Comparison of the Chemical and Microbial Composition and Aerobic Stability of High-Moisture Barley Grain Ensiled with Either Chemical or Viable Lactic Acid Bacteria Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
- (1)
- C—Control, with no inoculant or other additive added;
- (2)
- FC—Inoculant SiloSolve® FC-treated (150,000 cfu/g);
- (3)
- AIV—Chemical-additive-treated (AIV Ässä Na, 4 mL/kg).
2.2. Sampling and Chemical Analyses
2.3. Microbiological Analyses
2.4. Aerobic Stability Measurements
2.5. Statistical Analysis
3. Results and Discussions
3.1. Fresh Materials Characteristics
3.2. Fermentation and Microbial Characteristics
3.3. Dry Matter Corrected for the Losses of Volatiles (DMc) and Dry Matter (DM)
3.4. Microbiological Characteristics
3.5. Aerobic Stability Characteristics Based on Temperature Changes
3.6. pH Value and Weight Loss at the End of the Aerobic Exposure Period
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fleurat-Lessard, F. Stored grain, physic-chemical treatment. In Encyclopedia of Grain Science, 1st ed.; Wrightley, C., Corke, H., Walker, C.E., Eds.; Elsevier Academic Press: London, UK, 2004; pp. 254–263. [Google Scholar] [CrossRef]
- Franco, M.; Stefanski, T.; Jalava, T.; Kuoppala, K.; Huuskonen, A.; Rinne, M. Fermentation quality and aerobic stability of low moisture-crimped wheat grains manipulated by organic acid-based additives. J. Agric. Sci. 2019, 157, 245–253. [Google Scholar] [CrossRef]
- Huhtanen, P.; Jaakkola, S.; Nousiainen, J. An overview of silage research in Finland: From ensiling innovation to advances in dairy cow feeding. Agric. Food Sci. 2013, 22, 35–56. [Google Scholar] [CrossRef]
- Pieper, R.; Hackl, W.; Korn, U.; Zeyner, A.; Souffrant, W.B.; Pieper, B. Effect of ensiling triticale, barley and wheat grains at different moisture content and addition of Lactobacillus plantarum (DSMZ 8866 and 8862) on fermentation characteristics and nutrient digestibility in pigs. Anim. Feed Sci. Technol. 2011, 164, 96–105. [Google Scholar] [CrossRef]
- Muck, R.E.; Nadeau, E.M.G.; McAllister, T.A.; Contreras-Govea, F.E.; Santos, M.C.; Kung, L. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 2018, 101, 3980–4000. [Google Scholar] [CrossRef] [PubMed]
- Seppälä, A.; Heikkilä, T.; Mäki, M.; Rinne, M. Effects of additives on the fermentation and aerobic stability of grass silages and total mixed rations. Grass Forage Sci. 2016, 71, 458–471. [Google Scholar] [CrossRef]
- Nadeau, E.; Arnesson, A.; Jakobsson, J.; Auerbach, H. Chemical additives reduce yeast count and enhance aerobic stability in high dry matter corn silage. In Proceedings of the 17th International Silage Conference, Sao Paulo, Brazil, 1–3 July 2015; University of Sao Paulo: Piracicaba, Brazil, 2015; pp. 354–355. Available online: https://www.isfqcbrazil.com.br/proceedings/2015/Proceedings-of-the-XVII-International-Silage-Conference-Brazil-2015.pdf (accessed on 1 July 2023).
- Morais, G.; Danniel, J.L.P.; Kleinshmitt, C.; Carvalho, P.A.; Fernandes, J.; Nussio, L.G. Additives for grain silages: A review. Slovak J. Ani. Sci. 2017, 50, 42–54. Available online: http://www.cvzv.sk/slju/17_1/6_Morais.pdf (accessed on 1 July 2023).
