Revealing the Potential Advantages of Plectasin Through In Vitro Rumen Fermentation Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and In Vitro Fermentation Process
2.2. Sample Collection and Item Determination
2.3. DNA Extraction
2.4. 16S rDNA Gene Sequencing and Bioinformatics Analysis
2.5. Statistical Analysis
3. Results
3.1. Effects of Plectasin and Monensin on Rumen Fermentation Characteristics
3.2. Effects of Plectasin and Monensin on Rumen Bacterial Communities
3.3. Correlations Between the Relative Abundance of the Signature Rumen Microbial Flora and Fermentation Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matthews, C.; Crispie, F.; Lewis, E.; Reid, M.; O’Toole, P.W.; Cotter, P.D. The Rumen Microbiome: A Crucial Consideration When Optimising Milk and Meat Production and Nitrogen Utilisation Efficiency. Gut Microbes 2019, 10, 115–132. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Liu, Z.; Yu, Z.; Zhu, W. Monensin and Nisin Affect Rumen Fermentation and Microbiota Differently In Vitro. Front. Microbiol. 2017, 8, 1111. [Google Scholar] [CrossRef] [PubMed]
- Horst, E.A.; Kvidera, S.K.; Hagerty, S.; French, P.D.; Carlson, D.B.; Dhuyvetter, K.; Holloway, A.W. Effect of Monensin on Milk Production Efficiency and Milk Composition in Lactating Dairy Cows Fed Modern Diets. J. Dairy Sci. 2023, 107, 1441–1449. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Singh, A.P.; Kumar, S.; Giri, B.S.; Kim, K.-H. Antibiotic Resistance in Major Rivers in the World: A Systematic Review on Occurrence, Emergence, and Management Strategies. J. Clean. Prod. 2019, 234, 1484–1505. [Google Scholar] [CrossRef]
- European Union. Ban on Antibiotics as Growth Promoters in Animal Feed Enters into Effect. Regulation, 1. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_05_1687 (accessed on 10 December 2023).
- Notice on Continuing to Do a Good Job in the Management of Clinical Application of Antibacterial Drugs. Available online: https://www.carss.cn/Policy/Details?aId=518 (accessed on 10 December 2023).
- Diarra, M.S.; Malouin, F. Antibiotics in Canadian Poultry Productions and Anticipated Alternatives. Front. Microbiol. 2014, 5, 282. [Google Scholar] [CrossRef]
- Fénéant, L.; Potel, J.; François, C.; Sané, F.; Douam, F.; Belouzard, S.; Calland, N.; Vausselin, T.; Rouillé, Y.; Descamps, V.; et al. New Insights into the Understanding of Hepatitis C Virus Entry and Cell-to-Cell Transmission by Using the Ionophore Monensin A. J. Virol. 2015, 89, 8346–8364. [Google Scholar] [CrossRef]
- Chen, M.; Wolin, M.J. Effect of Monensin and Lasalocid-Sodium on the Growth of Methanogenic and Rumen Saccharolytic Bacteria. Appl. Environ. Microbiol. 1979, 38, 72–77. [Google Scholar] [CrossRef]
- Callaway, T.R.; Melo, A.M.S.C.D.; Russell, J.B. The Effect of Nisin and Monensin on Ruminal Fermentations In Vitro. Curr. Microbiol. 1997, 35, 90–96. [Google Scholar] [CrossRef]
