The Properties of Pectin Extracted from the Residues of Vinegar-Fermented Apple and Apple Pomace
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pectin Extraction
2.3. Chemical Composition and Physicochemical Properties of Pectin Samples
2.4. Monosaccharide Composition of Pectin Samples
2.5. FTIR, NMR Spectroscopy and XRD Analyses
2.6. Molecular Weight Distribution
2.7. Morphology of Pectin Samples
2.8. Thermal Analysis
2.9. Rheological Analysis
2.9.1. Steady Shear Properties
2.9.2. Dynamic Viscoelastic Properties
2.10. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition and Physicochemical Properties of Pectin Samples
3.2. Monosaccharide Composition of Pectin Samples
3.3. FTIR, NMR, XRD, Molecular Weight, and SEM Analysis
3.4. TG/DTG and DSC Analysis
3.5. Rheological Analysis
3.5.1. Temperature Sweep Test
3.5.2. Dynamic Viscoelastic Analysis
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Panwar, D.; Panesar, P.S.; Chopra, H.K. Ultrasound-Assisted Extraction of Pectin from Citrus Limetta Peels: Optimization, Characterization, and Its Comparison with Commercial Pectin. Food Biosci. 2023, 51, 102231. [Google Scholar] [CrossRef]
- Roman-Benn, A.; Contador, C.A.; Li, M.-W.; Lam, H.-M.; Ah-Hen, K.; Ulloa, P.E.; Ravanal, M.C. Pectin: An Overview of Sources, Extraction and Applications in Food Products, Biomedical, Pharmaceutical and Environmental Issues. Food Chem. Adv. 2023, 2, 100192. [Google Scholar] [CrossRef]
- Guiné, R.P.F.; Barroca, M.J.; Coldea, T.E.; Bartkiene, E.; Anjos, O. Apple Fermented Products: An Overview of Technology, Properties and Health Effects. Processes 2021, 9, 223. [Google Scholar] [CrossRef]
- Ousaaid, D.; Laaroussi, H.; Mechchate, H.; Bakour, M.; El Ghouizi, A.; Mothana, R.A.; Noman, O.; Es-Safi, I.; Lyoussi, B.; El Arabi, I. The Nutritional and Antioxidant Potential of Artisanal and Industrial Apple Vinegars and Their Ability to Inhibit Key Enzymes Related to Type 2 Diabetes In Vitro. Molecules 2022, 27, 567. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, L.; Tan, B.; Li, R. Effect of Structural Characteristics on the Physicochemical Properties and Functional Activities of Dietary Fiber: A Review of Structure-Activity Relationship. Int. J. Biol. Macromol. 2024, 269, 132214. [Google Scholar] [CrossRef]
- Wang, Y.-Q.; Wang, J.-D.; Cai, Z.-H.; Huang, H.; Zhang, S.; Fu, L.-N.; Zhao, P.-Q.; Yan, X.-Y.; Fu, Y.-J. Improved Physicochemical and Functional Properties of Dietary Fiber from Rosa Roxburghii Pomace Fermented by Bacillus Natto. Food Biosci. 2022, 50, 102030. [Google Scholar] [CrossRef]