- Pahlow, G.; Muck, R.E.; Driehuis, F.; Oude Elferink, S.J.W.H.; Spoelstra, S.F. Microbiology of ensiling. In Silage Science and Technology; Buxton, D.R., Muck, R.E., Harrison, J.H., Eds.; American Society of Agronomy: Madison, WI, USA, 2003; pp. 31–93. [Google Scholar] [CrossRef]
- Windle, M.C.; Walker, N.; Kung, L., Jr. Effects of an exogenous protease on the fermentation and nutritive value of corn silage harvested at different dry matter contents and ensiled for various lengths of time. J. Dairy Sci. 2014, 97, 3053–3060. [Google Scholar] [CrossRef] [PubMed]
- Kung, L., Jr.; Windle, M.C.; Walker, N. The effect of an exogenous protease on the fermentation and nutritive value of high-moisture corn. J. Dairy Sci. 2014, 97, 1707–1712. [Google Scholar] [CrossRef]
- Schwarz, F.J.; München, T.U.; Thalmann, A. (Eds.) DLG Testing Guidelines for the Award und Use of the DLG Quality Mark for Ensiling Agents, Prepared under the Auspices of the DLG Commission for Ensiling Agents; DLG Test Service GmbH: Groß-Umstadt, Germany, 2018; p. 60. [Google Scholar]
- ISO 15214:1998; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Mesophilic Lactic Acid Bacteria—Colony-Count Technique at 30 Degrees C. ISO: Geneva, Switzerland, 1998. Available online: https://www.iso.org/obp/ui/en/#iso:std:iso:15214:ed-1:v1:en (accessed on 1 July 2023).
- Weissbach, F.E.; Strubelt, C. Correcting the dry matter content of maize silages as a substrate for biogas production. Landtech. Net63 2008, 2, 82–83. Available online: https://www.landtechnik-online.eu/ojs-2.4.5/index.php/landtechnik/article/view/2008-2-082-083/1237 (accessed on 19 June 2016).
- AOAC. Official Methods of Analysis, 17th ed.; The Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2020. [Google Scholar]
- ISO 21527-1:2008; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds—Part 1: Colony Count Technique in Products with Water Activity Greater than 0.95. ISO: Geneva, Switzerland, 2008. Available online: https://www.iso.org/obp/ui/en/#iso:std:iso:21527:-1:ed-1:v1:en (accessed on 1 July 2023).
- Honig, H. Evaluation of aerobic stability. In Proceedings of the EUROBAC Conference, Uppsala, Sweden, 12–16 August 1986; Swedish University of Agricultural Sciences: Uppsala, Sweden, 1990; pp. 76–82. [Google Scholar]
- Moran, J.; Weinberg, Z.G.; Ashbell, G. A comparison of two methods for the evaluation of the aerobic stability of whole crop wheat silage. In Proceedings of the 11th International Silage Conference, Aberystwyth, UK, 8–11 September 1996; University of Wales: Aberystwyth, UK, 1996; pp. 162–163. [Google Scholar]
- Bai, J.; Ding, Z.; Ke, W.; Xu, D.; Wang, M.; Huang, W.; Zhang, Y.; Liu, F.; Guo, X. Different lactic acid bacteria and their combinations regulated the fermentation process of ensiled alfalfa: Ensiling characteristics, dynamics of bacterial community and their functional shifts. Microb. Biotechnol. 2021, 14, 1171–1182. [Google Scholar] [CrossRef]
- Kung, L., Jr.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef] [PubMed]
- Hassanat, F.; Mustafa, A.F.; Seguin, P. Effects of inoculation on ensiling characteristics, chemical composition and aerobic stability of regular and brown midrib millet silages. Anim. Feed Sci. Technol. 2007, 139, 125–140. [Google Scholar] [CrossRef]
- Rinne, M.; Leppä, M.M.; Kuoppala, K.; Koivunen, E.; Kahala, M.; Jalava, T.; Salminen, J.-P.; Mani, K. Fermentation quality of ensiled crimped faba beans using different additives with special attention to changes in bioactive compounds. Anim. Feed Sci. Technol. 2020, 265, 114497. [Google Scholar] [CrossRef]
