotechnol. Lett. 1989, 11, 561–566. [Google Scholar] [CrossRef]
- Kenji, O.; Mieko, C.; Fumi, I.; Tsutomu, H.; Hideshi, Y. Production of γ-lactones by the brown-rot basidiomycete Piptoporus soloniensis. J. Biosci. Bioeng. 2002, 94, 182–185. [Google Scholar] [CrossRef]
- Lee, S.-L.; Cheng, H.-Y.; Chen, W.-C.; Chou, C.-C. Effect of physical factors on the production of γ-decalactone by immobilized cells of Sporidiobolus salmonicolor. Process Biochem. 1999, 34, 845–850. [Google Scholar] [CrossRef]
- Lee, S.-L.; Cheng, H.-Y.; Chen, W.-C.; Chou, C.-C. Production of γ-decalactone from ricinoleic acid by immobilized cells of Sporidiobolus salmonicolor. Process Biochem. 1998, 33, 453–459. [Google Scholar] [CrossRef]
- Lee, S.-L.; Lin, S.-J.; Chou, C.-C. Growth of and production of γ-decalactone by Sporobolomyces odorus in jar fermentors as affected by pH, aeration and fed-batch technique. J. Ferment. Bioeng. 1995, 80, 195–199. [Google Scholar] [CrossRef]
- Lin, S.-J.; Lee, S.-L.; Chou, C.-C. Effects of various fatty acid components of castor oil on the growth and production of γ-decalactone by Sporobolomyces odorus. J. Ferment. Bioeng. 1996, 82, 42–45. [Google Scholar] [CrossRef]
- Pakula, R.; Freeman, A. A new continuous biofilm bioreactor for immobilized oil-degrading filamentous fungi. Biotechnol. Bioeng. 1996, 49, 20–25. [Google Scholar] [CrossRef]
- Wang, X.-D.; Mauvais, G.; Cachon, R.; Diviès, C.; Feron, G. Addition of reducing agent dithiothreitol improves 4-decanolide synthesis by the genus Sporidiobolus. J. Biosci. Bioeng. 2000, 90, 338–340. [Google Scholar] [CrossRef] [PubMed]
- Dufossé, L.; Féron, G.; Latrasse, A.; Guichard, E.; Spinnler, H.-E. Chirality of the γ-lactones produced by Sporidiobolus salmonicolor grown in two different media. Chirality 1997, 9, 667–671. [Google Scholar] [CrossRef]
- Haffner, T.; Tressl, R. Biosynthesis of (R)-γ-Decanolactone in the Yeast Sporobolomyces odorus. J. Agric. Food. Chem. 1996, 44, 1218–1223. [Google Scholar] [CrossRef]
- Carasek, E.; Pawliszyn, J. Screening of Tropical Fruit Volatile Compounds Using Solid-Phase Microextraction (SPME) Fibers and Internally Cooled SPME Fiber. J. Agric. Food Chem. 2006, 54, 8688–8696. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Bustamante, E.; Maldonado-Robledo, G.; Arreguín-Espinosa, R.; Mendoza-Hernández, G.; Rodríguez-Sanoja, R.; Sánchez, S. Glucose exerts a negative effect over a peroxidase from Trichosporon asahii, with carotenoid cleaving activity. Appl. Microbiol. Biotechnol. 2009, 84, 499–510. [Google Scholar] [CrossRef]
- Zelena, K.; Hardebusch, B.; Hülsdau, B.; Berger, R.G.; Zorn, H. Generation of Norisoprenoid Flavors from Carotenoids by Fungal Peroxidases. J. Agric. Food Chem. 2009, 57, 9951–9955. [Google Scholar] [CrossRef]
- Fischer, M.; Böker, A.; Berger, R.G. Fungal Formation Of Raspberry Ketone Differs From The Pathway In Plant Cell Culture. Food Biotechnol. 2001, 15, 147–155. [Google Scholar] [CrossRef]
- Zorn, H.; Fischer-Zorn, M.; Berger, R.G. A Labeling Study To Elucidate the Biosynthesis of 4-(4-Hydroxyphenyl)-Butan-2-one (Raspberry Ketone) by Nidula niveo-tomentosa. Appl. Environ. Microbiol. 2003, 69, 367. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, P.; Singh, J.; Singh, S.; Nain, L. Prospecting the Potential of Agroresidues as Substrate for Microbial Flavor Production. Front. Sustain. Food Syst. 2020, 4, 18. [Google Scholar] [CrossRef]