- Clarke, L.; Fodey, T.L.; Crooks, S.R.H.; Moloney, M.; O’Mahony, J.; Delahaut, P.; O’Kennedy, R.; Danaher, M. A Review of Coccidiostats and the Analysis of Their Residues in Meat and Other Food. Meat Sci. 2014, 97, 358–374. [Google Scholar] [CrossRef]
- Anjos, M.C.; Campos, L.C.; Depes, V.C.A.; Faccin, T.C.; Pereira, P.F.V.; Bracarense, A.P.F.R.L.; Flaiban, K.K.M.C.; Lisbôa, J.A.N. Accidental Monensin Poisoning in Goats. Toxicon 2023, 235, 107314. [Google Scholar] [CrossRef]
- Gordon, Y.J.; Romanowski, E.G.; McDermott, A.M. A Review of Antimicrobial Peptides and Their Therapeutic Potential as Anti-Infective Drugs. Curr. Eye Res. 2005, 30, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Mygind, P.H.; Fischer, R.L.; Schnorr, K.M.; Hansen, M.T.; Sönksen, C.P.; Ludvigsen, S.; Raventós, D.; Buskov, S.; Christensen, B.; De Maria, L.; et al. Plectasin Is a Peptide Antibiotic with Therapeutic Potential from a Saprophytic Fungus. Nature 2005, 437, 975–980. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yang, Y.; Teng, D.; Tian, Z.; Wang, S.; Wang, J. Expression of Plectasin in Pichia pastoris and Its Characterization as a New Antimicrobial Peptide against Staphyloccocus and Streptococcus. Protein Expr. Purif. 2011, 78, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Wu, M.M.; Shao, F.Y.; Tan, B.E.; Li, T.J.; Ren, W.K.; Yin, J.; Wang, J.; He, Q.H.; Yin, Y.L.; et al. Metabolic Profiles in the Response to Supplementation with Composite Antimicrobial Peptides in Piglets Challenged with Deoxynivalenol. J. Anim. Sci. 2015, 93, 1114. [Google Scholar] [CrossRef]
- Xiong, X.; Yang, H.S.; Li, L.; Wang, Y.F.; Huang, R.L.; Li, F.N.; Wang, S.P.; Qiu, W. Effects of Antimicrobial Peptides in Nursery Diets on Growth Performance of Pigs Reared on Five Different Farms. Livest. Sci. 2014, 167, 206–210. [Google Scholar] [CrossRef]
- Hu, F.; Gao, X.; She, R.; Chen, J.; Mao, J.; Xiao, P.; Shi, R. Effects of Antimicrobial Peptides on Growth Performance and Small Intestinal Function in Broilers under Chronic Heat Stress. Poult. Sci. 2017, 96, 798–806. [Google Scholar] [CrossRef]
- Xuan, J.; Feng, W.; Wang, J.; Wang, R.; Zhang, B.; Bo, L.; Chen, Z.-S.; Yang, H.; Sun, L. Antimicrobial Peptides for Combating Drug-Resistant Bacterial Infections. Drug Resist. Updates 2023, 68, 100954. [Google Scholar] [CrossRef]
- Afolabi, O.O.; Adigun, M.O.; Peters, R.F.; Okonofua, C.; Umar, U.; Afuwape, O.E. Assessment of Antimicrobial Activity of Plectasin against Local Strains of Gram Negative and Positive Bacteria. Glob. Sci. J. 2018, 6. Available online: https://www.researchgate.net/publication/328703045_Assessment_of_antimicrobial_activity_of_plectasin_against_local_strains_of_gram_negative_and_positive_bacteria (accessed on 10 December 2023).