- Zielińska, K.; Fabiszewska, A.; Świątek, M.; Szymanowska-Powałowska, D. Evaluation of the ability to metabolize 1,2-propanediol by heterofermentative bacteria of the genus Lactobacillus. Electron. J. Biotechnol. 2017, 26, 60–63. [Google Scholar] [CrossRef]
- Yanbing, L.; Jingchun, L.; Anshan, S. Detection and analysis of 1,2-propanediol content in whole-crop corn. Anim. Husb. Feed Sci. 2017, 9, 239–242. [Google Scholar] [CrossRef]
- da Silva, N.C.; Nascimento, C.F.; Campos, V.M.A.; Alves, M.A.P.; Resende, F.D.; Daniel, J.L.P.; Siqueira, G.R. Influence of storage length and inoculation with Lactobacillus buchneri on fermentation, aerobic stability, and ruminal degradability of high-moisture corn and rehydrated corn grain silage. Anim. Feed Sci. Technol. 2019, 251, 124–133. [Google Scholar] [CrossRef]
- Auerbach, H.; Weiss, K.; Theobald, P.; Nadeau, E. Effects of inoculant type on dry matter losses, fermentation pattern, yeast count and aerobic stability of green rye silages. In Proceedings of the 12. BOKU-Symposium Tierernährung, Vienna, Austria, 11 April 2013; University of Natural Resources and Life Sciences: Vienna, Austria, 2013; pp. 179–185. Available online: https://boku.ac.at/fileadmin/data/H03000/H97000/H97600/Symptagungsbaende/BOKU_Symposium_2013.pdf (accessed on 1 July 2023).
- Auerbach, H.; Theobald, P. Additive type Affects fermentation, aerobic stability and mycotoxins formation during air exposure of early-cut rye (Secale cereale L.) silage. Agronomy 2020, 10, 1432. [Google Scholar] [CrossRef]
- Kleinschmit, D.H.; Kung, L., Jr. A meta-analysis of the effects of Lactobacillus buchneri on the fermentation and aerobic stability of corn and grass and small-grain silages. J. Dairy Sci. 2006, 89, 4005–4113. [Google Scholar] [CrossRef]
- Romero, J.; Park, J.; Joo, Y.; Zhao, Y.; Killerby, M.; Reyes, D.C.; Tiezzi, F.; Gutierrez-Rodriguez, E.; Castillo, M.S. A combination of Lactobacillus buchneri and Pediococcus pentosaceus extended the aerobic stability of conventional and brown midrib mutants–corn hybrids ensiled at low dry matter concentrations by causing a major shift in their bacterial and fungal community. J. Anim. Sci. 2021, 99, skab141. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Davies, D.R. The aerobic stability of silage: Key findings and recent developments. Grass Forage Sci. 2013, 68, 1–19. [Google Scholar] [CrossRef]
- Reich, L.J.; Kung, L. Effects of combining Lactobacillus buchneri 40788 with various lactic acid bacteria on the fermentation and aerobic stability of corn silage. Anim. Feed Sci. Technol. 2010, 159, 105–109. [Google Scholar] [CrossRef]
- Borreani, G.; Tabacco, E. The relationship of silage temperature with the microbiological status of the face of corn silage bunkers. J. Dairy Sci. 2010, 93, 2620–2629. [Google Scholar] [CrossRef] [PubMed]
- Copani, G.; Milora, N.; Bryan, K.A.; Nielsen, N.G.; Witt, K.L. Fermentation and aerobic stability of grass and grass-legume silages ensiled for 14 days. In Proceedings of the 18th International Silage Conference, Bonn, Germany, 24–26 July 2018; Gerlach, K., Südekum, K.H., Eds.; University of Bonn: Bonn, Germany, 2018; pp. 286–287. Available online: https://www.researchgate.net/publication/338740229_Fermentation_and_aerobic_stability_of_grass_and_grass-legume_silages_ensiled_for_14_days#fullTextFileContent (accessed on 1 July 2023).