- Gallois, A.; Gross, B.; Langlois, D.; Spinnler, H.-E.; Brunerie, P. Influence of culture conditions on production of flavour compounds by 29 ligninolytic Basidiomycetes. Mycol. Res. 1990, 94, 494–504. [Google Scholar] [CrossRef]
- Abraham, B.G.; Berger, R.G. Higher Fungi for Generating Aroma Components through Novel Biotechnologies. J. Agric. Food Chem. 1994, 42, 2344–2348. [Google Scholar] [CrossRef]
- Lomascolo, A.; Asther, M.; Navarro, D.; Antona, C.; Delattre, M.; Lesage-Meessen, L. Shifting the biotransformation pathways of L-phenylalanine into benzaldehyde by Trametes suaveolens CBS 334.85 using HP20 resin. Lett. Appl. Microbiol. 2001, 32, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Bian, J.; Zhang, H.; Meng, S.; Liu, Y. Chemotaxis of Caenorhabditis elegans toward volatile organic compounds from Stropharia rugosoannulata induced by amino acids. J. Nematol 2018, 50, 3. [Google Scholar] [CrossRef] [PubMed]
- Kawabe, T.; Morita, H. Volatile components in culture fluid of Polyporus tuberaster. J. Agric. Food Chem. 1993, 41, 637–640. [Google Scholar] [CrossRef]
- Wickramasinghe, P.C.K.; Munafo, J.P. Biosynthesis of Benzylic Derivatives in the Fermentation Broth of the Edible Mushroom, Ischnoderma resinosum. J. Agric. Food Chem. 2020, 68, 2485–2492. [Google Scholar] [CrossRef]
- Lauritsen, F.R.; Kotiaho, T.; Lloyd, D. Rapid and direct monitoring of volatile fermentation products in the fungus Bjerkandera adusta by membrane inlet tandem mass spectrometry. Biol. Mass Spectrom. 1993, 22, 585–589. [Google Scholar] [CrossRef]
- de Jong, E.; Field, J.A.; Dings, J.A.F.M.; Wijnberg, J.B.P.A.; de Bont, J.A.M. De-novo biosynthesis of chlorinated aromatics by the white-rot fungus Bjerkandera sp. BOS55 Formation of 3-chloro-anisaldehyde from glucose. FEBS Lett. 1992, 305, 220–224. [Google Scholar] [CrossRef]
- Hage, A.; Schoemaker, H.E.; Field, J.A. Reduction of aryl acids by white-rot fungi for the biocatalytic production of aryl aldehydes and alcohols. Appl. Microbiol. Biotechnol. 1999, 52, 834–838. [Google Scholar] [CrossRef]
- Mester, T.; Swarts, H.J.; Romero Sole, S.; de Bont, J.A.; Field, J.A. Stimulation of aryl metabolite production in the basidiomycete Bjerkandera sp. strain BOS55 with biosynthetic precursors and lignin degradation products. Appl. Microbiol Biotechnol. 1997, 63, 1987. [Google Scholar] [CrossRef] [PubMed]
- Tanruean, K.; Rakariyatham, N. Efficient synthesis of 4-vinyl guaiacol via bioconversion of ferulic acid by Volvariella volvacea. Chiang. Mai J. Sci. 2016, 43, 158–168. [Google Scholar]
- Liang, Z.; Fang, Z.; Pai, A.; Luo, J.; Gan, R.; Gao, Y.; Lu, J.; Zhang, P. Glycosidically bound aroma precursors in fruits: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2020, 62, 215–243. [Google Scholar] [CrossRef] [PubMed]
- Bicas, J.L.; Fontanille, P.; Pastore, G.M.; Larroche, C. A bioprocess for the production of high concentrations of R-(+)-α-terpineol from R-(+)-limonene. Process. Biochem. 2010, 45, 481–486. [Google Scholar] [CrossRef]
- Badee, A.Z.M.; Helmy, S.A.; Morsy, N.F.S. Utilisation of orange peel in the production of α-terpineol by Penicillium digitatum (NRRL 1202). Food Chem. 2011, 126, 849–854. [Google Scholar] [CrossRef]
- Zelena, K.; Krings, U.; Berger, R.G. Functional expression of a valencene dioxygenase from Pleurotus sapidus in E. coli. Bioresour Technol. 2012, 108, 231–239. [Google Scholar] [CrossRef]
