Dip Hopping Technique and Yeast Biotransformations in Craft Beer Productions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Raw Materials
2.3. Beer Production
2.4. Beer Characterisation Analysis
2.4.1. Sensory Analysis and Statistical Data Processing
2.4.2. Gas Chromatography Analysis and Statistical Data Processing
- -
- an autosampler (HTA modello HT2800T, Brescia (BS), Italy);
- -
- a gas chromatograph (GC 2030 Nexis Shimadzu Italia S.r.l., Milan, Italy) with a DB-WAX-MS column measuring 30 m by an internal diameter of 0.25 mm, with a 0.25-μm thick film;
- -
- a mass spectrometer (GCMS-QP2020 NX Shimadzu Italia S.r.l., Milan, Italy) comprising an electronic impact source and a quadrupole analyser.
- -
- isotherm of 5 min at 40 °C;
- -
- temperature increase from 40 °C to 250 °C with a 4 °C/minute ramp and a final isotherm of 15 min;
- -
- injector at 250 °C and helium as a carrier gas (0.9 mL/minute flow);
- -
- splitless-type injection for 3 min;
- -
- transfer line at 240 °C;
- -
- source at 200 °C.
3. Results and Discussion
3.1. Colour and Bitterness
3.2. Alcohol Content and Real Degree of Fermentation
3.3. Sensory Analysis
3.4. Gas Chromatography Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
compound | µg/L | ||||||||||||||||||||
terpens | code | RT | Kovats’ RI | A1a | A1b | A1c | A2a | A2b | A2c | A3a | A3b | A3c | B1a | B1b | B1c | B2a | B2b | B2c | B3a | B3b | B3c |
alpha-myrcene | t1 | 10.51 | 1148 | 0.01 | 0.02 | 0.02 | 0.01 | 0.01 | 0.00 | 0.01 | 0.03 | 0.02 | 0.10 | 0.17 | 0.12 | 0.24 | 0.14 | 0.13 | 0.03 | 0.03 | 0.02 |
alpha.-Phellandrene | t2 | 10.71 | 1154 | 0.16 | 0.21 | 0.14 | 0.09 | 0.12 | 0.10 | 0.14 | 0.25 | 0.22 | 0.26 | 0.35 | 0.34 | 0.47 | 0.32 | 0.33 | 0.24 | 0.26 | 0.21 |
beta.-Myrcene | t3 | 10.91 | 1159 | 10.87 | 14.73 | 11.93 | 7.67 | 10.33 | 9.42 | 9.76 | 15.01 | 12.82 | 62.97 | 91.13 | 68.95 | 105.16 | 79.69 | 83.74 | 23.06 | 20.74 | 10.60 |
D-Limonene | t4 | 12.05 | 1187 | 0.20 | 0.22 | 0.17 | 0.11 | 0.13 | 0.12 | 0.20 | 0.19 | 0.23 | 0.49 | 0.64 | 0.49 | 0.88 | 0.58 | 0.59 | 0.32 | 0.31 | 0.26 |
cis-beta-Ocimene | t5 | 14.32 | 1249 | 0.54 | 0.54 | 0.41 | 0.29 | 0.27 | 0.28 | 0.38 | 3.50 | 0.43 | 2.19 | 3.35 | 2.43 | 4.29 | 2.66 | 3.08 | 0.75 | 0.70 | 0.52 |
o-Cymene | t6 | 14.87 | 1264 | 7.55 | 8.26 | 7.45 | 5.07 | 5.14 | 5.23 | 9.43 | 8.11 | 9.11 | 8.04 | 7.93 | 8.26 | 9.40 | 8.15 | 8.18 | 9.67 | 8.62 | 7.69 |
delta-Carene | t7 | 15.33 | 1275 | 0.04 | 0.06 | 0.04 | 0.02 | 0.04 | 0.03 | 0.04 | 0.05 | 0.07 | 0.12 | 0.16 | 0.14 | 0.23 | 0.18 | 0.16 | 0.09 | 0.10 | 0.09 |
Caryophyllene | t9 | 25.78 | 1588 | 0.72 | 0.21 | 0.42 | 0.29 | 0.06 | 0.29 | 0.28 | 0.68 | 0.69 | 1.97 | 4.59 | 0.63 | 0.86 | 0.86 | 1.92 | 0.52 | 0.22 | 0.36 |
Humulene | t11 | 27.93 | 1662 | 1.16 | 1.56 | 0.70 | 0.63 | 0.84 | 0.65 | 0.65 | 1.12 | 1.32 | 3.77 | 7.50 | 3.33 | 4.01 | 2.71 | 3.12 | 0.94 | 0.76 | 0.93 |
gamma-Muurolene | t12 | 28.58 | 1683 | 0.22 | 0.22 | 0.10 | 0.09 | 0.11 | 0.07 | 0.19 | 0.20 | 0.23 | 0.48 | 0.77 | 0.40 | 0.43 | 0.29 | 0.30 | 0.26 | 0.17 | 0.14 |
alpha-Terpineol | t14 | 29.00 | 1697 | 0.30 | 0.33 | 0.22 | 0.17 | 0.18 | 0.16 | 0.24 | 0.21 | 0.36 | 0.39 | 0.43 | 0.35 | 0.52 | 0.45 | 0.46 | 0.44 | 0.43 | 0.40 |
Epizonarene | t15 | 29.24 | 1706 | 0.05 | 0.05 | 0.03 | 0.03 | 0.04 | 0.03 | 0.04 | 0.07 | 0.05 | 0.15 | 0.35 | 0.10 | 0.12 | 0.08 | 0.11 | 0.04 | 0.04 | 0.04 |
beta-Selinene | t16 | 29.38 | 1711 | 0.05 | 0.08 | 0.02 | 0.05 | 0.05 | 0.04 | 0.05 | 0.06 | 0.07 | 0.19 | 0.41 | 0.13 | 0.16 | 0.11 | 0.14 | 0.05 | 0.06 | 0.05 |
alpha-Selinene | t17 | 29.52 | 1716 | 0.02 | 0.04 | 0.01 | 0.01 | 0.02 | 0.01 | 0.02 | 0.02 | 0.03 | 0.08 | 0.16 | 0.07 | 0.07 | 0.01 | 0.01 | 0.02 | 0.01 | 0.02 |
alpha-Muurolene | t18 | 29.55 | 1717 | 0.04 | 0.06 | 0.02 | 0.03 | 0.03 | 0.02 | 0.03 | 0.05 | 0.05 | 0.13 | 0.27 | 0.11 | 0.11 | 0.08 | 0.10 | 0.03 | 0.03 | 0.04 |
delta-Cadinene | t20 | 30.53 | 1753 | 0.35 | 0.45 | 0.19 | 0.21 | 0.28 | 0.22 | 0.26 | 0.42 | 0.45 | 1.27 | 2.24 | 1.13 | 0.95 | 0.68 | 0.87 | 0.30 | 0.25 | 0.29 |
alpha-Cadinene | t23 | 31.54 | 1787 | 0.02 | 0.03 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 | 0.06 | 0.11 | 0.05 | 0.05 | 0.04 | 0.04 | 0.02 | 0.02 | 0.02 |