- Menke, K.H.; Raab, L.; Salewski, A.; Steingass, H.; Fritz, D.; Schneider, W. The Estimation of the Digestibility and Metabolizable Energy Content of Ruminant Feedingstuffs from the Gas Production When They Are Incubated with Rumen Liquor in Vitro. J. Agric. Sci. 1979, 93, 217–222. [Google Scholar] [CrossRef]
- Li, F.; Wang, Z.; Dong, C.; Li, F.; Wang, W.; Yuan, Z.; Mo, F.; Weng, X. Rumen Bacteria Communities and Performances of Fattening Lambs with a Lower or Greater Subacute Ruminal Acidosis Risk. Front. Microbiol. 2017, 8, 2506. [Google Scholar] [CrossRef]
- Ma, Z.Y.; Zhang, X.M.; Wang, R.; Wang, M.; Liu, T.; Tan, Z.L. Effects of Chemical and Mechanical Lysis on Microbial DNA Yield, Integrity, and Downstream Amplicon Sequencing of Rumen Bacteria and Protozoa. Front. Microbiol. 2020, 11, 581227. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. UPARSE: Highly Accurate OTU Sequences from Microbial Amplicon Reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef]
- Polizel, D.M.; Marques, S.S.; Westphalen, M.F.; Gouvea, V.N.; Ferraz Júnior, M.V.D.C.; Miszura, A.A.; Barroso, J.P.R.; Limede, A.C.; Ferreira, E.M.; Pires, A.V. Narasin Inclusion for Feedlot Lambs Fed a Diet Containing High Amounts of Ground Flint Corn. Sci. Agric. 2021, 78, e20200010. [Google Scholar] [CrossRef]
- Pope, P.B.; Smith, W.; Denman, S.E.; Tringe, S.G.; Barry, K.; Hugenholtz, P.; McSweeney, C.S.; McHardy, A.C.; Morrison, M. Isolation of Succinivibrionaceae Implicated in Low Methane Emissions from Tammar Wallabies. Science 2011, 333, 646–648. [Google Scholar] [CrossRef]
- Jeyanathan, J.; Martin, C.; Morgavi, D.P. The Use of Direct-Fed Microbials for Mitigation of Ruminant Methane Emissions: A Review. Animal 2014, 8, 250–261. [Google Scholar] [CrossRef]
- McGuffey, R.K.; Richardson, L.F.; Wilkinson, J.I.D. Ionophores for Dairy Cattle: Current Status and Future Outlook. J. Dairy Sci. 2001, 84, E194–E203. [Google Scholar] [CrossRef]
- Ran, T.; Jin, L.; Abeynayake, R.; Saleem, A.M.; Zhang, X.; Niu, D.; Chen, L.; Yang, W. Effects of Brewers’ Spent Grain Protein Hydrolysates on Gas Production, Ruminal Fermentation Characteristics, Microbial Protein Synthesis and Microbial Community in an Artificial Rumen Fed a High Grain Diet. J. Anim. Sci. Biotechnol. 2021, 12, 1. [Google Scholar] [CrossRef]
- Ellis, J.L.; Dijkstra, J.; Bannink, A.; Kebreab, E.; Hook, S.E.; Archibeque, S.; France, J. Quantifying the Effect of Monensin Dose on the Rumen Volatile Fatty Acid Profile in High-Grain-Fed Beef Cattle. J. Anim. Sci. 2018, 90, 2717–2726. [Google Scholar] [CrossRef]
- Baird, G.D.; Lomax, M.A.; Symonds, H.W.; Shaw, S.R. Net Hepatic and Splanchnic Metabolism of Lactate, Pyruvate and Propionate in Dairy Cows in Vivo in Relation to Lactation and Nutrient Supply. Biochem. J. 1980, 186, 47–57. [Google Scholar] [CrossRef]
- Shabat, S.K.B.; Sasson, G.; Doron-Faigenboim, A.; Durman, T.; Yaacoby, S.; Berg Miller, M.E.; White, B.A.; Shterzer, N.; Mizrahi, I. Specific Microbiome-Dependent Mechanisms Underlie the Energy Harvest Efficiency of Ruminants. ISME J. 2016, 10, 2958–2972. [Google Scholar] [CrossRef] [PubMed]
- Langille, M.G.; Meehan, C.J.; Koenig, J.E.; Dhanani, A.S.; Rose, R.A.; Howlett, S.E.; Beiko, R.G. Microbial Shifts in the Aging Mouse Gut. Microbiome 2014, 2, 50. [Google Scholar] [CrossRef]
- Lin, P.-P.; Hsieh, Y.-M.; Tsai, C.-C. Antagonistic Activity of Lactobacillus acidophilus RY2 Isolated from Healthy Infancy Feces on the Growth and Adhesion Characteristics of Enteroaggregative Escherichia coli. Anaerobe 2009, 15, 122–126. [Google Scholar] [CrossRef]
- Sreekumar, O.; Hosono, A. Immediate Effect of Lactobacillus acidophilus on the Intestinal Flora and Fecal Enzymes of Rats and the In Vitro Inhibition of Escherichia coli in Coculture. J. Dairy Sci. 2000, 83, 931–939. [Google Scholar] [CrossRef]
- Zhuang, Y. Butyrate Metabolism in Rumen Epithelium Affected by Host and Diet Regime Through Regulating Microbiota in a Goat Model. Anim. Nutr. 2024, in press.