- Xu, F.; Zhang, S.; Waterhouse, G.I.N.; Zhou, T.; Du, Y.; Sun-Waterhouse, D.; Wu, P. Yeast Fermentation of Apple and Grape Pomaces Affects Subsequent Aqueous Pectin Extraction: Composition, Structure, Functional and Antioxidant Properties of Pectins. Food Hydrocoll. 2022, 133, 107945. [Google Scholar] [CrossRef]
- Jiang, Y.; Du, J.; Zhang, L.; Li, W. Properties of Pectin Extracted from Fermented and Steeped Hawthorn Wine Pomace: A Comparison. Carbohydr. Polym. 2018, 197, 174–182. [Google Scholar] [CrossRef]
- Jia, F.; Guo, Y.; Liu, D.; Yang, X.; Deng, H.; Meng, Y. Effect of Fermentation on the Polysaccharides Processing Characteristics in Apple Pomace. Sci. Agric. Sinica 2016, 49, 3831–3844. [Google Scholar]
- Yılmaz, M.; Muslu, A.; Karasu, S.; Bozkurt, F.; Dertli, E. Optimization of Pectin Extraction from Orange Pulp and Characterization of Compositional and Steady Shear Properties. J. Tekirdag Agric. Fac. 2017, 14, 71–80. [Google Scholar]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Al-Amoudi, R.H.; Taylan, O.; Kutlu, G.; Can, A.M.; Sagdic, O.; Dertli, E.; Yilmaz, M.T. Characterization of Chemical, Molecular, Thermal and Rheological Properties of Medlar Pectin Extracted at Optimum Conditions as Determined by Box-Behnken and ANFIS Models. Food Chem. 2019, 271, 650–662. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Bu, F.; Chen, X.; Li, C.; Wang, S.; Kan, J. Ultrasonic Extraction, Structural Characterization, Physicochemical Properties and Antioxidant Activities of Polysaccharides from Bamboo Shoots (Chimonobambusa quadrangularis) Processing by-Products. Int. J. Biol. Macromol. 2018, 112, 656–666. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Wu, Y.; Chen, S.-W.; Zhu, S.; Yin, H.-P.; Wang, M.; Tang, J. Sugar Compositional Determination of Polysaccharides from Dunaliella Salina by Modified RP-HPLC Method of Precolumn Derivatization with 1-Phenyl-3-Methyl-5-Pyrazolone. Carbohydr. Polym. 2010, 82, 629–635. [Google Scholar] [CrossRef]
- Karadag, A.; Pelvan, E.; Dogan, K.; Celik, N.; Ozturk, D.; Akalın, K.; Alasalvar, C. Optimisation of Green Tea Polysaccharides by Ultrasound-Assisted Extraction and Their In Vitro Antidiabetic Activities. Qual. Assur. Saf. Crops Foods 2019, 11, 479–490. [Google Scholar] [CrossRef]
- Ponmurugan, K.; Al-Dhabi, N.A.; Maran, J.P.; Karthikeyan, K.; Moothy, I.G.; Sivarajasekar, N.; Manoj, J.J.B. Ultrasound Assisted Pectic Polysaccharide Extraction and Its Characterization from Waste Heads of Helianthus Annus. Carbohydr. Polym. 2017, 173, 707–713. [Google Scholar] [CrossRef]
- Wang, J.; Lin, M.; Shi, L.; Zhao, Y.; Liu, S.; Liu, Z.; Lin, R.; Jin, R.; Weng, W.; Ren, Z. Characteristics and stabilization of Pickering emulsions constructed using myosin from bighead carp (Aristichthys nobilis). Food Chem. 2024, 456, 140033. [Google Scholar] [CrossRef]
