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Abstract: The small GTPases of the Rho family are known to regulate various biological processes in
filamentous fungi. In this study, we investigated the impact of deleting Rho proteins on the growth
and cellulase production of Trichoderma reesei. Our findings revealed that deletion of cdc42 led to the
most severe growth defect and impaired cellulase production. Conversely, overexpression of cdc42
resulted in a hyperbranched phenotype, significantly enhancing cellulase production. Furthermore,
the cdc42-overexpressing (OCdc42) strain showed an increased expression of multiple cellulase genes
and Rho GTPase genes. Analysis of the secretome in the OCdc42 strain unveiled an increased
abundance and diversity of extracellular proteins compared to the parent strain. These discoveries
provide valuable insights into the functionality of Rho GTPases in T. reesei and offer potential targets
for engineering fungi to improve plant biomass deconstruction in biorefineries.
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1. Introduction

Filamentous fungi are highly efficient microorganisms for industrial protein produc-
tion due to their remarkable ability to express and secrete large amounts of protein [1].
They are widely utilized in the production of enzyme products, which play a crucial role in
the food processing and bioenergy industries. Among these fungi, Trichoderma reesei stands
out as a leading producer of cellulase. Protein secretion in filamentous fungi is closely
linked to hyphal tip growth [2]. The rapid growth of mycelium requires constant synthesis
of cell walls and the transport of cell membrane components, organelles, and vesicles. Es-
tablishing and maintaining cellular polar growth is crucial to facilitate the apical secretion
of extracellular protein [3]. Extensive research has demonstrated that hyperbranching is
associated with an enhanced capacity for protein secretion by increasing the number of
tips [4,5]. Additionally, the hyperbranched phenotype leads to lower viscosity during
liquid/solid fermentation, thereby improving the availability of dissolved oxygen and
subsequently increasing protein yield [6,7].

The Ras homologue (Rho) proteins, which belong to the Ras GTPase superfamily, play
crucial roles in various biological processes, including metabolism, morphogenesis, cell
polarity, cytoskeletal organization, and gene expression. Rho GTPases are highly conserved
in all eukaryotes, with a total of 20 members identified [8]. Among these members, RhoA,
RhoB, RhoC, RhoD, RacA, and Cdc42 are typically the most dominant in filamentous
fungi [9]. RhoA has been extensively studied as a key regulator of polarity establishment
and cell viability [9–14]. RhoB is involved in various processes in different fungal species.
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RhoB is implicated in sporulation and cell wall integrity in Aspergillus niger [9]. In Col-
letotrichum gloeosporioides, RhoB is involved in conidial germination, septum formation,
cell wall integrity, and chitin distribution [15]. In Ashbya gossypii, RhoB is associated with
tip-branching [16]. In Magnaporthe oryzae, RhoB is involved in the morphological devel-
opment of appressoria and virulence [17]. RhoB also contributes to cell wall integrity
in Neurospora crassa, Arthrobotrys oligospora, and Fusarium graminearum [13,14,18]. While
RhoC had no obvious function in A. niger [9], its homolog is involved in growth, conidia-
tion, and virulence in Botrytis cinerea [19], secretion process in T. reesei [20], appressorium
formation and polar growth in M. oryzae [21], and vegetative growth and conidiation in
F. graminearum [14], as well as cell polarity and hyphal morphogenesis in A. gossypii [10].
RhoD is required for sporulation, septum formation, and cell wall integrity in A. niger and
A. nidulans [9,22], hyphal growth, conidiation, and septum formation in F. graminearum [14],
septum formation, hyphal tip growth, and possibly cell wall integrity in N. crassa [23,24],
and cell wall integrity and virulence in Colletotrichum graminicola [25].