- Copani, G.; Bryan, K.A.; Nielsen, N.G.; Witt, K.L.; Queiroz, O.; Ghilardelli, F.; Masoero, F.; Gallo, A. The effect of bacterial inoculant and packing density on corn silage quality and safety. In Proceedings of the 18th International Silage Conference, Bonn, Germany, 24–26 July 2018; University of Bonn: Bonn, Germany, 2018; pp. 42–43. Available online: https://www.researchgate.net/publication/338740427_The_effect_of_bacterial_inoculant_and_packing_density_on_corn_silage_quality_and_safety (accessed on 1 July 2023).
- Seppälä, A.; Nysand, M.; Mäki, M.; Miettinen, H.; Rinne, M. Ensiling crimped barley grain at farm scale in plastic tube bag with formic and propionic acid-based additives. In Proceedings of the 16th International Silage Conference, Hämeenlinna, Finland, 2–4 July 2012; MTT Agrifood Research Finland and University of Helsinki: Helsinki, Finland, 2012; pp. 436–437. Available online: http://jukuri.luke.fi/handle/10024/479786 (accessed on 1 July 2023).
- McDonald, P.; Henderson, A.R.; Heron, S.J.E. The Biochemistry of Silage, 2nd ed.; Chalcombe Publications: Marlow, UK, 1991; 340p, Available online: http://books.google.com/books?id=oUcjAQAAMAAJ (accessed on 1 July 2023).
- Driehuis, F.; Oude Elferink, S.J.W.H.; Spoelstra, S.F. Anaerobic lactic acid degradation during ensilage of whole crop maize inoculated with Lactobacillus buchneri inhibits yeast growth and improves aerobic stability. J. Appl. Microbiol. 1999, 87, 583–594. [Google Scholar] [CrossRef] [PubMed]
- Copani, G.; Nielsen, N.G.; Bryan, K.A.; Vrotniakiene, V.; Jatkauskas, J.; Witt, K.L. Effects of a dual strain inoculant on alfalfa silage fermentation and aerobic stability through 32 days of ensiling. In Proceedings of the 5th International Symposium on Forage Quality and Conservation, Praccicaba, Brazil, 2017; Available online: https://www.researchgate.net/publication/322223422_Effects_of_a_dual_strain_inoculant_on_alfalfa_silage_fermentation_and_aerobic_stability_through_32_days_of_ensiling#fullTextFileContent (accessed on 5 May 2023).
- Danner, H.; Holzer, M.; Mayrhuber, E.; Braun, R. Acetic acid increases stability of silage under aerobic conditions. Appl. Environ. Microbiol. 2003, 69, 562–567. [Google Scholar] [CrossRef]
Commercial Name | Manufacturer | Composition (%) | Dosages | |
---|---|---|---|---|
C | Control | Tap water | 4 mL/kg forage | |
FC | SiloSolve® FC | Chr. Hansen A/S (Hørsholm, Denmark) | Lentilactobacillus buchneri (DSM 22501) Lactococcus lactis (DSM 11037)—50:50 | 4 mL/kg forage suspension (150,000 cfu/g forage) |