trans-Calamenene | t25 | 32.52 | 1825 | 0.04 | 0.04 | 0.02 | 0.03 | 0.03 | 0.02 | 0.03 | 0.04 | 0.05 | 0.09 | 0.14 | 0.08 | 0.10 | 0.07 | 0.09 | 0.04 | 0.05 | 0.04 |
compound | µg/L | ||||||||||||||||||||
terpenols | code | RT | Kovats’ RI | A1a | A1b | A1c | A2a | A2b | A2c | A3a | A3b | A3c | B1a | B1b | B1c | B2a | B2b | B2c | B3a | B3b | B3c |
Terpinen-4-ol | t10 a | 26.19 | 1601 | 1.43 | 1.33 | 1.48 | 1.77 | 1.80 | 1.90 | 1.18 | 0.91 | 1.80 | 2.25 | 1.43 | 1.75 | 1.32 | 2.16 | 2.36 | 2.10 | 1.56 | 2.46 |
Methyl geranate | t13 e | 28.84 | 1692 | 14.49 | 16.69 | 12.26 | 14.57 | 16.46 | 14.73 | 12.96 | 11.80 | 15.79 | 33.07 | 31.76 | 30.57 | 30.60 | 32.11 | 33.54 | 27.53 | 30.06 | 23.38 |
NI * | t19 a | 30.30 | 1745 | 1.01 | 1.10 | 1.02 | 0.99 | 1.02 | 1.00 | 0.84 | 1.01 | 1.20 | 1.50 | 1.24 | 1.77 | 2.42 | 2.08 | 2.41 | 1.78 | 2.48 | 1.62 |
alfa-Citronellol | t21 a | 30.81 | 1763 | 0.96 | 1.14 | 0.97 | 0.81 | 0.93 | 0.88 | 1.19 | 1.12 | 1.38 | 1.42 | 1.34 | 1.34 | 1.28 | 1.37 | 1.28 | 0.77 | 0.86 | 0.79 |
beta-Citronellol | t22 a | 31.03 | 1767 | 33.34 | 38.01 | 27.58 | 24.54 | 29.69 | 25.93 | 33.31 | 29.25 | 41.13 | 46.22 | 44.35 | 42.48 | 40.98 | 44.59 | 45.53 | 25.46 | 29.39 | 26.08 |
Nerol | t24 a | 31.94 | 1803 | 1.45 | 1.62 | 1.14 | 1.36 | 1.44 | 1.38 | 1.07 | 1.16 | 1.69 | 2.41 | 2.12 | 2.35 | 2.42 | 2.40 | 2.51 | 2.01 | 2.42 | 2.20 |
Geraniol | t26 a | 33.21 | 1852 | 3.94 | 4.47 | 2.93 | 2.42 | 2.77 | 3.17 | 2.03 | 1.85 | 3.00 | 7.91 | 7.83 | 7.94 | 5.58 | 6.94 | 7.14 | 7.65 | 8.79 | 7.47 |
Linalool | t8 a | 24.62 | 1551 | 75.57 | 79.81 | 66.00 | 70.51 | 72.68 | 70.87 | 63.20 | 59.18 | 75.99 | 131.71 | 128.48 | 130.01 | 127.56 | 137.46 | 139.72 | 124.34 | 130.94 | 118.03 |
β-Damascenone | nor | 32.32 | 1817 | 0.83 | 0.83 | 0.66 | 0.45 | 0.83 | 0.67 | 0.56 | 0.56 | 1.07 | 0.88 | 0.84 | 0.76 | 0.87 | 0.86 | 0.84 | 1.27 | 1.36 | 1.68 |
compound | µg/L | ||||||||||||||||||||
acids | code | RT | Kovats’ RI | A1a | A1b | A1c | A2a | A2b | A2c | A3a | A3b | A3c | B1a | B1b | B1c | B2a | B2b | B2c | B3a | B3b | B3c |
Acetic acid | ac1 | 21.38 | 1450 | 7.94 | 8.40 | 8.25 | 25.65 | 25.24 | 28.43 | 45.24 | 42.68 | 38.92 | 6.47 | 5.34 | 6.92 | 14.94 | 13.69 | 13.10 | 3.95 | 10.17 | 7.23 |
Propanoic acid, 2-methyl- | ac2 | 25.16 | 1569 | 16.41 | 17.86 | 18.05 | 16.78 | 17.39 | 17.60 | 19.06 | 20.86 | 19.33 | 23.71 | 25.89 | 24.34 | 24.63 | 24.46 | 24.84 | 21.82 | 20.54 | 19.07 |
Butanoic acid | ac3 | 26.97 | 1628 | 2.54 | 2.72 | 2.60 | 3.18 | 2.84 | 3.12 | 3.76 | 2.91 | 2.43 | 2.88 | 2.42 | 2.30 | 2.39 | 2.14 | 2.12 | 4.73 | 2.20 | 2.01 |
Butanoic acid, 2 and 3-methyl- | ac4 | 28.21 | 1671 | 19.26 | 19.02 | 18.57 | 18.98 | 18.61 | 19.16 | 20.94 | 20.26 | 19.92 | 19.40 | 19.68 | 19.50 | 22.00 | 21.66 | 21.78 | 19.87 | 19.28 | 19.14 |
Heptanoic acid | ac5 | 35.89 | 1954 | 2.75 | 3.04 | 2.08 | 2.61 | 2.72 | 2.46 | 2.61 | 2.14 | 2.42 | 3.58 | 3.36 | 3.29 | 3.70 | 4.45 | 4.46 | 4.33 | 4.10 | 3.86 |
6-Methylheptanoic acid | ac6 | 37.36 | 2012 | 2.34 | 2.63 | 1.94 | 2.07 | 2.03 | 1.72 | 2.20 | 1.63 | 2.56 | 3.72 | 3.58 | 3.28 | 3.32 | 3.80 | 3.66 | 4.04 | 3.54 | 3.57 |
Octanoic acid | ac7 | 38.55 | 2062 | 78.59 | 87.64 | 62.71 | 98.33 | 85.90 | 88.69 | 66.67 | 55.50 | 86.15 | 57.26 | 52.37 | 53.43 | 43.54 | 53.83 | 51.12 | 62.73 | 56.64 | 62.62 |
Nonanoic acid | ac8 | 41.09 | 2169 | 1.39 | 2.14 | 1.30 | 1.64 | 1.52 | 1.51 | 1.95 | 1.21 | 2.30 | 2.52 | 1.98 | 1.93 | 1.93 | 2.60 | 2.38 | 4.04 | 2.23 | 1.90 |
n-Decanoic acid | ac9 | 43.51 | 2276 | 8.10 | 7.82 | 4.40 | 8.14 | 6.03 | 5.84 | 4.68 | 4.48 | 6.67 | 3.80 | 3.31 | 3.86 | 2.28 | 3.27 | 2.76 | 4.79 | 1.94 | 6.68 |
Dodecanoic acid | ac10 | 48.06 | 2489 | 5.73 | 6.32 | 2.84 | 4.77 | 4.14 | 4.47 | 3.93 | 3.65 | 5.78 | 6.38 | 4.04 | 5.18 | 3.77 | 5.54 | 5.19 | 4.63 | 5.53 | 6.70 |
alchools | |||||||||||||||||||||
1-Propanol, 2-methyl- | al1 | 9.07 | 1107 | 153.62 | 146.48 | 168.78 | 131.12 | 133.70 | 137.30 | 192.85 | 193.98 | 172.15 | 168.87 | 176.91 | 178.48 | 197.13 | 189.57 | 206.36 | 166.62 | 157.37 | 136.87 |
1-Butanol, 3-methyl- | al2 | 13.24 | 1218 | 1337.41 | 1330.01 | 1537.25 | 1304.30 | 1306.73 | 1352.17 | 1478.33 | 1523.26 | 1327.35 | 1308.13 | 1339.27 | 1450.38 | 1488.33 | 1410.87 | 1486.49 | 1399.52 | 1337.38 | 1251.24 |
