Anaerobic Fermentation and High-Value Bioproducts: A Brief Overview of Recent Progress and Current Challenges
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Panchenko, V.A.; Daus, Y.V.; Kovalev, A.A.; Yudaev, I.V.; Litti, Y.V. Prospects for the production of green hydrogen: Review of countries with high potential. Int. J. Hydrogen Energy 2023, 48, 4551–4571. [Google Scholar] [CrossRef]
- Ashokkumar, V.; Flora, G.; Venkatkarthick, R.; SenthilKannan, K.; Kuppam, C.; Stephy, G.M.; Kamyab, H.; Chen, W.-H.; Thomas, J.; Ngamcharussrivichai, C. Advanced technologies on the sustainable approaches for conversion of organic waste to valuable bioproducts: Emerging circular bioeconomy perspective. Fuel 2022, 324, 124313. [Google Scholar] [CrossRef]
- Velvizhi, G.; Balakumar, K.; Shetti, N.P.; Ahmad, E.; Pant, K.K.; Aminabhavi, T.M. Integrated biorefinery processes for conversion of lignocellulosic biomass to value added materials: Paving a path towards circular economy. Bioresour. Technol. 2022, 343, 126151. [Google Scholar] [CrossRef] [PubMed]
- Clauser, N.M.; Felissia, F.E.; Area, M.C.; Vallejos, M.E. A framework for the design and analysis of integrated multi-product biorefineries from agricultural and forestry wastes. Renew. Sustain. Energy Rev. 2021, 139, 110687. [Google Scholar] [CrossRef]
- Nozhevnikova, A.N.; Russkova, Y.I.; Litti, Y.V.; Parshina, S.N.; Zhuravleva, E.A.; Nikitina, A.A. Syntrophy and interspecies electron transfer in methanogenic microbial communities. Microbiology 2020, 89, 129–147. [Google Scholar] [CrossRef]
- Greses, S.; Tomás-Pejó, E.; González-Fernández, C. Food waste valorization into bioenergy and bioproducts through a cascade combination of bioprocesses using anaerobic open mixed cultures. J. Clean. Prod. 2022, 372, 133680. [Google Scholar] [CrossRef]
- Kumar, A.N.; Sarkar, O.; Chandrasekhar, K.; Raj, T.; Narisetty, V.; Mohan, S.V.; Pandey, A.; Varjani, S.; Kumar, S.; Sharma, P.; et al. Upgrading the value of anaerobic fermentation via renewable chemicals production: A sustainable integration for circular bioeconomy. Sci. Total Environ. 2022, 806, 150312. [Google Scholar] [CrossRef]
- Uddin, M.M.; Wright, M.M. Anaerobic digestion fundamentals, challenges, and technological advances. Phys. Sci. Rev. 2023, 8, 2819–2837. [Google Scholar] [CrossRef]
- García-Depraect, O.; León-Becerril, E. Use of a Highly Specialized Biocatalyst to Produce Lactate or Biohydrogen and Butyrate from Agro-Industrial Resources in a Dual-Phase Dark Fermentation. Fermentation 2023, 9, 787. [Google Scholar] [CrossRef]
- Alruqi, M.; Hanafi, H.A.; Sharma, P. Prognostic Metamodel Development for Waste-Derived Biogas-Powered Dual-Fuel Engines Using Modern Machine Learning with K-Cross Fold Validation. Fermentation 2023, 9, 598. [Google Scholar] [CrossRef]
- Liu, C.; Li, S.; Niu, H.; Yang, H.; Tan, J.; Zhang, J.; Ren, L.; Yan, B. Effect of Lipid Type on the Acidogenic Performance of Food Waste. Fermentation 2023, 9, 348. [Google Scholar] [CrossRef]
- Mikheeva, E.R.; Katraeva, I.V.; Kovalev, A.A.; Biryuchkova, P.D.; Zhuravleva, E.A.; Vishnyakova, A.V.; Litti, Y.V. Pretreatment in Vortex Layer Apparatus Boosts Dark Fermentative Hydrogen Production from Cheese Whey. Fermentation 2023, 8, 674. [Google Scholar] [CrossRef]
- Ziganshina, E.E.; Bulynina, S.S.; Ziganshin, A.M. Anaerobic Digestion of Chicken Manure Assisted by Carbon Nanotubes: Promotion of Volatile Fatty Acids Consumption and Methane Production. Fermentation 2023, 8, 641. [Google Scholar] [CrossRef]
- de Carvalho, J.C.; de Souza Vandenberghe, L.P.; Sydney, E.B.; Karp, S.G.; Magalhães, A.I., Jr.; Martinez-Burgos, W.J.; Medeiros, A.B.P.; Thomaz-Soccol, V.; Vieira, S.; Letti, L.A.J.; et al. Biomethane Production from Sugarcane Vinasse in a Circular Economy: Developments and Innovations. Fermentation 2023, 9, 349. [Google Scholar] [CrossRef]
- Yogalakshmi, K.N.; Mohamed Usman, T.M.; Kavitha, S.; Saloni, S.; Shivani, T.; Adish Kumar, S.; Rajesh Banu, J. Lignocellulosic Biorefinery Technologies: A Perception into Recent Advances in Biomass Fractionation, Biorefineries, Economic Hurdles and Market Outlook. Fermentation 2023, 9, 238. [Google Scholar] [CrossRef]