RacA and Cdc42 collectively maintain cell polarity, as simultaneous deletion of
RacA and Cdc42 is lethal in A. niger, Ustilago maydis, and N. crassa [9,26,27]. RacA and
Cdc42 display both overlapping and independent functions. Deletion of racA in A. niger,
Colletotrichum scovillei, Claviceps purpurea, Aspergillus fumigatus, Nomuraea rileyi, Magna-
porthe grisea, F. graminearum, A. oligospora, Epichloë festucae, N. crassa, Aspergillus flavus,
and T. reesei results in increased hyphal branching, growth defect, and/or loss of cell po-
larity [9,18,26,28–38]. However, the loss of Cdc42 does not significantly affect hyphal
morphogenesis in A. niger [9]. In contrast, Cdc42 plays a major role in hyphal mor-
phogenesis and establishment of hyphal polarity, while Rac1 is largely dispensable in
A. nidulans [39,40]. Cdc42 is involved in diverse biological processes in filamentous fungi,
such as polarity establishment in Penicillium marneffei [41], A. gossypii [10], Schizophyl-
lum commune [42], and N. crassa [26], and growth or morphological development in U. may-
dis [27], Colletotrichum trifolii [43], C. purpurea [44], C. gloeosporioides [45], E. festucae [36],
N. crassa [46], A. oligospora [18], F. graminearum [14], and B. cinerea [47], as well as cytokine-
sis [27], virulence [31,34,43,44,47], conidiation [14,34], germination [43,47], reactive oxygen
species (ROS) production [18,31,32,34,43,45], and pyruvate metabolism [48]. However,
the specific effects of Cdc42 on morphology and protein production in T. reesei have not
been investigated.

In this study, the function of Cdc42 and other small GTPase members was investigated
in T. reesei. In particular, the effect of cdc42 overexpression on fungal growth, hyphal branch-
ing, cellulase gene expression, and protein production was investigated. Our findings
provide new insights into the function of Ras GTPase in cellulolytic filamentous fungi and
provide potential targets for optimizing fungal strains for more efficient and cost-effective
biomass conversion in biorefineries.

2. Materials and Methods
2.1. Fungal Strains, Media, and Cultivation Conditions

Trichoderma reesei strain A2H, which exhibits a high cellulase production phenotype,
was obtained by ARTP (atmospheric and room temperature plasma) mutagenesis in our
laboratory [49]. This strain was preserved at the China General Microbiological Culture
Collection Center (CGMCC 21470) and was used as a parent strain in this study. T. reesei
strains were cultured at 30 ◦C for 7 days to obtain conidia. The growth medium consisted
of 2% glucose, 1.5% KH2PO4, 0.5% (NH4)2SO4, 0.06% CaCl2, and 0.06% MgSO4. For
the inoculum medium, 2% Avicel, 0.2% glucose, and 1.7% corn steep liquor were used.
Medium pH was adjusted to 4.5 with 2 M KOH. For fermentation, the conidia of T. reesei
were inoculated into 100 mL of medium consisting of 3.3% Avicel, 1.7% corn steep liquor,
0.6% KH2PO4, 0.5% (NH4)2SO4, 0.1% MgSO4, 0.25% glycerol, 0.25% CaCO3, and 0.1%
Tween-80 (pH 5.0, adjusted with 2 M KOH) in a 250-mL Erlenmeyer flask. Selection
medium (30 g/L malt extract, 182 g/L sorbitol, 20 g/L agarose) was used for screening
transformants after protoplast transformation.
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2.2. Plasmid Construction