1-Hexanol | al3 | 18.32 | 1360 | 9.88 | 9.83 | 10.46 | 13.07 | 3.00 | 13.80 | 9.98 | 10.27 | 12.10 | 13.78 | 13.58 | 14.71 | 15.46 | 22.14 | 14.98 | 15.15 | 16.04 | 20.50 |
1-Octen-3-ol | al4 | 21.56 | 1455 | 3.96 | 3.88 | 3.15 | 4.21 | 4.22 | 4.11 | 2.94 | 3.16 | 3.07 | 14.37 | 11.86 | 13.74 | 7.64 | 7.14 | 6.95 | 9.43 | 9.85 | 9.58 |
2-Nonanol | al5 | 23.83 | 1525 | 74.67 | 77.99 | 67.64 | 62.31 | 67.32 | 64.42 | 70.91 | 66.88 | 77.41 | 151.15 | 146.35 | 146.06 | 146.42 | 156.37 | 156.72 | 150.81 | 152.14 | 142.18 |
1-Octanol | al6 | 24.99 | 1563 | 15.41 | 15.73 | 13.46 | 19.08 | 18.44 | 18.67 | 12.02 | 11.80 | 14.52 | 13.63 | 13.38 | 14.72 | 13.25 | 14.88 | 14.01 | 16.22 | 16.99 | 15.26 |
NI * | al7 | 25.52 | 1580 | 7.25 | 7.39 | 6.88 | 4.63 | 5.21 | 4.47 | 6.31 | 5.74 | 8.07 | 15.31 | 14.46 | 14.54 | 15.54 | 16.63 | 17.16 | 15.86 | 14.55 | 13.13 |
compound | µg/L | ||||||||||||||||||||
acohols | code | RT | Kovats’ RI | A1a | A1b | A1c | A2a | A2b | A2c | A3a | A3b | A3c | B1a | B1b | B1c | B2a | B2b | B2c | B3a | B3b | B3c |
2-Decanol | al8 | 26.87 | 1625 | 24.21 | 26.22 | 21.42 | 20.40 | 23.90 | 21.65 | 22.49 | 21.17 | 27.09 | 57.45 | 53.37 | 54.27 | 55.05 | 61.82 | 63.16 | 56.40 | 63.76 | 51.42 |
NI* | al9 | 28.45 | 1679 | 5.67 | 6.23 | 4.95 | 7.65 | 8.15 | 7.89 | 5.19 | 4.73 | 6.26 | 10.29 | 11.04 | 11.71 | 11.79 | 13.56 | 11.93 | 10.59 | 12.33 | 7.81 |
2-Undecanol | al10 | 29.76 | 1725 | 48.01 | 53.43 | 42.01 | 42.86 | 52.67 | 45.77 | 42.36 | 39.40 | 53.54 | 105.74 | 95.38 | 100.92 | 92.64 | 106.15 | 111.15 | 80.48 | 93.99 | 73.42 |
1-Decanol | al11 | 30.94 | 1768 | 4.88 | 5.27 | 4.36 | 3.50 | 3.87 | 3.47 | 2.96 | 3.30 | 4.02 | 3.37 | 3.36 | 3.70 | 2.44 | 3.16 | 2.56 | 3.24 | 3.51 | 3.35 |
Phenylethyl Alcohol | al12 | 34.79 | 1911 | 565.63 | 591.33 | 479.41 | 482.50 | 484.34 | 480.56 | 525.85 | 478.63 | 610.55 | 570.14 | 533.40 | 547.36 | 514.58 | 564.45 | 556.60 | 493.89 | 523.48 | 501.28 |
ketones | |||||||||||||||||||||
2-nonanone | k1 | 19.27 | 1386 | 12.96 | 14.12 | 12.17 | 15.53 | 17.33 | 15.35 | 16.44 | 15.31 | 18.16 | 55.04 | 56.56 | 54.29 | 44.05 | 46.22 | 47.09 | 36.33 | 52.67 | 33.46 |
NI * | k2 | 21.26 | 1446 | 0.77 | 0.82 | 0.70 | 0.81 | 1.06 | 0.88 | 1.05 | 0.92 | 1.13 | 7.61 | 7.50 | 7.47 | 5.65 | 6.05 | 6.26 | 3.93 | 6.90 | 3.33 |
2-Decanone | k3 | 22.76 | 1490 | 3.26 | 3.81 | 3.12 | 3.75 | 4.60 | 3.88 | 3.85 | 3.54 | 4.70 | 18.15 | 18.66 | 17.63 | 13.62 | 14.23 | 14.80 | 10.75 | 18.59 | 8.79 |
2-Undecanone | k4 | 26.03 | 1596 | 6.73 | 7.62 | 5.53 | 6.96 | 9.63 | 7.10 | 6.14 | 5.82 | 7.77 | 46.76 | 44.19 | 43.41 | 28.89 | 29.72 | 32.29 | 14.81 | 30.57 | 9.77 |
2-Dodecanone | k5 | 29.13 | 1702 | 0.46 | 0.54 | 0.40 | 0.46 | 0.57 | 0.44 | 0.31 | 0.35 | 0.46 | 2.96 | 2.77 | 2.72 | 1.96 | 2.02 | 2.30 | 0.62 | 1.30 | 0.49 |
2-Tridecanone | k6 | 32.06 | 1807 | 1.15 | 1.46 | 0.74 | 1.17 | 1.47 | 1.15 | 0.69 | 0.96 | 1.49 | 8.26 | 7.77 | 7.23 | 4.85 | 5.06 | 5.82 | 1.22 | 2.52 | 1.06 |
NI * | NI1 | 29.94 | 1732 | 19.42 | 22.31 | 16.96 | 17.13 | 20.21 | 17.60 | 18.29 | 17.35 | 23.15 | 34.64 | 32.27 | 33.72 | 31.66 | 34.13 | 35.41 | 31.68 | 34.49 | 31.44 |
NI * | NI2 | 30.41 | 1749 | 10.06 | 11.14 | 8.11 | 8.78 | 10.19 | 8.67 | 8.60 | 7.94 | 11.50 | 25.24 | 23.62 | 24.23 | 21.36 | 24.87 | 26.02 | 21.76 | 25.63 | 20.50 |
compound | µg/L | ||||||||||||||||||||
esters | code | RT | Kovats’ RI | A1a | A1b | A1c | A2a | A2b | A2c | A3a | A3b | A3c | B1a | B1b | B1c | B2a | B2b | B2c | B3a | B3b | B3c |
Ethyl Acetate | ea1 | 3.17 | 892 | 511.10 | 475.40 | 670.31 | 602.39 | 606.76 | 627.25 | 543.26 | 631.76 | 467.32 | 356.62 | 404.17 | 412.10 | 481.62 | 367.33 | 382.80 | 464.22 | 402.07 | 365.26 |
Isobutyl acetate | ea2 | 5.87 | 1016 | 28.11 | 50.74 | 55.04 | 120.94 | 97.94 | 53.93 | 46.27 | 67.38 | 56.28 | 22.15 | 28.09 | 62.03 | 54.95 | 35.67 | 30.95 | 98.81 | 96.24 | 35.36 |
1-Butanol, 3-methyl-, acetate | ea3 | 9.55 | 1121 | 1430.35 | 1288.18 | 1907.11 | 3158.90 | 2678.80 | 2944.36 | 1846.56 | 1992.10 | 1396.39 | 1046.35 | 1160.98 | 1103.65 | 1096.36 | 867.23 | 834.47 | 1316.70 | 1091.03 | 964.12 |
Acetic acid, 2-phenylethyl ester | ea4 | 32.16 | 1811 | 100.51 | 109.14 | 97.74 | 260.72 | 216.81 | 226.37 | 113.58 | 106.19 | 134.87 | 89.66 | 93.78 | 87.52 | 82.62 | 85.10 | 75.99 | 104.25 | 91.44 | 89.64 |