- De Almada, C.N.; Nunes De Almada, C.; Martinez, R.C.R.; Sant’Ana, A.D.S. Characterization of the Intestinal Microbiota and Its Interaction with Probiotics and Health Impacts. Appl. Microbiol. Biotechnol. 2015, 99, 4175–4199. [Google Scholar] [CrossRef]
- Jia, Y.; Shi, Y.; Qiao, H. Bacterial Community and Diversity in the Rumen of 11 Mongolian Cattle as Revealed by 16S rRNA Amplicon Sequencing. Sci. Rep. 2024, 14, 1546. [Google Scholar] [CrossRef]
- Stoffel, M.A.; Acevedo-Whitehouse, K.; Morales-Durán, N.; Grosser, S.; Chakarov, N.; Krüger, O.; Nichols, H.J.; Elorriaga-Verplancken, F.R.; Hoffman, J.I. Early Sexual Dimorphism in the Developing Gut Microbiome of Northern Elephant Seals. Mol. Ecol. 2020, 29, 2109–2122. [Google Scholar] [CrossRef]
- Russell, J.B.; Houlihan, A.J. Ionophore Resistance of Ruminal Bacteria and Its Potential Impact on Human Health. FEMS Microbiol. Rev. 2003, 27, 65–74. [Google Scholar] [CrossRef]
- Piva, M.M.; Echenique, J.V.Z.; Pereira, P.R.; Vielmo, A.; Rosa, R.B.; Perosa, F.F.; Bandinelli, M.B.; Gomes, C.W.C.; Von Hohendorff, R.; Panziera, W.; et al. Monensin Poisoning Outbreak in Free-Ranging and Captive Birds. Vet. Res. Commun. 2023, 48, 607–613. [Google Scholar] [CrossRef]
- Schneider, T.; Kruse, T.; Wimmer, R.; Wiedemann, I.; Sass, V.; Pag, U.; Jansen, A.; Nielsen, A.K.; Mygind, P.H.; Raventós, D.S.; et al. Plectasin, a Fungal Defensin, Targets the Bacterial Cell Wall Precursor Lipid II. Science 2010, 328, 1168–1172. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, L.; Li, Q.; Li, F.; Ma, Z.; Li, F.; Wang, Z.; Chen, L.; Yang, X.; Wang, X.; et al. Effects of Dietary Forage Neutral Detergent Fiber and Rumen Degradable Starch Ratios on Chewing Activity, Ruminal Fermentation, Ruminal Microbes and Nutrient Digestibility of Hu Sheep Fed a Pelleted Total Mixed Ration. J. Anim. Sci. 2024, 102, skae100. [Google Scholar] [CrossRef] [PubMed]
- Creevey, C.J.; Kelly, W.J.; Henderson, G.; Leahy, S.C. Determining the Culturability of the Rumen Bacterial Microbiome. Microb. Biotechnol. 2014, 7, 467–479. [Google Scholar] [CrossRef] [PubMed]
- Khafipour, E.; Li, S.; Tun, H.M.; Derakhshani, H.; Moossavi, S.; Plaizier, J.C. Effects of Grain Feeding on Microbiota in the Digestive Tract of Cattle. Anim. Front. 2016, 6, 13–19. [Google Scholar] [CrossRef]
- Chang, M.N.; Wei, J.Y.; Hao, L.Y.; Ma, F.T.; Li, H.Y.; Zhao, S.G.; Sun, P. Effects of Different Types of Zinc Supplement on the Growth, Incidence of Diarrhea, Immune Function, and Rectal Microbiota of Newborn Dairy Calves. J. Dairy Sci. 2020, 103, 6100–6113. [Google Scholar] [CrossRef]