The primers used in this study are listed in Table S1. For gene deletion, the 1-kb regions
upstream of the start codon of cdc42 (TRIREDRAFT_50335), cla4 (TRIREDRAFT_71315), ras1
(TRIREDRAFT_120150), ras2 (TRIREDRAFT_110960), spa2 (TRIREDRAFT_108829), rho1
(TRIREDRAFT_119871), and rac1 (TRIREDRAFT_47055) were amplified from the genome
of T. reesei using primers cdc42-up-F/R, cla4-up-F/R, ras1-up-F/R, ras2-up-F/R, spa2-up-
F/R, rho1-up-F/R, and rac1-up-F/R, respectively. And the 1-kb regions downstream of
the corresponding genes were amplified using primers cdc42-down-F/R, cla4-down-F/R,
ras1-down-F/R, ras2-down-F/R, spa2-down-F/R, rho1-down-F/R, and rac1-down-F/R,
respectively. The hygromycin B-resistance gene (hph) was amplified from plasmid pCamhy-
bgfp1 (GenBank accession no. KX223837) using primers hph-F/R. The upstream (5’) and
downstream (3’) region of each gene and hph fragment were assembled into the pEASY-
Blunt Simple cloning vector (TransGen Biotech, Beijing, China) using the ClonExpress
Ultra One Step Cloning Kit (Vazyme Biotech, Nanjing, China). The 5’-hph-3’ cassette
was amplified using primers M13F/M13R and used for protoplast transformation of the
A2H strain.

For overexpression of cdc42, the promoter region of tef1a (TRIREDRAFT_46958) (Ptef1)
and the terminator region of egl1 (cel7b, TRIREDRAFT_122081) (Tegl1) were amplified from
T. reesei genomic DNA with the primers Ptef-F/Ptef-R and Tegl1-F/R, respectively. The
open reading frame (ORF) of cdc42 was amplified from T. reesei cDNA using primers cdc42-
F/cdc42-R. The 2A peptide-coding sequence and the enhanced green fluorescent protein
(eGFP) gene were amplified from the plasmid Ptef1-MhGlaA-9 × His-2A-GFP-TtrpC [50]
using primers 2A-F/eGFP-R. These fragments were then assembled into the pEASY-Blunt
Simple cloning vector. The Ptef1-cdc42-2A-eGFP-Tegl1 cassette was amplified with primers
Ptef-F/Tegl1-R and used for protoplast transformation of the A2H strain.

2.3. PEG-Mediated Transformation of T. reesei

Conidia of T. reesei were harvested and inoculated into 100 mL of growth medium.
After incubation at 28 ◦C with shaking (180 rpm) for 18 h, mycelia were harvested and
used for preparing the protoplasts. Protoplasts of T. reesei were prepared as previously
described [51]. The transformed protoplasts were either grown for 3–4 days on selection
medium at 28 ◦C, with selection for hph resistance using hygromycin B (50 µg/mL), or they
were screened by flow cytometry analysis.

2.4. Screening of Transformants by Flow Cytometry Analysis

The transformed protoplasts were grown overnight in 20 mL liquid growth medium
supplemented with 1 M sorbitol. The freshly regenerated hyphae were harvested, rinsed,
and suspended in 3 mL of 0.05% (w/v) Tween 80. After filtration through a 70 µm Cell
Strainer (Wuxi NEST Biotechnology Co., Ltd., Wuxi, China), hyphae were sorted using
a MoFlo™ XDP cell sorter (Beckman Coulter Inc., Brea, CA, USA). Fluorescence-based
screening was performed according to the manufacturer’s instructions. Single hyphae
with the brightest GFP signal were sorted into individual wells (each well contained
150 µL of growth medium) of 96-deep-well plates and incubated at 28 ◦C with shaking
(130 rpm) for 48 h. The transformants were then reexamined to pick up those with the
brightest GFP signal.

2.5. Growth Test

Approximate 1 × 106 spores of strains were inoculated on PDA and minimal medium
supplemented with soluble starch, sucrose, glucose, and Avicel. Photos were taken after
culture at 30 ◦C for 5 days.

2.6. Protein and Enzyme Assays

Extracellular proteins were determined by SDS-PAGE analysis. Protein concentrations
were estimated using a Pierce BCA Protein Assay Kit (Thermo Fisher Scientific, Waltham,
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MA, USA). FPase activity was measured as previously described [52]. The β-glucanase
activity of the culture supernatants was detected as previously described [53] using 1.0%
carboxymethylcellulose sodium (CMC-Na) as the substrate. One unit (U) of enzyme activity
was defined as the amount of enzyme that released 1 µmol of glucose per minute.