Butanoic acid, ethyl ester | ee1 | 6.61 | 1040 | 63.34 | 60.08 | 83.08 | 94.79 | 84.11 | 92.43 | 65.97 | 76.00 | 51.87 | 50.07 | 56.60 | 56.31 | 62.91 | 48.51 | 46.79 | 58.03 | 48.20 | 48.19 |
Butanoic acid, 2-methyl-, ethyl ester | ee2 | 7.14 | 1056 | 12.90 | 11.87 | 16.95 | 9.68 | 10.82 | 10.52 | 17.66 | 17.81 | 12.82 | 15.61 | 16.76 | 18.70 | 25.48 | 17.75 | 19.46 | 19.91 | 18.20 | 16.26 |
Hexanoic acid, ethyl ester | ee3 | 13.84 | 1236 | 824.66 | 829.95 | 1011.39 | 1355.32 | 1191.17 | 1355.99 | 935.07 | 983.43 | 833.44 | 697.17 | 811.06 | 806.96 | 894.99 | 750.14 | 676.32 | 795.37 | 691.95 | 746.69 |
Ethyl 5-methylhexanoate | ee4 | 15.77 | 1286 | 45.42 | 36.83 | 42.92 | 26.58 | 30.59 | 32.89 | 39.57 | 35.41 | 35.17 | 52.32 | 61.81 | 75.04 | 76.56 | 66.62 | 60.86 | 60.80 | 60.05 | 56.28 |
Heptanoic acid, ethyl ester | ee5 | 17.43 | 1334 | 196.54 | 190.14 | 230.16 | 180.45 | 222.04 | 190.61 | 251.39 | 285.53 | 213.92 | 313.61 | 358.38 | 315.43 | 452.48 | 341.42 | 359.31 | 310.47 | 339.47 | 293.30 |
NI * | ee6 | 19.28 | 1386 | 75.65 | 75.63 | 89.55 | 65.42 | 77.40 | 70.93 | 83.03 | 95.41 | 77.48 | 122.69 | 143.97 | 129.73 | 178.98 | 141.07 | 135.18 | 141.56 | 123.41 | 116.19 |
Octanoic acid, ethyl ester | ee7 | 21.06 | 1440 | 4044.21 | 4105.60 | 4832.94 | 4876.89 | 5016.11 | 4852.70 | 4203.34 | 4715.32 | 4060.80 | 2940.21 | 3386.47 | 3159.01 | 3657.51 | 2994.13 | 2834.60 | 3631.97 | 2860.81 | 3141.57 |
Nonanoic acid, ethyl ester | ee8 | 24.18 | 1537 | 37.80 | 62.18 | 68.00 | 60.52 | 61.65 | 53.13 | 62.82 | 43.34 | 77.41 | 50.43 | 56.77 | 52.97 | 70.72 | 76.79 | 69.31 | 90.35 | 50.93 | 53.71 |
Decanoic acid, ethyl ester | ee9 | 27.30 | 1640 | 688.25 | 638.26 | 683.32 | 712.07 | 658.82 | 604.31 | 517.59 | 640.50 | 553.77 | 341.49 | 407.35 | 396.71 | 337.25 | 309.06 | 291.41 | 405.15 | 173.54 | 544.58 |
compound | µg/L | ||||||||||||||||||||
esters | code | RT | Kovats’ RI | A1a | A1b | A1c | A2a | A2b | A2c | A3a | A3b | A3c | B1a | B1b | B1c | B2a | B2b | B2c | B3a | B3b | B3c |
Ethyl trans-4-decenoate | ee10 | 28.08 | 1667 | 78.62 | 81.79 | 80.50 | 58.36 | 92.34 | 67.03 | 72.88 | 81.33 | 84.97 | 144.72 | 160.06 | 153.69 | 178.34 | 147.02 | 147.64 | 150.12 | 156.36 | 127.17 |
Ethyl 9-decenoate | ee11 | 28.81 | 1691 | 56.28 | 91.96 | 67.75 | 69.43 | 139.08 | 85.07 | 125.24 | 70.93 | 147.66 | 78.88 | 88.20 | 46.99 | 68.06 | 66.78 | 56.90 | 196.21 | 118.03 | 105.12 |
Propanoic acid, 2-methyl-, propyl ester | ae1 | 7.19 | 1057 | 18.13 | 18.91 | 26.04 | 15.98 | 20.70 | 18.27 | 22.40 | 23.29 | 16.34 | 41.58 | 45.64 | 45.09 | 42.83 | 32.07 | 30.24 | 36.97 | 36.35 | 29.02 |
Propanoic acid, 2-methyl-, 2-methylpropyl ester | ae2 | 8.40 | 1089 | 244.98 | 237.56 | 341.72 | 247.21 | 287.95 | 266.99 | 292.61 | 325.06 | 224.65 | 674.12 | 805.10 | 747.80 | 789.99 | 612.36 | 605.80 | 688.28 | 661.96 | 542.11 |
Propyl 2-methylbutyrate | ae3 | 10.08 | 1136 | 4.95 | 5.13 | 5.67 | 4.82 | 5.79 | 5.91 | 6.78 | 7.09 | 5.15 | 13.49 | 14.97 | 13.76 | 15.10 | 11.74 | 11.64 | 14.69 | 13.16 | 10.61 |
Butanoic acid, 2-methyl-, 2-methylpropyl ester | ae4 | 11.55 | 1175 | 27.44 | 25.28 | 34.89 | 28.51 | 34.12 | 32.35 | 33.58 | 36.51 | 27.49 | 87.55 | 414.30 | 89.28 | 103.07 | 83.56 | 79.88 | 103.10 | 105.18 | 84.77 |
Isobutyl isovalerate | ae5 | 12.14 | 1189 | 6.72 | 6.39 | 8.36 | 6.81 | 7.97 | 7.66 | 9.44 | 8.64 | 6.36 | 26.50 | 27.10 | 22.89 | 28.04 | 22.28 | 20.74 | 21.97 | 21.08 | 16.33 |
Propanoic acid, 2-methyl-, 2 e 3-methylbutyl ester | ae6 | 12.33 | 1193 | 314.12 | 304.25 | 385.93 | 386.68 | 448.85 | 425.12 | 412.41 | 451.83 | 335.77 | 1436.15 | 1714.00 | 1572.66 | 1382.18 | 1135.34 | 1166.74 | 1196.66 | 1210.92 | 907.93 |
Butanoic acid, 2-methyl-, 2-methylbutyl ester | ae7 | 15.48 | 1279 | 27.46 | 27.07 | 31.34 | 25.02 | 31.52 | 29.92 | 29.24 | 31.77 | 27.86 | 76.86 | 91.55 | 91.49 | 116.58 | 94.84 | 91.17 | 79.33 | 80.37 | 58.12 |
Butanoic acid, 3-methyl-, 2-methylbutyl ester | ae8 | 16.08 | 1294 | 14.79 | 15.30 | 17.35 | 15.58 | 20.18 | 19.26 | 15.81 | 17.22 | 16.22 | 55.43 | 62.42 | 64.57 | 73.41 | 66.99 | 57.59 | 48.70 | 50.58 | 39.26 |
NI * | ae9 | 16.78 | 1314 | 51.87 | 44.77 | 64.95 | 58.74 | 53.72 | 52.12 | 67.21 | 72.01 | 48.84 | 117.34 | 140.56 | 123.54 | 118.63 | 97.88 | 111.49 | 110.55 | 98.95 | 88.23 |