AIV | AIV Ässä Na | Eastman Chemical Company (Ylivieska, Finland) | Formic acid—58.3 Propionic acid—20.1 Sodium formiate—5.2 Potassium sorbate—2.5 Colorant—0.1 Water—13.8 | 4 mL/kg forage |
Factors | Number | Description |
---|---|---|
Treatments | 3 | Control (C), SiloSolve® FC (FC), AIV Ässä Na (AIV) |
Fermentation periods | 5 | 7, 14, 28, 60, and 90 * |
Replications | 10 | 5 for fermentation, 5 for aerobic stability test |
Additives | 3 | Water, SiloSolve® FC and AIV Ässä Na |
Total mini-silos | 150 | 3 Treatment × 5 periods × 10 replicates |
n | Mean | SEM | |
---|---|---|---|
Dry matter, g kg−1 | 5 | 675.0 | 3.894 |
Crude protein, g kg−1 DM | 5 | 117.4 | 0.644 |
Crude fat, g kg−1 DM | 5 | 18.4 | 0.645 |
Crude fiber, g kg−1 DM | 5 | 74.1 | 0.890 |
Crude ash, g kg−1 DM | 5 | 19.9 | 0.602 |
WSC, g kg−1 DM | 5 | 33.5 | 0.815 |
ADF, g kg−1 DM | 5 | 76.2 | 3.481 |
NDF, g kg−1 DM | 5 | 195.7 | 4.947 |
Starch, g kg−1 DM | 5 | 605.6 | 8.252 |
pH | 5 | 5.97 | 0.021 |
Yeast, log cfu g−1 FF | 5 | 6.43 | 0.155 |
Mold, log cfu g−1 FF | 5 | 5.30 | 0.291 |
LAB, log cfu g−1 FF | 5 | 5.78 | 0.058 |
TR | DMc, g kg−1 | pH | NH3N, g kg−1 Total N | g kg−1 DMc | log10 cfu g−1 FF | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WSC | LA | AA | BA | Alcohols | Pp | DM Loss | Yeast | Mold | LAB | ||||
At day 7 of storage | |||||||||||||
C | 670.8 | 4.57 | 11.7 3 | 19.2 3 | 10.9 2,3 | 3.7 3 | 0.5 2,3 | 3.4 3 | 0.1 2 | 10.2 3 | 4.42 2,3 | 3.24 | 8.09 2,3 |
FC | 671.8 | 4.46 | 11.8 3 | 19.4 3 | 17.7 1,3 | 4.3 3 | 0.2 1 | 3.3 3 | 0.3 1,3 | 8.6 3 | 3.92 1,3 | 2.94 | 9.07 1,3 |
AIV | 673.3 | 5.30 | 3.9 1,2 | 31.8 1,2 | 0.9 1,2 | 0.6 1,2 | 0.2 1 | 0.2 1,2 | 0.0 2 | 2.9 1,2 | 3.25 1,2 | 2.90 | 5.18 1,2 |
SEM | 1.52 | 0.25 | 9.10 | 23.50 | 4.90 | 2.10 | 0.40 | 4.80 | 0.60 | 11.50 | 15.80 | 12.90 | 17.00 |
At day 14 of storage | |||||||||||||
C | 667.4 3 | 4.42 2,3 | 22.0 3 | 11.3 3 | 15.8 2,3 | 4.3 3 | 0.4 2,3 | 4.1 3 | 0.0 2 | 16.5 2,3 | 4.26 2,3 | 2.92 3 | 8.62 2,3 |
FC | 670.1 | 4.30 1,3 | 19.9 3 | 10.8 3 | 18.2 1,3 | 4.5 3 | 0.2 1 | 4.0 3 | 0.4 1,3 | 12.4 1,3 | 2.98 1 | 2.74 | 9.28 1,3 |
AIV | 673.0 1 | 5.15 1,2 | 5.4 1,2 | 30.9 1,2 | 1.0 1,2 | 0.7 1,2 | 0.2 1 | 0.2 1, 2 | 0.0 2 | 4.1 1, 2 | 2.74 1 | 2.71 1 | 5.82 1,2 |
SEM | 1.42 | 0.16 | 0.79 | 0.93 | 11.70 | 0.16 | 0.03 | 0.09 | 0.05 | 0.69 | 0.81 | 0.63 | 1.51 |
At day 28 of storage | |||||||||||||