- Kozioł, A.; Środa-Pomianek, K.; Górniak, A.; Wikiera, A.; Cyprych, K.; Malik, M. Structural Determination of Pectins by Spectroscopy Methods. Coatings 2022, 12, 546. [Google Scholar] [CrossRef]
- Scharf, S.; Kersten, A.-K.; Lentzsch, P.; Meurer, P. Analysis of Pectolytic Enzymes and Alternaria spp. in Fresh Dill, Mustard Seeds, Onions, and Vinegar, and Their Influence on the Softening of Pickled Cucumbers. J. Food Sci. 2022, 87, 808–818. [Google Scholar] [CrossRef]
- Jong, S.H.; Abdullah, N.; Muhammad, N. Effect of Acid Type and Concentration on the Yield, Purity, and Esterification Degree of Pectin Extracted from Durian Rinds. Results Eng. 2023, 17, 100974. [Google Scholar] [CrossRef]
- Luo, J.; Xu, Y.; Fan, Y. Upgrading Pectin Production from Apple Pomace by Acetic Acid Extraction. Appl. Biochem. Biotechnol. 2019, 187, 1300–1311. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, T.; Hours, R.A.; Sakai, T. Enzymic Pectin Extraction from Protopectins Using Microbial Protopectinases. Process Biochem. 1995, 30, 403–409. [Google Scholar] [CrossRef]
- Jayani, R.S.; Saxena, S.; Gupta, R. Microbial Pectinolytic Enzymes: A Review. Process Biochem. 2005, 40, 2931–2944. [Google Scholar] [CrossRef]
- Chen, J.; Yang, R.; Chen, M.; Wang, S.; Li, P.; Xia, Y.; Zhou, L.; Xie, J.; Wei, D. Production Optimization and Expression of Pectin Releasing Enzyme from Aspergillus oryzae PO. Carbohydr. Polym. 2014, 101, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Sakai, T.; Okushima, M. Microbial Production of Pectin from Citrus Peel. Appl. Environ. Microbiol. 1980, 39, 908–912. [Google Scholar] [CrossRef]
- Babbar, N.; Dejonghe, W.; Gatti, M.; Sforza, S.; Elst, K. Pectic Oligosaccharides from Agricultural By-Products: Production, Characterization and Health Benefits. Crit. Rev. Biotechnol. 2016, 36, 594–606. [Google Scholar] [CrossRef]
- Gawkowska, D.; Cybulska, J.; Zdunek, A. Structure-Related Gelling of Pectins and Linking with Other Natural Compounds: A Review. Polymers 2018, 10, 762. [Google Scholar] [CrossRef]
- Muñoz-Almagro, N.; Valadez-Carmona, L.; Mendiola, J.A.; Ibáñez, E.; Villamiel, M. Structural Characterisation of Pectin Obtained from Cacao Pod Husk. Comparison of Conventional and Subcritical Water Extraction. Carbohydr. Polym. 2019, 217, 69–78. [Google Scholar] [CrossRef]
- Rahmani, Z.; Khodaiyan, F.; Kazemi, M.; Sharifan, A. Optimization of Microwave-Assisted Extraction and Structural Characterization of Pectin from Sweet Lemon Peel. Int. J. Biol. Macromol. 2020, 147, 1107–1115. [Google Scholar] [CrossRef]
- Fellah, A.; Anjukandi, P.; Waterland, M.R.; Williams, M.A.K. Determining the Degree of Methylesterification of Pectin by ATR/FT-IR: Methodology Optimisation and Comparison with Theoretical Calculations. Carbohydr. Polym. 2009, 78, 847–853. [Google Scholar] [CrossRef]