Hexanoic acid, 4-methylene-, methyl ester | ae10 | 17.34 | 1331 | 62.29 | 60.22 | 71.35 | 55.19 | 64.72 | 59.40 | 64.11 | 67.63 | 60.65 | 127.62 | 149.39 | 144.64 | 162.23 | 142.07 | 127.27 | 148.06 | 142.81 | 129.93 |
References
- Lam, K.C.; Foster, I.I.R.T.; Deinzer, M. Aging of hops and their contribution to beer flavor. J. Agric. Food Chem. 1986, 34, 763–770. [Google Scholar] [CrossRef]
- Goldstein, H.; Ting, P.; Navarro, A.; Ryder, D. Water-soluble hop flavor precursors and their role in beer flavor. In Proceedings of the 27th Congress of the European Brewery Convention, Cannes, France, 20 September 1999; IRL Press: Oxford, UK, 1999; pp. 53–62. [Google Scholar]
- Kishimoto, T.; Wanikawa, A.; Kagami, N.; Kawatsura, K. Analysis of hop derived terpenoids in beer and evaluation of their behavior using the stir bar-sorptive extraction method with GC–MS. J. Agric. Food Chem. 2005, 53, 4701–4707. [Google Scholar] [CrossRef] [PubMed]
- Steinhaus, M.; Schieberle, P. Transfer of the potent hop odorants linalool, geraniol and 4-methyl-4-sulfanyl-2-pentanone from hops into beer. In Proceedings of the 31st European Brewery Convention Congress, Venice, Italy, 6–10 May 2007; Fachverlag Hans Carl: Nürnberg, Germany, 2007; pp. 1004–1011. [Google Scholar]
- Steinhaus, M.; Wilhelm, W.; Schieberle, P. Comparison of the most odor-active volatiles in different hop varieties by application of a comparative aroma extract dilution analysis. Eur. Food Res. Technol. 2007, 226, 45–55. [Google Scholar] [CrossRef]
- Van Opstaele, F.; De Rouck, G.; De Clippeleer, J.; Aerts, G.; De Cooman, L. Analytical and sensory assessment of hoppy aroma and bitterness of conventionally hopped and advanced hopped pilsner beers. J. Inst. Brew. 2010, 116, 445–458. [Google Scholar] [CrossRef]
- Scott, J. The new IPA. In A Scientific Guide to Hop Aroma and Flavour; Roth, B., Ed.; Scott Janish: Columbia, MD, USA, 2019. [Google Scholar]
- Sarry, J.E.; Gunata, Z. Plant and microbial glycoside hydrolases: Volatile release from glycosidic aroma precursors. Food Chem. 2004, 87, 509–521. [Google Scholar] [CrossRef]
- Daenen, L.; Saison, D.; Sterckx, F.; Delvaux, F.R.; Verachtert, H.; Derdelinckx, G. Screening and evaluation of the glucoside hydrolase activity in Saccharomyces and Brettanomyces brewing yeasts. J. Appl. Microbiol. 2008, 104, 478–488. [Google Scholar] [CrossRef]
- Gonde, P.; Blondin, B.; Leclerc, M.; Ratomahenina, R.; Arnaud, A.; Galzy, P. Fermentation of cellodextrins by different yeast strains. Appl. Environ. Microbiol. 1984, 48, 265–269. [Google Scholar] [CrossRef]
- Verachtert, H.; Dawoud, E. Microbiology of lambic- type beers. J. Appl. Bacteriol. 1984, 57, R11–R12. [Google Scholar]
- Spindler, D.D.; Wyman, C.E.; Grohmann, K.; Philippidis, G.P. Evaluation of the cellobiose-fermenting yeast Brettanomyces custersii in the simultaneous saccharification and fermentation of cellulose. Biotechnol. Lett. 1992, 14, 403–407. [Google Scholar] [CrossRef]
- Biendl, M.; Kollmannsberger, H.; Nitz, S. Occurrence of glycosidically bound flavor compounds in different hop products. In Proceedings of the 29th Congress of the European Brewery Convention, Dublin, Ireland, 17–22 May 2003; CD-ROM, Contribution 21. Fachverlag Hans Carl: Nürnberg, Germany, 2003; pp. 1–6. [Google Scholar]
- Sharp, D.C.; Steensels, J.; Shellhammer, T.H. The effect of hopping regime, cultivar and β-glucosidase activity on monoterpene alcohol concentrations in wort and beer. J. Inst. Brew. 2017, 123, 185–191. [Google Scholar] [CrossRef]
- Colomer, M.S.; Funch, B.; Solodovnikova, N.; Hobley, T.J.; Förster, J. Biotransformation of hop derived compounds by Brettanomyces yeast strains. J. Inst. Brew. 2020, 126, 280–288. [Google Scholar] [CrossRef]
- Lafontaine, S.; Caffrey, A.; Dailey, J.; Varnum, S.; Hale, A.; Eichler, B.; Dennenlöhr, J.; Schubert, C.; Knoke, L.; Lerno, L.; et al. Evaluation of variety, maturity, and farm on the concentrations of monoterpene diglycosides and hop volatile/nonvolatile composition in five humulus lupulus cultivars. J. Agric. Food Chem. 2021, 69, 4356–4370. [Google Scholar] [CrossRef] [PubMed]
- Nebreda, A.R.; Villa, T.G.; Villanueva, J.R.; Delrey, F. Cloning of genes related to exo-beta-glucanase production in Saccharomyces cerevisiae–characterization of an exo-beta-glucanase structural gene. Gene 1986, 47, 245–259. [Google Scholar] [CrossRef] [PubMed]