2.7. RNA Isolation and Quantitative Real-Time PCR

Fungal mycelia were harvested, washed, and frozen. They were then ground under
liquid nitrogen. Total RNA was isolated using an RNAprep Pure Plant Kit (TIANGEN
Biotech Co., Ltd., Beijing, China). The removal of genomic DNA was confirmed by reverse
transcription-PCR (RT-PCR). cDNA synthesis was performed using a TransScript® Uni
All-in-One First-Strand cDNA Synthesis SuperMix for qPCR (TransGen Biotech Co., Ltd.,
Beijing, China). Quantitative real-time PCR (qPCR) assays were performed as previously
described [54]. Primers used for qRT-PCR are listed in Table S1. Samples were analyzed
in three independent experiments. The relative expression levels of the target genes were
standardized against the levels of β-actin gene using the 2−∆∆CT method [55].

3. Results and Discussion
3.1. Deletion of cdc42 Leads to Growth Defect and Impaired Cellulase Production

Ras homology (RHO) GTPases are signaling proteins that play a critical role in various
biological functions, such as cell polar growth and cell morphogenesis. In filamentous fungi,
the activity of these enzymes is particularly important in controlling hyphal morphogenesis,
a crucial aspect of fungal development. The hyperproducing cellulase mutant T. reesei A2H
was obtained from the parent strain RUT C30 using diethyl sulfite (DES) mutagenesis in
our laboratory [49]. The expression of seven genes that have previously been reported to be
involved in the branching process (cla4, rho1, spa2, rac1, ras1, ras2, and cdc42) was analyzed.
Previous work suggested that the downregulation of these genes may contribute to the
highly branched hyphae in the DES-15 strain [54].

The expression levels of cla4, ras1, ras2, spa2, rho1, cdc42, and rac1 were significantly
decreased in the A2H strain compared to the parental RUT C30 strain. To investigate the role
of these genes in mycelial growth, each of these genes was deleted in the T. reesei A2H strain.
Compared to the parental A2H strain, all deletion strains exhibited smaller colony sizes
on the PDA plate (Figure 1A). These findings provide additional support for the essential
role of these genes in hyphal growth in ascomycetous fungi. Interestingly, the ∆cdc42
mutant exhibited a significant reduction in elongation rate and formed smaller but thicker
colonies compared to the other mutants (Figure 1A). In addition, the ∆cdc42 mutant showed
the most significant decrease in cellulase activity (Figure 1B). This suggests that Cdc42
may be involved not only in the regulation of mycelial morphology but also in cellulase
production. Cdc42 in Saccharomyces cerevisiae is essential for regulating and organizing the
actin cytoskeleton, which is required for directed plasma membrane and maintenance of
cell polarity [56]. Cdc42 in filamentous fungi played a similar function during isotropic
spreading and was restricted to the bud during the polar extension. However, mutations
in genes that maintain polarity often lead to a split mycelial tip in filamentous fungi, a
phenotype that has no analog in yeast. Among them, cdc42 is a key gene involved in the
establishment and maintenance of cell polarity. In this study, the knockout of cdc42 resulted
in a significant reduction in hyphal elongation, smaller colony size, and slower hyphal
growth. The delay and variation in spore polarization could be attributed to the crucial
role of cdc42 in establishing polarity, while other genes such as cla4, ras2, ras1, spa2, rho1,
and rac1 are involved in maintaining polarity.
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(A) Growth of the parent strain A2H and gene deletion mutants on PDA medium for 5 days at 30 ◦C.
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3.2. Cdc42 Function in Polarized Apical Growth and Branching