- Santos, E.E.; Amaro, R.C.; Bustamante, C.C.C.; Guerra, M.H.A.; Soares, L.C.; Froes, R.E.S. Extraction of Pectin from Agroindustrial Residue with an Ecofriendly Solvent: Use of FTIR and Chemometrics to Differentiate Pectins According to Degree of Methyl Esterification. Food Hydrocoll. 2020, 107, 105921. [Google Scholar] [CrossRef]
- Baum, A.; Dominiak, M.; Vidal-Melgosa, S.; Willats, W.G.T.; Søndergaard, K.M.; Hansen, P.W.; Meyer, A.S.; Mikkelsen, J.D. Prediction of Pectin Yield and Quality by FTIR and Carbohydrate Microarray Analysis. Food Bioprocess Technol. 2017, 10, 143–154. [Google Scholar] [CrossRef]
- Lutz, R.; Aserin, A.; Wicker, L.; Garti, N. Structure and Physical Properties of Pectins with Block-Wise Distribution of Carboxylic Acid Groups. Food Hydrocoll. 2009, 23, 786–794. [Google Scholar] [CrossRef]
- Lin, Y.; An, F.; He, H.; Geng, F.; Song, H.; Huang, Q. Structural and Rheological Characterization of Pectin from Passion Fruit (Passiflora edulis f. flavicarpa) Peel Extracted by High-Speed Shearing. Food Hydrocoll. 2021, 114, 106555. [Google Scholar] [CrossRef]
- Barbosa Ribeiro, A.C.; Pacheco Cunha, A.; Nobre Pinho Ribeiro, M.E.; Salles Trevisan, M.T.; Clemente Serra Azul, F.V.; Almeida Moreira Leal, L.K.; Pontes Silva Ricardo, N.M. Cashew Apple Pectin as a Carrier Matrix for Mangiferin: Physicochemical Characterization, In Vitro Release and Biological Evaluation in Human Neutrophils. Int. J. Biol. Macromol. 2021, 171, 275–287. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, Z.; Yu, S.; Guo, X.; Ai, C.; Tang, X.; Chen, H.; Lin, J.; Zhang, X.; Meng, H. Effects of PH and Temperature on the Structure, Rheological and Gel-Forming Properties of Sugar Beet Pectins. Food Hydrocoll. 2021, 116, 106646. [Google Scholar] [CrossRef]
- Westerlund, E.; Åman, P.; Andersson, R.; Andersson, R.E.; Rahman, S.M.M. Chemical Characterization of Water-Soluble Pectin in Papaya Fruit. Carbohydr. Polym. 1991, 15, 67–78. [Google Scholar] [CrossRef]
- Marcon, M.V.; Carneiro, P.I.B.; Wosiacki, G.; Beleski-Carneiro, E. Pectins from Apple Pomace—Characterization by 13 C and H NMR Spectroscopy. Available online: http://auremn.org.br/Annals/2005-vol4-num3/2005-vol4-num3-56-63.pdf (accessed on 30 June 2024).
- Ma, X.; Wang, D.; Chen, W.; Ismail, B.B.; Wang, W.; Lv, R.; Ding, T.; Ye, X.; Liu, D. Effects of Ultrasound Pretreatment on the Enzymolysis of Pectin: Kinetic Study, Structural Characteristics and Anti-Cancer Activity of the Hydrolysates. Food Hydrocoll. 2018, 79, 90–99. [Google Scholar] [CrossRef]