C | 656.0 2,3 | 4.36 2,3 | 25.4 2,3 | 9.1 3 | 18.2 2,3 | 4.7 2,3 | 0.5 2,3 | 5.8 2,3 | 0.1 2 | 34.9 2,3 | 2.93 2,3 | 2.91 2 | 7.93 3 |
FC | 665.0 1,3 | 4.29 1,3 | 23.2 1,3 | 9.3 3 | 21.9 1,3 | 5.3 1,3 | 0.2 1 | 5.4 1,3 | 0.51 1,3 | 21.8 1,3 | 2.39 1 | 2.53 1,3 | 8.18 3 |
AIV | 672.4 1,2 | 5.00 1,2 | 11.4 1,2 | 29.7 1,2 | 13.8 1,2 | 0.8 1,2 | 0.3 1 | 1.6 1,2 | 0.0 2 | 5.9 1,2 | 2.35 1 | 2.86 2 | 5.21 1,2 |
SEM | 1.29 | 0.07 | 0.70 | 0.38 | 0.94 | 0.07 | 0.04 | 0.09 | 0.03 | 1.50 | 0.70 | 0.52 | 0.87 |
At day 60 of storage | |||||||||||||
C | 651.4 2,3 | 4.31 3 | 31.1 2,3 | 8.2 3 | 16.9 2,3 | 5.4 2,3 | 0.6 2,3 | 7.7 2,3 | 0.0 2 | 43.6 2,3 | 2.68 2 | 2.79 2. | 6.86 2,3 |
FC | 659.7 1,3 | 4.29 3 | 24.5 1,3 | 8.0 3 | 19.4 1,3 | 6.5 1,3 | 0.3 1 | 5.1 1,3 | 2.8 1,3 | 30.9 1,3 | 2.20 1,3 | 2.22 1,3 | 7.80 1,3 |
AIV | 671.8 1,2 | 4.89 1,2 | 16.7 1,2 | 25.9 1,2 | 0.9 1,2 | 1.2 1,2 | 0.3 1 | 2.4 1,2 | 0.0 2 | 7.6 1,2 | 2.57 2 | 2.94 2 | 5.23 1,2 |
SEM | 0.80 | 0.17 | 0.99 | 0.96 | 0.54 | 0.10 | 0.04 | 0.14 | 0.14 | 3.60 | 0.53 | 0.69 | 1.10 |
At day 90 of storage | |||||||||||||
C | 646.4 2,3 | 4.29 2,3 | 4.37 2,3 | 7.2 3 | 17.6 2,3 | 5.8 2,3 | 0.4 2,3 | 10.4 2,3 | 0.1 2 | 52.9 2,3 | 2.54 2 | 2.75 2,3 | 5.24 2 |
FC | 654.2 1,3 | 4.21 1,3 | 3.44 1,3 | 7.1 3 | 22.6 1,3 | 10.0 1,3 | 0.2 1,3 | 5.6 1,3 | 3.9 1,3 | 39.6 1,3 | 2.09 1,3 | 2.14 1,3 | 7.71 1,3 |
AIV | 670.4 1,2 | 4.74 1,2 | 2.07 1,2 | 25.1 1,2 | 2.4 1,2 | 1.9 1,2 | 0.3 1,2 | 2.5 1,2 | 0.1 2 | 10.8 1,2 | 2.56 2 | 2.97 1,2 | 5.1 2 |
SEM | 1.32 | 0.14 | 1.02 | 0.84 | 0.54 | 0.09 | 0.01 | 0.09 | 0.10 | 2.44 | 0.33 | 0.48 | 1.39 |
Treatment | pH | Weight Loss% | LAB | Yeast | Mold | AS Hours | Highest Temperature °C |
---|---|---|---|---|---|---|---|
log10 CFU/g−1 of FF | |||||||
At day 7 of storage (12 days of aerobic exposure) | |||||||
C | 6.84 2,3 | 6.96 2,3 | 8.00 2,3 | 6.37 3 | 8.34 2,3 | 36.0 3 | 37.68 2,3 |
FC | 6.23 1,3 | 5.33 1,3 | 8.81 1,3 | 6.22 3 | 6.94 1,3 | 48.0 3 | 35.64 1,3 |
AIV | 5.42 1,2 | 1.17 1,2 | 5.32 1,2 | 4.91 1,2 | 4.41 1,2 | 260.4 1,2 | 26.30 1,2 |
SEM | 1.18 | 4.48 | 1.96 | 2.62 | 1.11 | 90.73 | 0.86 |
At day 14 of storage (14 days of aerobic exposure) | |||||||
C | 7.90 2,3 | 5.44 3 | 7.70 2,3 | 8.61 3 | 7.31 3 | 61.2 2,3 | 34.38 2,3 |
FC | 7.51 1,3 | 5.29 3 | 9.10 1,3 | 8.12 3 | 7.12 3 | 79.2 1,3 | 32.18 1,3 |
AIV | 5.34 1,3 | 0.71 1,2 | 5.98 1,2 | 5.30 1,2 | 4.28 1,2 | 336.0 1,2 | 23.04 1,2 |
SEM | 1.03 | 3.81 | 1.15 | 2.28 | 2.28 | 9.80 | 10.93 |