- Yang, Y.; Teng, D.; Zhang, J.; Tian, Z.; Wang, S.; Wang, J. Characterization of Recombinant Plectasin: Solubility, Antimicrobial Activity and Factors That Affect Its Activity. Process Biochem. 2011, 46, 1050–1055. [Google Scholar] [CrossRef]
- Liang, J.; Nabi, M.; Zhang, P.; Zhang, G.; Cai, Y.; Wang, Q.; Zhou, Z.; Ding, Y. Promising Biological Conversion of Lignocellulosic Biomass to Renewable Energy with Rumen Microorganisms: A Comprehensive Review. Renew. Sustain. Energy Rev. 2020, 134, 110335. [Google Scholar] [CrossRef]
- Amabebe, E.; Robert, F.O.; Agbalalah, T.; Orubu, E.S.F. Microbial Dysbiosis-Induced Obesity: Role of Gut Microbiota in Homoeostasis of Energy Metabolism. Br. J. Nutr. 2020, 123, 1127–1137. [Google Scholar] [CrossRef]
- Fan, Q.; Wanapat, M.; Hou, F. Chemical Composition of Milk and Rumen Microbiome Diversity of Yak, Impacting by Herbage Grown at Different Phenological Periods on the Qinghai-Tibet Plateau. Animals 2020, 10, 1030. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, X.; Xu, D.; Zhang, D.; Zhang, Y.; Song, Q.; Li, X.; Zhao, Y.; Zhao, L.; Li, W.; et al. Relationship between Rumen Microbial Differences and Traits among Hu Sheep, Tan Sheep, and Dorper Sheep. J. Anim. Sci. 2022, 100, skac261. [Google Scholar] [CrossRef]
Items | Contents |
---|---|
Ingredient, % of DM | |
Alfalfa hay | 25.00 |
Corn straw | 25.00 |
Corn | 17.70 |
Corn bran | 16.80 |
Soybean meal | 3.50 |
Cottonseed meal | 3.50 |
Corn germ meal | 5.90 |
Limestone | 0.50 |
NaCl | 0.30 |
Expanded urea | 0.25 |
Lamb premix 1 | 0.25 |
Molasses premix | 1.30 |
Total | 100 |
Proximate composition, % of DM | |
Dry matter (DM) | 89.75 |
Crude protein (CP) | 12.16 |
Neutral detergent fiber (NDF) | 40.83 |
Acid detergent fiber (ADF) | 27.51 |
Items | Control | MON | PLE | SEM | p-Value |
---|---|---|---|---|---|
Gas production, mL | 217 b | 186 b | 338 a | 21.296 | 0.001 |
Ruminal pH | 6.14 a | 6.18 a | 5.99 b | 0.029 | 0.008 |
TVFA (mmol/L) | 50.72 | 34.49 | 62.74 | 5.393 | 0.091 |
Acetate (mol %) | 50.08 | 48.10 | 48.41 | 0.396 | 0.081 |
Propionate (mol %) | 21.65 b | 28.96 a | 18.31 c | 1.228 | <0.001 |
Iso-butyrate (mol %) | 1.08 a | 0.95 b | 1.18 a | 0.031 | 0.001 |
Butyrate (mol %) | 20.82 b | 16.30 c | 25.16 a | 1.053 | <0.001 |
Iso-valerate 1 (mol %) | 3.62 b | 3.07 b | 4.42 a | 0.179 | 0.001 |
Valerate (mol %) | 2.76 | 2.62 | 2.52 | 0.057 | 0.243 |
Acetate/Propionate | 2.32 b | 1.66 c | 2.66 a | 0.117 | <0.001 |
Items | CON | MON | PLE | SEM | p-Value |
---|---|---|---|---|---|