- Taboada, E.; Fisher, P.; Jara, R.; Zúñiga, E.; Gidekel, M.; Cabrera, J.C.; Pereira, E.; Gutiérrez-Moraga, A.; Villalonga, R.; Cabrera, G. Isolation and Characterisation of Pectic Substances from Murta (Ugni molinae Turcz) Fruits. Food Chem. 2010, 123, 669–678. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, D.; Xia, W.; Guo, Y.; Luo, Y.; Xue, J. Physicochemical and Functional Properties of RG-I Enriched Pectin Extracted from Thinned-Young Apples. Int. J. Biol. Macromol. 2023, 236, 123953. [Google Scholar] [CrossRef]
- Wang, W.; Ma, X.; Jiang, P.; Hu, L.; Zhi, Z.; Chen, J.; Ding, T.; Ye, X.; Liu, D. Characterization of Pectin from Grapefruit Peel: A Comparison of Ultrasound-Assisted and Conventional Heating Extractions. Food Hydrocoll. 2016, 61, 730–739. [Google Scholar] [CrossRef]
- Combo, A.M.M.; Aguedo, M.; Quiévy, N.; Danthine, S.; Goffin, D.; Jacquet, N.; Blecker, C.; Devaux, J.; Paquot, M. Characterization of Sugar Beet Pectic-Derived Oligosaccharides Obtained by Enzymatic Hydrolysis. Int. J. Biol. Macromol. 2013, 52, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Aburto, J.; Moran, M.; Galano, A.; Torres-García, E. Non-Isothermal Pyrolysis of Pectin: A Thermochemical and Kinetic Approach. J. Anal. Appl. Pyrolysis 2015, 112, 94–104. [Google Scholar] [CrossRef]
- Liang, W.-L.; Liao, J.-S.; Qi, J.-R.; Jiang, W.-X.; Yang, X.-Q. Physicochemical Characteristics and Functional Properties of High Methoxyl Pectin with Different Degree of Esterification. Food Chem. 2022, 375, 131806. [Google Scholar] [CrossRef]
- Einhorn-Stoll, U.; Kunzek, H.; Dongowski, G. Thermal Analysis of Chemically and Mechanically Modified Pectins. Food Hydrocoll. 2007, 21, 1101–1112. [Google Scholar] [CrossRef]
- Einhorn-Stoll, U.; Kunzek, H. Thermoanalytical Characterisation of Processing-Dependent Structural Changes and State Transitions of Citrus Pectin. Food Hydrocoll. 2009, 23, 40–52. [Google Scholar] [CrossRef]
- Karadag, A.; Ozkan, K.; Sagdic, O. Development of Microencapsulated Grape Juice Powders Using Black “Isabel” Grape Peel Pectin and Application in Jelly Formulation with Enhanced In Vitro Bioaccessibility of Anthocyanins. J. Food Sci. 2024, 89, 2067–2083. [Google Scholar] [CrossRef]
- Jiang, Y.; Du, J. Properties of High-methoxyl Pectin Extracted from “Fuji” Apple Pomace in China. J. Food Process Eng. 2017, 40, e12497. [Google Scholar] [CrossRef]
- Wang, C.; Qiu, W.-Y.; Chen, T.-T.; Yan, J.-K. Effects of Structural and Conformational Characteristics of Citrus Pectin on Its Functional Properties. Food Chem. 2021, 339, 128064. [Google Scholar] [CrossRef]
- Chan, S.Y.; Choo, W.S.; Young, D.J.; Loh, X.J. Pectin as a Rheology Modifier: Origin, Structure, Commercial Production and Rheology. Carbohydr. Polym. 2017, 161, 118–139. [Google Scholar] [CrossRef]