- King, A.J.; Dickinson, J.R. Biotransformation of hop aroma terpenoids by ale and lager yeasts. FEMS Yeast Res. 2003, 3, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Nance, M.; Setzer, W. Volatile components of aroma hops (Humulus lupulus L.) commonly used in beer brewing. J. Brew. Distill. 2011, 2, 16–22. [Google Scholar]
- Praet, T.; Van Opstaele, F.; Steenackers, B.; De Brabanter, J.; De Vos, D.; Aerts, G.; De Cooman, L. Changes in the hop-derived volatile profile upon lab scale boiling. Food Res. Int. 2015, 75, 1–10. [Google Scholar] [CrossRef]
- Praet, T.; Van Opstaele, F. Flavor Activity of Sesquiterpene Oxidation Products, Formed Upon Lab-Scale Boiling of a Hop Essential Oil-Derived Sesquiterpene Hydrocarbon Fraction (cv. Saaz). J. Am. Soc. Brew. Chem. 2016, 74, 65–76. [Google Scholar] [CrossRef]
- Praet, T.; Van Opstaele, F.; De Causmaecker, B.; Aerts, G.; De Cooman, L. Heat-Induced Changes in Composition of Varietal Hop Essential Oils via Wort Boiling on a Laboratory Scale. J. Am. Soc. Brew. Chem. 2016, 74, 212–223. [Google Scholar] [CrossRef]
- Dresel, M.; Praet, T.; Van Opstaele, F.; Van Holle, A.; Van Nieuwenhove, J.; Naudts, D.; De Keukeleire, D.; Aerts, G.; De Cooman, L. From Wort to Beer: The Evolution of Hoppy Aroma of Single Hop Beers produced by Early Kettle Hopping, Late Kettle Hopping and Dry Hopping. In Proceedings of the 34th Congress European Brewery Convention, Luxemburg, 26–30 May 2013; p. 103. [Google Scholar]
- Haley, J.; Peppard, T.L. Differences in utilisation of the essential oil of hops during the production of dry-hopped and late-hopped beers. J. Inst. Brew. 1983, 89, 87–91. [Google Scholar] [CrossRef]
- Dresel, M.; Van Opstaele, F.; Praet, T.; Jaskula-Goiris, B.; Van Holle, A.; Naudts, D.; De Keukeleir, D.; De Cooman, L.; Aerts, G. Investigation of the impact of the hop variety and the hopping technology on the analytical volatile profile of single-hopped worts and beers. Brew. Sci. 2013, 66, 162–175. [Google Scholar]
- Takoi, K.; Itoga, Y.; Koie, K.; Kosugi, T.; Shimase, M.; Katayama, K.; Nakayama, Y.; Watari, J. Contribution of geraniol metabolism to citrus flavour of beer: Synergy of geraniol and β-citronellol under coexistence with excess linalool. J. Inst. Brew. 2010, 116, 251–260. [Google Scholar] [CrossRef]
- Takoi, K.; Itoga, Y.; Takayanagi, J.; Kosugi, T.; Shioi, T.; Nakamura, T.; Watari, J. Screening of geraniol-rich flavor hop and interesting behavior of β-citronellol during fermentation under various hop-addition timings. J. Am. Soc. Brew. Chem. 2014, 72, 22–29. [Google Scholar] [CrossRef]
- Engstle, J.; Kuhn, M.; Kohles, M.; Briesen, H.; Först, P. Disintegration of Hop Pellets during Dry Hopping. Brew. Sci. 2016, 69, 123–127. [Google Scholar]
- Lafontaine, S.R.; Pereira, C.; Vollmer, D.M.; Shellhammer, T.H. The Effectiveness of Hop Volatile Markers for Forecasting Dry-hop Aroma Intensity and Quality of Cascade and Centennial Hops. Brew. Sci. 2019, 71, 116–140. [Google Scholar]
- Brendel, S.; Hofmann, T.; Granvogl, M. Hop-induced formation of ethylesters in dry-hopped beer. Food Prod. Process. Nutr. 2020, 2, 18. [Google Scholar] [CrossRef]
- McLaughlin, I.R.; Lederer, C.; Shellhammer, T.H. Bitterness-Modifying Properties of Hop Polyphenols Extracted from Spent Hop Material. J. Am. Soc. Brew. Chem. 2008, 66, 174–183. [Google Scholar] [CrossRef]
- Forster, A.; Gahr, A. On the Fate of Certain Hop Substances during Dry Hopping. Brew. Sci. 2013, 66, 93–103. [Google Scholar]
- Ocvirk, M.; Košir, I.J. Dynamics of Isomerization of Hop Alpha-Acids and Transition of Hop Essential Oil Components in Beer. Acta Chim. Slov. 2020, 67, 720–728. [Google Scholar] [CrossRef]
- Hauser, D.G.; Shellhammer, T.H. An overview of sustainability challenges in beer production, and the carbon footprint of hops production. Tech. Q. Master Brew. Assoc. Am. 2019, 56, 2–6. [Google Scholar]
- Noro, Y.; Murakami, A.; Gamo, T.; Ichii, T. New hop technologies for special beer with unique flavors. In Proceedings of the 34th Congress European Brewery Convention, Luxemburg, 26–30 May 2013. [Google Scholar]