Bacteroidetes | 66.74 a | 53.98 c | 60.58 b | 1.624 | <0.001 |
Firmicutes | 18.81 b | 18.26 b | 26.42 a | 1.397 | 0.014 |
Proteobacteria | 9.21 b | 20.37 a | 5.26 c | 1.805 | <0.001 |
Kiritimatiellaeota | 1.61 b | 2.59 b | 4.28 a | 0.366 | 0.002 |
Cyanobacteria | 1.37 bc | 2.27 a | 1.80 ab | 0.124 | 0.003 |
Spirochaetes | 0.72 a | 0.95 a | 0.18 b | 0.095 | <0.001 |
Patescibacteria | 0.54 b | 0.16 c | 0.75 a | 0.069 | <0.001 |
Synergistetes | 0.41 ab | 0.56 a | 0.26 bc | 0.041 | 0.004 |
Fibrobacteres | 0.18 b | 0.50 a | 0.03 b | 0.059 | <0.001 |
Lentisphaerae | 0.12 | 0.15 | 0.14 | 0.009 | 0.615 |
Others | 0.26 | 0.22 | 0.31 | 0.017 | 0.136 |
Items | CON | MON | PLE | SEM | p-Value |
---|---|---|---|---|---|
Bacteroidetes | |||||
Prevotella | 50.04 a | 41.65 b | 40.49 b | 1.488 | 0.005 |
Paraprevotella | 0.70 | 0.54 | 0.60 | 0.033 | 0.107 |
Bacteroides | 0.82 b | 1.12 a | 0.65 c | 0.057 | <0.001 |
Barnesiella | 0.46 b | 0.83 b | 1.73 a | 0.191 | 0.008 |
Firmicutes | |||||
Succinivibrio | 8.42 b | 16.89 a | 4.71 b | 1.460 | <0.001 |
Succiniclasticum | 3.31 | 3.54 | 3.31 | 0.215 | 0.481 |
Ruminococcus | 2.58 b | 3.96 a | 2.77 b | 0.183 | <0.001 |
Butyrivibrio | 0.48 ab | 0.58 a | 0.31 b | 0.040 | 0.011 |
Lactobacillus | 0.92 | 0.63 | 1.24 | 0.586 | 0.075 |
Spirochaetes | |||||
Treponema | 0.82 a | 1.13 a | 0.13 b | 0.123 | <0.001 |
Synergistetes | |||||
Fretibacterium | 0.47 a | 0.55 a | 0.23 b | 0.048 | 0.006 |
Proteobacteria | |||||
Desulfovibrio | 0.27 b | 0.33 ab | 0.55 a | 0.047 | 0.021 |
Anaerovibrio | 0.35 c | 0.65 a | 0.52 b | 0.034 | <0.001 |
Others | 27.48 b | 24.88 b | 36.42 a | 1.459 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Zhu, B.; Li, F.; Ma, Z.; Guo, L.; Weng, X. Revealing the Potential Advantages of Plectasin Through In Vitro Rumen Fermentation Analysis. Fermentation 2024, 10, 542. https://doi.org/10.3390/fermentation10110542
Li Q, Zhu B, Li F, Ma Z, Guo L, Weng X. Revealing the Potential Advantages of Plectasin Through In Vitro Rumen Fermentation Analysis. Fermentation. 2024; 10(11):542. https://doi.org/10.3390/fermentation10110542
Chicago/Turabian StyleLi, Qinwu, Baozhen Zhu, Fei Li, Zhiyuan Ma, Long Guo, and Xiuxiu Weng. 2024. "Revealing the Potential Advantages of Plectasin Through In Vitro Rumen Fermentation Analysis" Fermentation 10, no. 11: 542. https://doi.org/10.3390/fermentation10110542
APA StyleLi, Q., Zhu, B., Li, F., Ma, Z., Guo, L., & Weng, X. (2024). Revealing the Potential Advantages of Plectasin Through In Vitro Rumen Fermentation Analysis. Fermentation, 10(11), 542. https://doi.org/10.3390/fermentation10110542