- Schmelter, T.; Wientjes, R.; Vreeker, R.; Klaffke, W. Enzymatic Modifications of Pectins and the Impact on Their Rheological Properties. Carbohydr. Polym. 2002, 47, 99–108. [Google Scholar] [CrossRef]
- Karasu, S.; Toker, O.S.; Yilmaz, M.T.; Karaman, S.; Dertli, E. Thermal Loop Test to Determine Structural Changes and Thermal Stability of Creamed Honey: Rheological Characterization. J. Food Eng. 2015, 150, 90–98. [Google Scholar] [CrossRef]
- Arslan, N. Its Physıcochemical Properties, Production and Its Use In Food. Gida J. Food 1994, 19. [Google Scholar]
- Min, B.; Lim, J.; Ko, S.; Lee, K.-G.; Lee, S.H.; Lee, S. Environmentally Friendly Preparation of Pectins from Agricultural Byproducts and Their Structural/Rheological Characterization. Bioresour. Technol. 2011, 102, 3855–3860. [Google Scholar] [CrossRef]
- Ren, Z.; Li, Z.; Chen, Z.; Zhang, Y.; Lin, X.; Weng, W.; Yang, H.; Li, B. Characteristics and application of fish oil-in-water pickering emulsions structured with tea water-insoluble proteins/κ-carrageenan complexes. Food Hydrocoll. 2021, 114, 106562. [Google Scholar] [CrossRef]
Parameters | Unit | AP | FAP | FAPP |
---|---|---|---|---|
Yield | % | 23.2 ± 1.31 b | 32.4 ± 1.95 a | 30.2 ± 2.10 a |
DM 1 | 57.2 ± 0.56 a | 50 ± 0.11 b | 57.9 ± 0.6 a | |
DM 2 | 58.5 ± 0.10 a | 55.2 ± 0.20 b | 58.5 ± 0.10 a | |
Protein content | g/100 g dw | 1.25 ± 0.21 a | 0.76 ± 0.08 b | 0.70 ± 0.02 b |
Total phenolic content | mg GAE /100 g dw | 1.10 ± 0.02 b | 1.36 ± 0.07 a | 0.97 ± 0.17 b |
Monosaccharide composition | ||||
Mannose (Man) | mol% | 0.25 ± 0.02 c | 0.89 ± 0.00 a | 0.83 ± 0.01 b |
Rhamnose (Rha) | 2.00 ± 0.01 b | 2.69 ± 0.13 c | 2.34 ± 0.03 a | |
Glucuronic acid (GlcA) | 0.03 ± 0.01 c | 0.39 ± 0.02 a | 0.12 ± 0.01 b | |
Galacturonic acid (GalA) | 72.2 ± 0.03 b | 80.1 ± 0.57 a | 61.9 ± 0.05 c | |
Galactose (Gal) | 15.9 ± 0.02 b | 6.43 ± 0.07 c | 16.8 ± 0.08 a | |
Xylose (Xyl) | 0.69 ± 0.01 b | 0.37 ± 0.02 c | 1.70 ± 0.14 a | |
Arabinose (Ara) | 7.89 ± 0.01 c | 8.84 ± 0.44 b | 14.2 ± 0.12 a | |
Fucose (Fuc) | 1.06 ± 0.08 b | 0.29 ± 0.02 c | 2.10 ± 0.04 a | |
Homogalacturonan (HG) | 70.4 ± 0.19 b | 77.4 ± 0.71 a | 59.6 ± 0.08 c | |
Rhamnogalacturonan I (RG-I) | 27.9 ± 0.09 b | 20.7 ± 0.64 c | 35.6 ± 0.26 a | |
GalA/(Fuc + Rha + Ara + Gal + Xyl) | 2.62 ± 0.01 b | 4.30 ± 0.16 a | 1.67 ± 0.01 c | |
(Gal + Ara)/Rha | 11.9 ± 0.03 a | 5.68 ± 0.14 c | 13.2 ± 0.10 b | |
Rha/GalA | 0.03 ± 0.00 b | 0.03 ± 00 b | 0.04 ± 0.00 a | |
Color | ||||
L* | 72.2 ± 1.39 b | 88.1 ± 0.63 a | 73 ± 0.28 b | |
a* | 6.63 ± 0.22 a | 2.86 ± 0.31 b | 6.59 ± 0.08 a | |
b* | 17.7 ± 0.31 b | 12.2 ± 0.41 c | 21.1 ± 0.51 a |
Concentration (w/v) | Sample | r2 | K (Pa.sn) | n |
---|---|---|---|---|
5% | AP | 0.99 | 1.05 ± 0.01 Bc | 0.84 ± 0.006 Aa |
FAP | 0.99 | 0.51 ± 0.01 Cc | 0.85 ± 0.010 Aa | |