At day 28 of storage (17 days of aerobic exposure) | |||||||
C | 8.52 2,3 | 3.48 2,3 | 7.68 3 | 8.94 2,3 | 8.79 2,3 | 200.4 2,3 | 28.92 2,3 |
FC | 4.78 1,3 | 1.14 1,3 | 8.00 3 | 5.45 1,3 | 4.59 1,3 | 400.8 1,3 | 23.74 1,3 |
AIV | 6.54 1,2 | 2.43 1,2 | 6.27 1,2 | 6.89 1,2 | 7.46 1,2 | 301.2 1,2 | 28.96 1,2 |
SEM | 1.48 | 2.35 | 1.59 | 1.72 | 1.37 | 77.8 | 12.77 |
At day 60 of storage (23 days of aerobic exposure) | |||||||
C | 6.47 2,3 | 2.98 2,3 | 5.85 2,3 | 7.41 | 7.59 2,3 | 441.6 2 | 27.06 2,3 |
FC | 4.35 1,3 | 1.53 1,3 | 7.39 1,3 | 5.79 | 5.40 1,3 | 548.4 1,3 | 23.00 1,3 |
AIV | 6.81 1,2 | 3.72 1,2 | 6.29 1,2 | 7.88 | 8.80 1,2 | 411.6 2 | 31.70 1,2 |
SEM | 0.96 | 2.74 | 1.42 | 1.46 | 1.99 | 178.93 | 14.57 |
At day 90 of storage (28 days of aerobic exposure) | |||||||
C | 7.54 2,3 | 3.97 2,3 | 5.17 2,3 | 7.45 2,3 | 7.94 2,3 | 364.8 2 | 27.98 2,3 |
FC | 4.32 3 | 1.60 1,3 | 6.40 1,3 | 5.03 1,3 | 4.22 1,3 | 664.8 1,3 | 23.00 1,3 |
AIV | 7.85 1,2 | 6.71 1,2 | 6.03 1,2 | 8.09 1,2 | 9.02 1,2 | 301.2 2 | 30.28 1,2 |
SEM | 1.49 | 4.09 | 1.01 | 1.89 | 1.68 | 287.37 | 16.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jatkauskas, J.; Vrotniakiene, V.; Eisner, I.; Witt, K.L.; do Amaral, R.C. Comparison of the Chemical and Microbial Composition and Aerobic Stability of High-Moisture Barley Grain Ensiled with Either Chemical or Viable Lactic Acid Bacteria Application. Fermentation 2024, 10, 62. https://doi.org/10.3390/fermentation10010062
Jatkauskas J, Vrotniakiene V, Eisner I, Witt KL, do Amaral RC. Comparison of the Chemical and Microbial Composition and Aerobic Stability of High-Moisture Barley Grain Ensiled with Either Chemical or Viable Lactic Acid Bacteria Application. Fermentation. 2024; 10(1):62. https://doi.org/10.3390/fermentation10010062
Chicago/Turabian StyleJatkauskas, Jonas, Vilma Vrotniakiene, Ivan Eisner, Kristian Lybek Witt, and Rafael Camargo do Amaral. 2024. "Comparison of the Chemical and Microbial Composition and Aerobic Stability of High-Moisture Barley Grain Ensiled with Either Chemical or Viable Lactic Acid Bacteria Application" Fermentation 10, no. 1: 62. https://doi.org/10.3390/fermentation10010062
APA StyleJatkauskas, J., Vrotniakiene, V., Eisner, I., Witt, K. L., & do Amaral, R. C. (2024). Comparison of the Chemical and Microbial Composition and Aerobic Stability of High-Moisture Barley Grain Ensiled with Either Chemical or Viable Lactic Acid Bacteria Application. Fermentation, 10(1), 62. https://doi.org/10.3390/fermentation10010062