The hyphae of the ∆cdc42 mutant also appeared to be more linear and less branched
than those of the parent strain (Figure 1A). To further investigate the role of Cdc42, we
constructed a cdc42 overexpression cassette and introduced it into the T. reesei A2H strain.
To conveniently screen out the positive transformants, we designed a co-expression system
of Cdc42 and eGFP using the 2A peptide [57]. The 2A peptide is a self-cleaving peptide
that enables the simultaneous production of eGFP and Cdc42. The transformed protoplasts
with the highest GFP fluorescence were selected using a flow cytometer (Figure S1). One
of the transformants with the highest GFP signal after re-assessment was selected as a
cdc42-overexpressing strain (OCdc42). The OCdc42 strain grew better than the A2H strain
on PDA medium and on Avicel (Figure 2A). After 72 h of cultivation in a glucose-containing
medium, the hyphal branching of the parent strain and the OCdc42 strain were recorded.
The results showed that the OCdc42 strain exhibited a higher frequency of hyphal branching
(23–56 µm/tips) compared to the parent strain (73–114 µm/tips) (Figure 2B,C), leading to
an increased number of mycelial tips which may in turn promote enzyme production.
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Figure 2. Overexpression of cdc42 results in hyper branching. (A) Growth of A2H strain and OCdc42
strain on different medium. (B) Mycelial branching of A2H strain and OCdc42 strain. (C) The hyphal
growth unit (Lhgu, the ratio of total mycelial length to total number of hyphal tips) of the A2H strain
(blue) and OCdc42 strain (red). *** p < 0.001.

3.3. Enhanced Protein Secretion and Cellulase Genes Expression in OCdc42 Strain

Cellulase production is one of the most important cellular processes for T. reesei, as
this fungus is widely known for its exceptional capacity to produce significant amounts of
cellulases [58]. In this regard, the OCdc42 strain shows a significant increase in the secretion
of extracellular proteins by 50.2% (13.7 ± 0.4 g/L vs. 9.1 ± 0.7 g/L, p < 0.001) (Figure 3A,B),
along with a 20.9% increase in FPAase activity (5.2 ± 0.3 U/mL vs. 4.3 ± 0.1 U/mL,
p < 0.01) (Figure 3C), and a 39.1% increase in endoglucanase activity (46.1 ± 2.0 U/mL vs.
33.1± 1.7 U/mL, p < 0.001) (Figure 3D), compared to the control. These observations
strongly suggest that Cdc42 plays an important role in the production of cellulase.



Fermentation 2024, 10, 26 6 of 11

Fermentation 2024, 10, x  6 of 12 
 

 

3A,B), along with a 20.9% increase in FPAase activity (5.2 ± 0.3 U/mL vs. 4.3 ± 0.1 U/mL, p 
< 0.01) (Figure 3C), and a 39.1% increase in endoglucanase activity (46.1 ± 2.0 U/mL vs. 
33.1± 1.7 U/mL, p < 0.001) (Figure 3D), compared to the control. These observations 
strongly suggest that Cdc42 plays an important role in the production of cellulase. 

 
Figure 3. Overexpression of cdc42 results in elevated protein secretion. (A) SDS-PAGE of proteins 
secreted by the A2H strain and OCdc42 strain. (B) Extracellular protein concentration in culture 
supernatants of A2H and OCdc42 strains after 4 days of growth in 2% (w/v) Avicel medium. (C) 
Filter paper activity (FPA) in culture supernatants of A2H and OCdc42 strains. (D) Endoglucanase 
activity in culture supernatants of A2H and OCdc42 strains. ** p < 0.01; *** p < 0.001. 

Multiple transcription factors are responsible for the regulation of cellulase and xy-
lanase genes [58]. In cellulase-hyperproducing strains of T. reesei, the expression of tran-
scription factors and genes involved in cellulase production is usually upregulated, re-
sulting in high cellulase production [59]. For example, the transcript abundance of xyr1 
and cbh1 was significantly higher in the industrial cellulase-hyperproducing strain T. reesei 
CL847 than in its parent strain RUT C30 [60]. Consistent with the elevated cellulase pro-
duction (Figure 3), the expression levels of multiple cellulase genes, including cel7b 
(TRIREDRAFT_122081), cel3a (TRIREDRAFT_76672), cel3d (TRIREDRAFT_46816), cel3c 
(TRIREDRAFT_82227), cel1a (TRIREDRAFT_120749), cel45a (TRIREDRAFT_49976), cel12a 
(TRIREDRAFT_123232), cel61a (TRIREDRAFT_73643), gh31-1 (TRIREDRAFT_82235), and 
bxl1 (TRIREDRAFT_121127) in the OCdc42 strain, are significantly higher than that in the 
A2H strain (Figure 4). 