- Tsuchiya, Y.; Ota, T.; Yoshimoto, H.; Kobayashi, O.; Inadome, H. Effect of hops addition to the fermentation tank on beer fermentation. In Proceedings of the Brewing Summit, San Diego, CA, USA, 12–14 August 2018; p. 32. [Google Scholar]
- Svedlund, N.; Evering, S.; Gibson, B.; Krogerus, K. Fruits of their labour: Biotransformation reactions of yeasts during brewery fermentation. Appl. Microbiol. Biotechnol. 2022, 106, 4929–4944. [Google Scholar] [CrossRef]
- Analisi Dell’acqua. Available online: https://www.cafcspa.com/it/15356/analisi-dell-acqua (accessed on 30 June 2023).
- Kirin Brewery Company Limited. Japanese Patent JP2013132275A, 8 July 2013.
- Oladokun, O.; James, S.; Cowley, T.; Dehrmann, F.; Smart, K.; Hort, H.; Cook, D. Perceived bitterness character of beer in relation to hop variety and the impact of hop aroma. Food Chem. 2017, 230, 215–224. [Google Scholar] [CrossRef] [PubMed]
- European Brewery Convention. Analytica-EBC; Fachverlag Hans Carl: Nürberg, Germany, 2007. [Google Scholar]
- Zanker, G.; Benes, R. Analytical device for measuring the ethanol concentration in beer based on NIR absorption. Brauwelt Int. 2004, 22, 110–113. [Google Scholar]
- UNI EN ISO 8589:2014; Sensory Analysis—General Guidance for the Design of Testing Rooms. Ente Nazionale Italiano di Unificazione (UNI): Milan, Italy, 2014.
- Meilgaard, M.; Civille, G.V.; Carr, B.T. Sensory Evaluation Techniques, 2nd ed.; CRC Press LLC: Boca Raton, FL, USA, 1991. [Google Scholar]
- Tat, L.; Comuzzo, P.; Stolfo, I.; Battistutta, F. Optimization of wine headspace analysis by solid-phase microextraction capillary gas chromatography with mass spectrometric and flame ionization detection. Food Chem. 2005, 93, 361–369. [Google Scholar] [CrossRef]
- Available online: http://webbook.nist.gov/chemistry/ (accessed on 30 June 2023).
- González-Salitre, L.; González-Olivares, L.G.; Basilio-Cortes, U.A. Humulus lupulus L. a potential precursor to human health: High hops craft beer. Food Chem. 2023, 405, 134959. [Google Scholar] [CrossRef] [PubMed]
- Langstaff, S.A.; Guinard, J.X.; Lewis, M. Instrumental evaluation of the mouthfeel of beer and correlation with sensory evaluation. J. Inst. Brew. 1991, 97, 427–433. [Google Scholar] [CrossRef]
- Langstaff, S.A.; Lewis, M. The mouthfeel of beer-a review. J. Inst. Brew. 1993, 99, 31–37. [Google Scholar] [CrossRef]
- Forster, A.; Beck, B.; Schmidt, R. Investigations on hop polyphenols. In Proceedings of the 25th European Brewery Convention Congress, Brussels, Belgium, 9 November 1995; Oxford University Press: Oxford, UK, 1995; pp. 143–150. [Google Scholar]
- Hotchko, R.A.; Shellhammer, T.H. Influence of ethyl esters, oxygenated terpenes, and aliphatic gamma-and delta-lactones (C9-12) on beer fruit aroma. J. Am. Soc. Brew. Chem. 2017, 75, 27–34. [Google Scholar]
- Holt, S.; Miks, M.H.; Trindade de Carvalho, B.; Foulquié-Moreno, M.R.; Thevelein, J.M. The molecular biology of fruity and floral aromas in beer and other alcoholic beverages. FEMS Microbiol. Rev. 2019, 43, 193–222. [Google Scholar] [CrossRef]
- Gros, J.; Peeters, F.; Collin, S. Occurrence of odorant polyfunctional thiols in beers hopped with different cultivars. First evidence of an S-cysteine conjugate in hop (Humulus lupulus L.). J. Sci. Food Agric. 2012, 60, 7805–7816. [Google Scholar] [CrossRef]
- Inui, T.; Tsuchiya, F.; Ishimaru, M.; Oka, K.; Komura, H. Different beers with different hops. Relevant compounds for their aroma characteristics. J. Agric. Food Chem. 2013, 61, 4758–4764. [Google Scholar] [CrossRef]
- Sharpe, F.R. Assessment and control of beer flavour. J. Inst. Brew. 1988, 94, 301–305. [Google Scholar] [CrossRef]
- Fritsch, H.T.; Schieberle, P. Identification based on quantitative measurements and aroma recombination of the character impact odorants in a Bavarian Pilsner-type beer. J. Sci. Food Agric. 2005, 53, 7544–7551. [Google Scholar] [CrossRef] [PubMed]
- Peacock, V.E. The value of linalool in modeling hop aroma in beer. Tech. Q. Master Brew. Assoc. Am. 2010, 47, 29–32. [Google Scholar] [CrossRef]
- Hanke, S.; Herrmann, M.; Rückerl, J.; Schönberger, C.; Back, W. Hop volatile compounds (Part II): Transfer rates of hop compounds from hop pellets to wort and beer. Brew. Sci. 2008, 52, 140–147. [Google Scholar]