- Weidmann, V.; Kliewer, S.; Sick, M.; Bycinskij, S.; Kleczka, M.; Rehbein, J.; Griesbeck, A.G.; Zorn, H.; Maison, W. Studies towards the synthetic applicability of biocatalytic allylic oxidations with the lyophilisate of Pleurotus sapidus. J. Mol. Catal. B Enzym. 2015, 121, 15–21. [Google Scholar] [CrossRef]
- Plagemann, I.; Zelena, K.; Arendt, P.; Ringel, P.D.; Krings, U.; Berger, R.G. LOXPsa1, the first recombinant lipoxygenase from a basidiomycete fungus. J. Mol. Catal. B. Enzym. 2013, 87, 99–104. [Google Scholar] [CrossRef]
- Omarini, A.B.; Plagemann, I.; Schimanski, S.; Krings, U.; Berger, R.G. Crosses between monokaryons of Pleurotus sapidus or Pleurotus florida show an improved biotransformation of (+)-valencene to (+)-nootkatone. Bioresour. Technol. 2014, 171, 113–119. [Google Scholar] [CrossRef]
- Schulz, S.; Girhard, M.; Gaßmeyer, S.K.; Jäger, V.D.; Schwarze, D.; Vogel, A.; Urlacher, V.B. Selective Enzymatic Synthesis of the Grapefruit Flavor (+)-Nootkatone. ChemCatChem 2015, 7, 601–604. [Google Scholar] [CrossRef]
- Krings, U.; Berger, R.G. In situ recovery of the aroma compound perillene from stirred-tank cultured Pleurotus ostreatus using gas stripping and adsorption on polystyrene. Biotechnol. Lett. 2008, 30, 1347–1351. [Google Scholar] [CrossRef] [PubMed]
- Zorn, H.; Langhoff, S.; Scheibner, M.; Berger, R.G. Cleavage of β,β-carotene to flavor compounds by fungi. Appl. Microbiol Biotechnol. 2003, 62, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, W.; Tressl, R. Studies on the Biosynthesis of γ–Decalactone in Sporobolomyces odorus. Z. Naturforsch C 1990, 45, 207–216. [Google Scholar] [CrossRef]
- Lee, S.-L.; Chou, C.-C. Growth and production of γ-decalactone and Cis-6-dodecen-4-olide by Sporobolomyces odorus in the presence of fatty acids and oils. J. Ferment. Bioeng. 1994, 78, 114–116. [Google Scholar] [CrossRef]
- Feron, G.; Dufosse, L.; Pierard, E.; Bonnarme, P.; Quere, J.L.; Spinnler, H. Production, Identification, and Toxicity of (gamma)-Decalactone and 4-Hydroxydecanoic Acid from Sporidiobolus spp. Appl. Environ. Microbiol. 1996, 62, 2826. [Google Scholar] [CrossRef] [PubMed]
- Alchihab, M.; Destain, J.; Aguedo, M.; Wathelet, J.-P.; Thonart, P. The Utilization of Gum Tragacanth to Improve the Growth of Rhodotorula aurantiaca and the Production of γ-Decalactone in Large Scale. Appl. Biochem. Biotechnol. 2010, 162, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Böker, A.; Fischer, M.; Berger, R.G. Raspberry Ketone from Submerged Cultured Cells of the Basidiomycete Nidula niveo-tomentosa. Biotechnol. Prog. 2001, 17, 568–572. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Bustamante, E.; Maldonado-Robledo, G.; Sánchez-Contreras, A.; Klimova, T.; Arreguín-Espinosa, R.; Sánchez, S. Novel method for aroma recovery from the bioconversion of lutein to β-ionone by Trichosporon asahii using a mesoporous silicate material. Appl. Microbiol. Biotechnol. 2006, 71, 568–573. [Google Scholar] [CrossRef]
- Priefert, H.; Rabenhorst, J.; Steinbüchel, A. Biotechnological production of vanillin. Appl. Microbiol. Biotechnol. 2001, 56, 296–314. [Google Scholar] [CrossRef]
- Rejani, C.T.; Radhakrishnan, S. Microbial conversion of vanillin from ferulic acid extracted from raw coir pith. Nat. Prod. Res. 2020, 36, 901–908. [Google Scholar] [CrossRef]