 
Figure 4. Expression levels of various cellulase genes in A2H and OCdc42 strains. 

Meanwhile, the proliferation of hyphal branches stimulates the synthesis of secreted 
proteins. Consequently, a notable increase in extracellular protein levels was observed in 
the cdc42-overexpressing strain (OCdc42). Notably, the OCdc42 strain exhibited a faster 
growth rate than its parent strain. Furthermore, the OCdc42 strain generated larger and 

Figure 3. Overexpression of cdc42 results in elevated protein secretion. (A) SDS-PAGE of pro-
teins secreted by the A2H strain and OCdc42 strain. (B) Extracellular protein concentration in
culture supernatants of A2H and OCdc42 strains after 4 days of growth in 2% (w/v) Avicel medium.
(C) Filter paper activity (FPA) in culture supernatants of A2H and OCdc42 strains. (D) Endoglucanase
activity in culture supernatants of A2H and OCdc42 strains. ** p < 0.01; *** p < 0.001.

Multiple transcription factors are responsible for the regulation of cellulase and xy-
lanase genes [58]. In cellulase-hyperproducing strains of T. reesei, the expression of transcrip-
tion factors and genes involved in cellulase production is usually upregulated, resulting in
high cellulase production [59]. For example, the transcript abundance of xyr1 and cbh1 was
significantly higher in the industrial cellulase-hyperproducing strain T. reesei CL847 than in
its parent strain RUT C30 [60]. Consistent with the elevated cellulase production (Figure 3),
the expression levels of multiple cellulase genes, including cel7b (TRIREDRAFT_122081),
cel3a (TRIREDRAFT_76672), cel3d (TRIREDRAFT_46816), cel3c (TRIREDRAFT_82227), cel1a
(TRIREDRAFT_120749), cel45a (TRIREDRAFT_49976), cel12a (TRIREDRAFT_123232), cel61a
(TRIREDRAFT_73643), gh31-1 (TRIREDRAFT_82235), and bxl1 (TRIREDRAFT_121127) in
the OCdc42 strain, are significantly higher than that in the A2H strain (Figure 4).
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Meanwhile, the proliferation of hyphal branches stimulates the synthesis of secreted
proteins. Consequently, a notable increase in extracellular protein levels was observed in
the cdc42-overexpressing strain (OCdc42). Notably, the OCdc42 strain exhibited a faster
growth rate than its parent strain. Furthermore, the OCdc42 strain generated larger and
more transparent circles on cellulose medium, indicating a notable advantage in enzyme
production. In addition, the major cellulase genes were significantly upregulated in the
OCdc42 strain, indicating its involvement in the regulation of cellulase gene expression.
The identification of the downstream components of the Cdc42 pathway in cellulase gene
expression will be a critical step in understanding the regulatory mechanisms involved in
cellulase production.
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3.4. Exoproteome Analysis of Secreted Proteins