FAPP | 0.99 | 2.50 ± 0.06 Ac | 0.78 ± 0.004 Ba | |
7% | AP | 0.99 | 4.21 ± 0.10 Bb | 0.76 ± 0.007 Ab |
FAP | 0.99 | 2.31 ± 0.05 Cb | 0.74 ± 0.01 Bb | |
FAPP | 0.99 | 11.9 ± 0.27 Ab | 0.66 ± 0.005 Cb | |
10% | AP | 0.99 | 35.8 ± 0.31 Ba | 0.53 ± 0.003 Bc |
FAP | 0.99 | 20.1 ± 0.10 Ca | 0.54 ± 0.004 Ac | |
FAPP | 0.99 | 78.4 ± 1.24 Aa | 0.45 ± 0.006 Cc |
Concentration (w/v) | Sample | r2 | Ao | Ea (kJ/mol) |
---|---|---|---|---|
5% | AP | 0.99 | 0.000019 Ab | 195 ± 0.49 Aa |
FAP | 0.94 | 0.000232 Ab | 177 ± 12.50 Ab | |
FAPP | 0.99 | 0.000353 Ac | 194 ± 4.04 Aa | |
7% | AP | 0.99 | 0.000527 Bb | 196 ± 1.33 Aa |
FAP | 0.99 | 0.000220 Bb | 200 ± 3.98 Aa | |
FAPP | 0.99 | 0.001764 Ab | 182 ± 6.31 Bb | |
10% | AP | 0.99 | 0.004714 Ba | 166 ± 5.18 Bb |
FAP | 0.99 | 0.000839 Ca | 195 ± 1.99 Aab | |
FAPP | 0.99 | 0.010370 Aa | 157 ± 0.42 Cc |
Concentration (w/v) | Samples | R′ | K′ | n′ | r″ | K″ | n″ |
---|---|---|---|---|---|---|---|
5% | AP | 0.97 | 0.20 ± 0.01 Bb | 0.73 ± 0.01 Cc | 0.99 | 0.94 ± 0.03 Bc | 0.87 ± 0.01 Aa |
FAP | 0.99 | 0.02 ± 0.00 Cc | 1.49 ± 0.09 Aa | 0.99 | 0.43 ± 0.01 Cc | 0.88 ± 0.01 Aa | |
FAPP | 0.99 | 0.31 ± 0.01 Ac | 0.99 ± 0.01 Ba | 0.99 | 2.32 ± 0.08 Ac | 0.77 ± 0.01 Ba | |
7% | AP | 0.99 | 0.36 ± 0.04 Cb | 1.17 ± 0.04 Aa | 0.99 | 4.35 ± 0.16 Bb | 0.74 ± 0.01 Ab |
FAP | 0.99 | 0.62 ± 0.08 Bb | 0.84 ± 0.08 Bb | 0.99 | 2.33 ± 0.18 Cb | 0.72 ± 0.02 Ab | |
FAPP | 0.99 | 2.05 ± 0.15 Ab | 0.95 ± 0.02 Bb | 0.99 | 10.9 ± 0.18 Ab | 0.65 ± 0.01 Bb | |
10% | AP | 0.99 | 6.70 ± 0.26 Ba | 0.84 ± 0.02 Ab | 0.99 | 24.7 ± 0.03 Ba | 0.58 ± 0.02 Bc |
FAP | 0.99 | 5.38 ± 0.32 Ca | 0.76 ± 0.01 Bb | 0.99 | 13.8 ± 0.08 Ca | 0.59 ± 0.01 Ac | |
FAPP | 0.99 | 22.8 ± 0.54 Aa | 0.70 ± 0.01 Cc | 0.99 | 53.2 ± 0.45 Aa | 0.50 ± 0.01 Cc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muslu Can, A.; Metin Yildirim, R.; Karadag, A. The Properties of Pectin Extracted from the Residues of Vinegar-Fermented Apple and Apple Pomace. Fermentation 2024, 10, 556. https://doi.org/10.3390/fermentation10110556
Muslu Can A, Metin Yildirim R, Karadag A. The Properties of Pectin Extracted from the Residues of Vinegar-Fermented Apple and Apple Pomace. Fermentation. 2024; 10(11):556. https://doi.org/10.3390/fermentation10110556
Chicago/Turabian StyleMuslu Can, Asli, Rusen Metin Yildirim, and Ayse Karadag. 2024. "The Properties of Pectin Extracted from the Residues of Vinegar-Fermented Apple and Apple Pomace" Fermentation 10, no. 11: 556. https://doi.org/10.3390/fermentation10110556
APA StyleMuslu Can, A., Metin Yildirim, R., & Karadag, A. (2024). The Properties of Pectin Extracted from the Residues of Vinegar-Fermented Apple and Apple Pomace. Fermentation, 10(11), 556. https://doi.org/10.3390/fermentation10110556