- Barbosa, E.d.S.; Perrone, D.; Amaral Vendramini, A.L.d.; Ferreira Leite, S.G. Vanillin Production By Phanerochaete chrysosporium Grown On Green Coconut Agro-Industrial Husk In Solid State Fermentation. BioResources 2008, 3, 1042–1050. [Google Scholar] [CrossRef]
- Galadima, A.I.; Salleh, M.M.; Hussin, H.; Shiong, C.C.; Yahaya, A.; Mohamad, S.E.; Aziz, S.A.; Yusof, N.N.M.; Al-Junid, A.F.M. Improvement of biovanillin production with two-stage pH control strategy from lemongrass leaves hydrolysates using Phanerochaete chrysosporium ATCC 24725 in batch culture. Biomass Convers. Biorefinery 2022, 12, 2727–2736. [Google Scholar] [CrossRef]
- Galadima, A.I.; Salleh, M.M.; Hussin, H.; Mohd Safri, N.; Mohd Noor, R.; Chong, C.S.; Yahya, A.; Mohamad, S.E.; Abd-Aziz, S.; Yusof, N.N.M.; et al. One-Step Conversion of Lemongrass Leaves Hydrolysate to Biovanillin by Phanerochaete chrysosporium ATCC 24725 in Batch Culture. Waste Biomass Valorization 2020, 11, 4067–4080. [Google Scholar] [CrossRef]
- Zulkarnain, A.; Bahrin, E.K.; Ramli, N.; Phang, L.Y.; Abd-Aziz, S. Alkaline Hydrolysate of Oil Palm Empty Fruit Bunch as Potential Substrate for Biovanillin Production via Two-Step Bioconversion. Waste Biomass Valorization 2018, 9, 13–23. [Google Scholar] [CrossRef]
- Hussin, H.; Salleh, M.M.; Siong, C.C.; Naser, M.A.; Abd-Aziz, S.; Al-Junid, A.F.M. Optimization of biovanillin production of lemongrass leaves hydrolysates through Phanerochaete chrysosporium. J. Teknol. 2015, 1, 2. [Google Scholar] [CrossRef]
- Karode, B.; Patil, U.; Jobanputra, A. Biotransformation of low cost lignocellulosic substrates into vanillin by white rot fungus, Phanerochaete chrysosporium NCIM 1197. Indian J. Biotechnol. 2013, 12, 281–283. [Google Scholar]
- Lun, O.K.; Wai, T.B.; Ling, L.S. Pineapple cannery waste as a potential substrate for microbial biotranformation to produce vanillic acid and vanillin. Int. Food Res. J. 2014, 21, 953. [Google Scholar]
- Zheng, L.; Zheng, P.; Sun, Z.; Bai, Y.; Wang, J.; Guo, X. Production of vanillin from waste residue of rice bran oil by Aspergillus niger and Pycnoporus cinnabarinus. Bioresour. Technol. 2007, 98, 1115–1119. [Google Scholar] [CrossRef]
- Bonnin, E.; Grangé, H.; Lesage-Meessen, L.; Asther, M.; Thibault, J.F. Enzymic release of cellobiose from sugar beet pulp, and its use to favour vanillin production in Pycnoporus cinnabarinus from vanillic acid. Carbohydr. Polym. 2000, 41, 143–151. [Google Scholar] [CrossRef]
- Lesage-Meessen, L.; Lomascolo, A.; Bonnin, E.; Thibault, J.-F.; Buleon, A.; Roller, M.; Asther, M.; Record, E.; Ceccaldi, B.C.; Asther, M. A biotechnological process involving filamentous fungi to produce natural crystalline vanillin from maize bran. Appl. Biochem. Biotechnol. 2002, 102, 141–153. [Google Scholar] [CrossRef]
- Lesage-Meessen, L.; Stentelaire, C.; Lomascolo, A.; Couteau, D.; Asther, M.; Moukha, S.; Record, E.; Sigoillot, J.-C.; Asther, M. Fungal transformation of ferulic acid from sugar beet pulp to natural vanillin. J. Sci. Food Agric. 1999, 79, 487–490. [Google Scholar] [CrossRef]
- Thibault, J.; Micard, V.; Renard, C.; Asther, M.; Delattre, M.; Lesage-Meessen, L.; Faulds, C.; Kroon, P.; Williamson, G.; Duarte, J.; et al. Fungal Bioconversion of Agricultural By-Products to Vanillin. LWT—Food Sci. Technol. 1998, 31, 530–536. [Google Scholar] [CrossRef]