- Rodrigues, B.C.G.; de Mello, B.S.; Grangeiro, L.C.; Dussan, K.J.; Sarti, A. The most important technologies and highlights for biogas production worldwide. J. Air Waste Manag. Assoc. 2024, just accepted. [Google Scholar] [CrossRef]
- Rasapoor, M.; Young, B.; Brar, R.; Sarmah, A.; Zhuang, W.Q.; Baroutian, S. Recognizing the challenges of anaerobic digestion: Critical steps toward improving biogas generation. Fuel 2020, 261, 116497. [Google Scholar] [CrossRef]
- Millati, R.; Wikandari, R.; Ariyanto, T.; Hasniah, N.; Taherzadeh, M.J. Anaerobic digestion biorefinery for circular bioeconomy development. Bioresour. Technol. Rep. 2023, 21, 101315. [Google Scholar] [CrossRef]
- D’Silva, T.C.; Isha, A.; Chandra, R.; Vijay, V.K.; Subbarao, P.M.V.; Kumar, R.; Chaudhary, V.P.; Singh, H.; Khan, A.A.; Tyagi, V.K.; et al. Enhancing methane production in anaerobic digestion through hydrogen assisted pathways—A state-of-the-art review. Renew. Sustain. Energy Rev. 2021, 151, 111536. [Google Scholar] [CrossRef]
- Ivanenko, A.; Laikova, A.; Zhuravleva, E.; Shekhurdina, S.; Vishnyakova, A.; Kovalev, A.; Kovalev, D.; Trchounian, K.; Litti, Y. Biological production of hydrogen: From basic principles to the latest advances in process improvement. Int. J. Hydrogen Energy 2024, 55, 740–755. [Google Scholar] [CrossRef]
- Laikova, A.; Zhuravleva, E.; Shekhurdina, S.; Ivanenko, A.; Biryuchkova, P.; Loiko, N.; Kryukov, E.; Kovalev, A.; Kovalev, D.; He, C.; et al. The intracellular accumulation of iron coincides with enhanced biohydrogen production by Thermoanaerobacterium thermosaccharolyticum. Chem. Eng. J. 2024, 497, 154961. [Google Scholar] [CrossRef]
- Sahil, S.; Singh, R.; Masakapalli, S.K.; Pareek, N.; Kovalev, A.A.; Litti, Y.V.; Nanda, S.; Vivekanand, V. Biomass pretreatment, bioprocessing and reactor design for biohydrogen production: A review. Environ. Chem. Lett. 2024, 22, 1665–1702. [Google Scholar] [CrossRef]
- Bhagchandanii, D.D.; Babu, R.P.; Sonawane, J.M.; Khanna, N.; Pandit, S.; Jadhav, D.A.; Khilari, S.; Prasad, R. A comprehensive understanding of electro-fermentation. Fermentation 2020, 6, 92. [Google Scholar] [CrossRef]
- Bolzonella, D.; Bertasini, D.; Lo Coco, R.; Menini, M.; Rizzioli, F.; Zuliani, A.; Battista, F.; Frison, N.; Jelic, A.; Pesante, G. Toward the transition of agricultural anaerobic digesters into multiproduct biorefineries. Processes 2023, 11, 415. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, R.; Brar, S.K.; Kaur, G. Next-generation-omics approaches to drive carboxylate production by acidogenic fermentation of food waste: A review. Bioengineered 2022, 13, 14987–15002. [Google Scholar] [CrossRef]
- Sukphun, P.; Sittijunda, S.; Reungsang, A. Volatile fatty acid production from organic waste with the emphasis on membrane-based recovery. Fermentation 2021, 7, 159. [Google Scholar] [CrossRef]
- Pan, X.R.; Li, W.W.; Huang, L.; Liu, H.Q.; Wang, Y.K.; Geng, Y.K.; Lam, P.K.-S.; Yu, H.Q. Recovery of high-concentration volatile fatty acids from wastewater using an acidogenesis-electrodialysis integrated system. Bioresour. Technol. 2018, 260, 61–67. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Litti, Y.; Zhuravleva, E.; Kovalev, A. Anaerobic Fermentation and High-Value Bioproducts: A Brief Overview of Recent Progress and Current Challenges. Fermentation 2024, 10, 537. https://doi.org/10.3390/fermentation10110537
Litti Y, Zhuravleva E, Kovalev A. Anaerobic Fermentation and High-Value Bioproducts: A Brief Overview of Recent Progress and Current Challenges. Fermentation. 2024; 10(11):537. https://doi.org/10.3390/fermentation10110537
Chicago/Turabian StyleLitti, Yuriy, Elena Zhuravleva, and Andrey Kovalev. 2024. "Anaerobic Fermentation and High-Value Bioproducts: A Brief Overview of Recent Progress and Current Challenges" Fermentation 10, no. 11: 537. https://doi.org/10.3390/fermentation10110537
APA StyleLitti, Y., Zhuravleva, E., & Kovalev, A. (2024). Anaerobic Fermentation and High-Value Bioproducts: A Brief Overview of Recent Progress and Current Challenges. Fermentation, 10(11), 537. https://doi.org/10.3390/fermentation10110537