- Kaltner, D.; Mitter, W. Changes in hop derived compounds during beer production and ageing. In Proceedings of the Hop Flavor and Aroma: Proceedings of the 1st International Brewers Symposium, Corvallis, OR, USA, 9–10 August 2007; Shellhammer, T.H., Ed.; MBAA: St. Paul, MN, USA, 2009; pp. 37–47. [Google Scholar]
- Tressl, R.; Friese, L.; Fendesack, F.; Koeppler, H. Gas chromatographic-mass spectrometric investigation of hop aroma constituents in beer. J. Agric. Food Chem. 1978, 26, 1422–1426. [Google Scholar] [CrossRef]
- Neiens, S.D.; Steinhaus, M. Investigations on the impact of the special flavor hop variety Huell Melon on the odor-active compounds in late hopped and dry hopped beers. J. Agric. Food Chem. 2018, 67, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Eyres, G.T.; Marriott, P.J.; Dufour, J.P. Comparison of odor-active compounds in the spicy fraction of hop (Humulus lupulus L.) essential oil fromfour different varieties. J. Agric. Food Chem. 2007, 55, 6252–6261. [Google Scholar] [CrossRef]
- Kishimoto, T.; Wanikawa, A.; Kono, K.; Shibata, K. Comparison of the odor-active compounds in unhopped beer and beers hopped with different hop varieties. J. Sci. Food Agric. 2006, 54, 8855–8861. [Google Scholar] [CrossRef]
Style | India Pale Ale |
---|---|
Original Gravity (OG) a | 1052 |
°Plato b | 13 |
Final litres (post-boiling) | 20 L |
Bitterness (IBU) | 34 |
Colour (EBC) | 9 |
Alcohol content% | 5.5% |
Mash notes | Mashing: 60 min at 65 °C Mash-out: 10 min at 77 °C |
Fermentation notes | Primary: 14 days at 20 °C |
Raw Materials | Quantity | Beer Code |
---|---|---|
Malt: Simpsons Pale Ale Golden Promise | 4400 g | A, B |
Hop: Idaho 7. 60 min boiling | 13 g | A, B |
Hop: Idaho 7. 10 min boiling (late hopping) | 82 g | A |
Hop: Idaho 7. In 1.5 L of water at 77 °C for 30 min (dip hopping) | 88 g | B |
Yeast: Dry–LalBrew Bry-97 | 22 g | A, B |
Visual attributes | Foam Foam texture Colour |
Olfactory attributes | Spicy Citrus Fruity Herbal Floral Garlic Other (please specify) Olfactory pleasantness |
Defects | Medicinal Oxidised Reductive |
Taste Attributes | Bitter Sweet Body Sparkle |
Retro-olfactory attributes | Aroma richness Earthy notes Persistence Other (please specify) Pleasantness in the mouth (gustatory and retro-olfactory) |
Beer Code | Bitterness (IBU) | Colour (EBC) |
---|---|---|
A1 | 37 ± 1 | 9 ± 0 |
A2 | 44 ± 0 | 9 ± 0 |
A3 | 39 ± 0 | 10 ± 0 |
B1 | 36 ± 1 | 11 ± 0 |
B2 | 36 ± 0 | 11 ± 0 |
B3 | 31 ± 0 | 12 ± 0 |
Beer Code | Alcohol (% v/v) | RDF (%) | ||||||
---|---|---|---|---|---|---|---|---|
Refermentation Days | Refermentation Days | |||||||
0 | 10 | 20 | 30 | 0 | 10 | 20 | 30 | |
A1 | 5.68 ± 0.02 | 6.11 ± 0.00 | 6.08 ± 0.03 | 6.17 ± 0.01 | 65.45 ± 0.38 | 69.40 ± 0.98 | 69.02 ± 0.10 | 69.92 ± 0.56 |
A2 | 5.51 ± 0.01 | 5.95 ± 0.17 | 6.14 ± 0.01 | 5.96 ± 0.02 | 67.66 ± 0.02 | 68.66 ± 0.58 | 70.38 ± 0.02 | 69.78 ± 0.10 |
A3 | 5.39 ± 0.08 | 5.85 ± 0.02 | 6.06 ± 0.01 | 6.20 ± 0.01 | 64.03 ± 0.42 | 67.33 ± 0.05 | 68.50 ± 0.04 | 69.40 ± 0.42 |
B1 | 5.66 ± 0.03 | 6.19 ± 0.00 | 6.26 ± 0.02 | 6.10 ± 0.02 | 65.12 ± 0.27 | 69.55 ± 0.00 | 70.29 ± 0.05 | 69.73 ± 0.04 |
B2 | 5.51 ± 0.01 | 5.97 ± 0.01 | 6.04 ± 0.06 | 5.95 ± 0.02 | 64.67 ± 0.08 | 69.48 ± 0.02 | 69.95 ± 0.27 | 69.56 ± 0.07 |
B3 | 5.56 ± 0.001 | 6.05 ± 0.12 | 6.06 ± 0.01 | 6.38 ± 0.02 | 67.81 ± 0.05 | 68.77 ± 1.09 | 71.11 ± 2.07 | 71.29 ± 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Passaghe, P.; Tat, L.; Goi, A.; Vit, L.; Buiatti, S. Dip Hopping Technique and Yeast Biotransformations in Craft Beer Productions. Fermentation 2024, 10, 30. https://doi.org/10.3390/fermentation10010030
Passaghe P, Tat L, Goi A, Vit L, Buiatti S. Dip Hopping Technique and Yeast Biotransformations in Craft Beer Productions. Fermentation. 2024; 10(1):30. https://doi.org/10.3390/fermentation10010030
Chicago/Turabian StylePassaghe, Paolo, Lara Tat, Alba Goi, Luca Vit, and Stefano Buiatti. 2024. "Dip Hopping Technique and Yeast Biotransformations in Craft Beer Productions" Fermentation 10, no. 1: 30. https://doi.org/10.3390/fermentation10010030
APA StylePassaghe, P., Tat, L., Goi, A., Vit, L., & Buiatti, S. (2024). Dip Hopping Technique and Yeast Biotransformations in Craft Beer Productions. Fermentation, 10(1), 30. https://doi.org/10.3390/fermentation10010030