- Grosse, M.; Wu, S.; Krings, U.; Berger, R.G. Formation of Decatrienones with a Pineapple-like Aroma from 1-13C-Acetate by Cell Cultures of the Birch Polypore, Fomitopsis betulina. J. Agric. Food Chem. 2020, 68, 1678–1683. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zorn, H.; Krings, U.; Berger, R.G. Volatiles from submerged and surface-cultured beefsteak fungus, Fistulina hepatica. Flavour Fragr. J. 2007, 22, 53–60. [Google Scholar] [CrossRef]
- Belinky, P.A.; Masaphy, S.; Levanon, D.; Hadar, Y.; Dosoretz, C.G. Effect of medium composition on 1-octen-3-ol formation in submerged cultures of Pleurotus pulmonarius. Appl. Microbiol. Biotechnol. 1994, 40, 629–633. [Google Scholar] [CrossRef]
- Gadhe, A.; Mudliar, S.; Pandey, R.; Elumalai, S.; Satpute, D. Statistical optimization of process parameters for the production of vanillic acid by solid-state fermentation of groundnut shell waste using response surface methodology. J. Chem. Technol. Biotechnol. 2011, 86, 1535–1541. [Google Scholar] [CrossRef]
- Hua, D.; Ma, C.; Song, L.; Lin, S.; Zhang, Z.; Deng, Z.; Xu, P. Enhanced vanillin production from ferulic acid using adsorbent resin. Appl. Microbiol. Biotechnol. 2007, 74, 783–790. [Google Scholar] [CrossRef] [PubMed]
- Grosse, M.; Pendzialeck, T.; Fohrer, J.; Berger, R.G.; Krings, U. (5E/Z,7E,9)-Decatrien-2-ones, Pineapple-like Flavors from Fomitopsis betulina—Structure Elucidation and Sensorial Properties. J. Agric. Food Chem. 2020, 68, 10329–10335. [Google Scholar] [CrossRef]
- Omarini, A.; Dambolena, J.S.; Lucini, E.; Mejía, S.J.; Albertó, E.; Zygadlo, J.A. Biotransformation of 1,8-cineole by solid-state fermentation of Eucalyptus waste from the essential oil industry using Pleurotus ostreatus and Favolus tenuiculus. Folia Microbiol. 2016, 61, 149–157. [Google Scholar] [CrossRef]
- Kabbaj, W.; Breheret, S.; Guimberteau, J.; Talou, T.; Olivier, J.M.; Bensoussan, M.; Sobal, M.; Roussos, S. Comparison of volatile compound production in fruit body and in mycelium of Pleurotus ostreatus identified by submerged and solid-state cultures. Appl. Biochem. Biotechnol. 2002, 102, 463–469. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandes, R.D.D.; dos Santos, R.A.R.; de Jesus, M.S.; Araujo, H.C.S.; Leite Neta, M.T.S.; Rajkumar, G.; Narain, N. Agro-Industrial Residues Used as Substrates for the Production of Bioaroma Compounds with Basidiomycetes: A Comprehensive Review. Fermentation 2024, 10, 23. https://doi.org/10.3390/fermentation10010023
Sandes RDD, dos Santos RAR, de Jesus MS, Araujo HCS, Leite Neta MTS, Rajkumar G, Narain N. Agro-Industrial Residues Used as Substrates for the Production of Bioaroma Compounds with Basidiomycetes: A Comprehensive Review. Fermentation. 2024; 10(1):23. https://doi.org/10.3390/fermentation10010023
Chicago/Turabian StyleSandes, Rafael Donizete Dutra, Raquel Anne Ribeiro dos Santos, Mônica Silva de Jesus, Hannah Caroline Santos Araujo, Maria Terezinha Santos Leite Neta, Gomathi Rajkumar, and Narendra Narain. 2024. "Agro-Industrial Residues Used as Substrates for the Production of Bioaroma Compounds with Basidiomycetes: A Comprehensive Review" Fermentation 10, no. 1: 23. https://doi.org/10.3390/fermentation10010023
APA StyleSandes, R. D. D., dos Santos, R. A. R., de Jesus, M. S., Araujo, H. C. S., Leite Neta, M. T. S., Rajkumar, G., & Narain, N. (2024). Agro-Industrial Residues Used as Substrates for the Production of Bioaroma Compounds with Basidiomycetes: A Comprehensive Review. Fermentation, 10(1), 23. https://doi.org/10.3390/fermentation10010023