SDS-PAGE analysis revealed a significant retention of certain bands in the OCdc42
strain compared to the A2H strain (Figure 3A). To investigate the differences in the secre-
tomes of the OCdc42 and A2H strains, we further delineated the proteome by identification
of extracellular proteins in the supernatants of 3-day Avicel cultures through LC-MS/MS
analysis. A total of 54 proteins were detected in the OCdc42 strain, whereas only 30 proteins
were identified in the A2H strain (Table S2). In the secretome analyses, 29 proteins were
common to both strains (Figure 5A), of which 24 proteins showed increased abundance in
the OCdc42 strain (Figure 5B, Table S2). Notably, 25 proteins were exclusively secreted by
the OCdc42 strain, including 1 cell wall protein, 23 CAZymes, and 1 superoxide dismutase.
The OCdc42 strain exhibits enhanced protein secretion, which aligns with its superior
growth on Avicel medium (Figure 2A) and increased enzymatic activity (Figure 3).
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These observed changes are likely to play a significant role in enhancing the protein
secretion capacity of the OCdc42 strain during submerged cultivation. It is widely accepted
that protein secretion by filamentous fungi occurs primarily at the young hyphal tips [61].
This result was consistent with previous studies showing that the process of branching
results in the emergence of more growing tips which are crucial for protein secretion [62].

3.5. Mechanism of Regulation of Morphogenesis of T. reesei via Rho GTPases

In addition, the expression levels of cla4, ras2, ras1, spa2, rho1, and rac1 are also upregu-
lated in the OCdc42 strain (Figure 6), indicating that Cdc42 is involved in multiple cellular
processes. This result was consistent with a previous study suggesting that in T. reesei, Ras1
or Ras2 may interact with Cdc42 to regulate the process of filamentous growth [63]. Ras2
signals via the Cdc42 cascade to regulate cell elongation and cell adhesion, ultimately con-
trolling the filamentous growth in S. cerevisiae [64]. By regulating the transcription level of
cdc42, it can influence the transcription level of other Rho GTPases such as Cla4, Ras2, Ras1,
Spa2, Rho1, and Rac1. The interaction between Cdc42 and other Rho GTPases in T. reesei
may be a mutual cross-linking relationship rather than a hierarchical upstream-downstream
response relationship.

Rho GTPases are crucial binary switches in signaling pathways that transmit signals
from the external environment to the nucleus, regulating cell proliferation, growth, and
differentiation in various eukaryotes, from humans to yeast [65]. The regulation of mor-
phogenesis through signaling pathways, such as cAMP signaling or MAP kinase signaling,
is of great interest. In the mutant with a deletion for TrRas2, it was observed that there was
no change in cAMP levels on cellulose or glucose, indicating that the effect of TrRas2 on
cellulase gene transcription was not dependent on the cAMP signaling pathway [63].

By studying S. cerevisiae as an analog, we identified homologs of the MAP kinase signal-
ing components involved in filamentous growth in the T. reesei genome, including TrSte20
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(TRIREDRAFT_104364), TrSte11 (TRIREDRAFT_4945), TrSte7 (TRIREDRAFT_75872), and
TrSte12 (TRIREDRAFT_36543). Interestingly, we observed a 3.6, 2.9, 5.3, and 4.8-fold tran-
scriptional upregulation of TrSte20, TrSte11, TrSte7, and TrSte12, respectively, in the OCdc42
strain compared to the parent strain A2H.

Fermentation 2024, 10, x  8 of 12 
 

 

 
Figure 6. Expression levels of various branching-related genes in A2H and OCdc42 strains. 

Rho GTPases are crucial binary switches in signaling pathways that transmit signals 
from the external environment to the nucleus, regulating cell proliferation, growth, and 
differentiation in various eukaryotes, from humans to yeast [65]. The regulation of mor-
phogenesis through signaling pathways, such as cAMP signaling or MAP kinase signal-
ing, is of great interest. In the mutant with a deletion for TrRas2, it was observed that there 
was no change in cAMP levels on cellulose or glucose, indicating that the effect of TrRas2 
on cellulase gene transcription was not dependent on the cAMP signaling pathway [63]. 

By studying S. cerevisiae as an analog, we identified homologs of the MAP kinase 
signaling components involved in filamentous growth in the T. reesei genome, including 
TrSte20 (TRIREDRAFT_104364), TrSte11 (TRIREDRAFT_4945), TrSte7 (TRIRE-
DRAFT_75872), and TrSte12 (TRIREDRAFT_36543). Interestingly, we observed a 3.6, 2.9, 
5.3, and 4.8-fold transcriptional upregulation of TrSte20, TrSte11, TrSte7, and TrSte12, re-
spectively, in the OCdc42 strain compared to the parent strain A2H. 

This suggests that the MAP kinase signaling pathway, rather than the cAMP signal-
ing pathway, mediated by Cdc42 and other Rho GTPases in T. reesei, plays a role in the 
modulation of cellulase gene expression by regulating the transcription of transcription 
regulators for cellulase gene expression. As a molecular switch, Cdc42 responds to extra-
cellular stimuli by transitioning from an inactive state (GDP-bound) to an active state 
(GTP-bound). This activation, in turn, regulates the polar growth of cells. Furthermore, 
Cdc42 positively regulates the MAPK pathway through positive feedback, thereby pro-
moting hyphal formation [66]. 

4. Conclusions 
Cellulase expression in filamentous fungi is a complex process in response to differ-

ent environmental signals, with still unknown transcriptional regulatory mechanisms. 
Identification of novel factors affecting cellulase production is essential for improving the 
efficiency and yield of cellulase enzymes in T. reesei. Our study demonstrates that modu-
lation of the Rho GTPase Cdc42 in T. reesei has a significant impact on both mycelial mor-
phology and cellulase production. Deletion of cdc42 resulted in impaired growth and re-
duced cellulase production, while overexpression of cdc42 led to hyperbranched myce-
lium and enhanced cellulase production. This improvement in cellulase production was 
accompanied by the upregulation of cellulase genes and Rho GTPase genes. Additionally, 
secretome analysis reveals an increased abundance and diversity of extracellular proteins 
in the cdc42-overexpressing strain. These findings provide valuable insights into the func-
tional role of Rho GTPases in T. reesei and present potential targets for engineering fungi 
to enhance the conversion of plant biomass in biorefineries. While this study has demon-
strated the effect of cdc42 overexpression on fungal characteristics, it is important to note 

Figure 6. Expression levels of various branching-related genes in A2H and OCdc42 strains.

This suggests that the MAP kinase signaling pathway, rather than the cAMP signaling
pathway, mediated by Cdc42 and other Rho GTPases in T. reesei, plays a role in the modula-
tion of cellulase gene expression by regulating the transcription of transcription regulators
for cellulase gene expression. As a molecular switch, Cdc42 responds to extracellular
stimuli by transitioning from an inactive state (GDP-bound) to an active state (GTP-bound).
This activation, in turn, regulates the polar growth of cells. Furthermore, Cdc42 posi-
tively regulates the MAPK pathway through positive feedback, thereby promoting hyphal
formation [66].

4. Conclusions

Cellulase expression in filamentous fungi is a complex process in response to different
environmental signals, with still unknown transcriptional regulatory mechanisms. Identifi-
cation of novel factors affecting cellulase production is essential for improving the efficiency
and yield of cellulase enzymes in T. reesei. Our study demonstrates that modulation of
the Rho GTPase Cdc42 in T. reesei has a significant impact on both mycelial morphology
and cellulase production. Deletion of cdc42 resulted in impaired growth and reduced
cellulase production, while overexpression of cdc42 led to hyperbranched mycelium and
enhanced cellulase production. This improvement in cellulase production was accompa-
nied by the upregulation of cellulase genes and Rho GTPase genes. Additionally, secretome
analysis reveals an increased abundance and diversity of extracellular proteins in the cdc42-
overexpressing strain. These findings provide valuable insights into the functional role of
Rho GTPases in T. reesei and present potential targets for engineering fungi to enhance the
conversion of plant biomass in biorefineries. While this study has demonstrated the effect
of cdc42 overexpression on fungal characteristics, it is important to note that the underlying
molecular processes and mechanisms have not been extensively explored. Future research
should aim to delve deeper into elucidating the precise molecular mechanisms by which
downstream factors of Cdc42 regulate fungal growth, hyphal branching, cellulase gene
expression, and protein production in T. reesei.
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