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Abstract: To improve the quality of palm kernel meal (PKM), the effect of solid-state fermentation
(SSF) with Bacillus velezensis, Saccharomyces cerevisiae and Lactobacillus paracasei on nutritional com-
ponents, anti-nutritional factor and antioxidant activity were investigated. The results show that
inoculation ratio of three strains 4:2:1, inoculation amount 21%, moisture content 52%, fermentation
temperature 34 ◦C and fermentation time 60 h were the optimal SSF conditions. After 60 h of fermen-
tation, the content of neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin
(ADL), cellulose and hemicellulose in PKM were significantly decreased by 22.5%, 18.2%, 20.2%,
17.6% and 32.4%, respectively. Meanwhile, the content of crude protein, soluble protein, peptides,
amino acids and reducing sugar were increased significantly by 27.3%, 193%, 134%, 16.3% and
228%, respectively. SSF significantly improved the total phenolic content, DPPH radical scavenging
activity, hydroxyl radical scavenging activity and reducing power. In addition, in vitro dry matter
digestibility (IVDMD) and in vitro crude protein digestibility (IVCPD) were increased. Scanning
electron microscopy (SEM) analysis revealed microstructural alterations in PKM. The results indicate
that SSF with B. velezensis, S. cerevisiae and L. paracasei is an effective and promising method to enhance
the nutritional value and antioxidant activity of PKM, providing a feasible solution for increasing the
utilization of PKM in animal feed.

Keywords: palm kernel meal; solid-sate fermentation; anti-nutritional factor; nutritional value;
antioxidant activity

1. Introduction

In general, agro-industrial processes produce large quantities of by-products annually.
If not properly managed, these by-products can negatively impact the environment and
result in the inefficient use of valuable resources. Palm kernel meal (PKM) is the by-
product of palm oil extraction. The world supply of palm oil and PKM is expected to reach
approximately 79.63 million metric tons and 10.72 million metric tons, respectively, by
2024 [1]. To efficiently utilize PKM, its applications have been explored in organic fertilizer,
feed for animals, power and steam production and energy production using biogas or
combustion [2]. PKM contains approximately 12–21% crude protein as well as some
minerals such as calcium, manganese, zinc and sodium, and it is relatively inexpensive,
making it a potential protein source for animal feed [3,4]. PKM is commonly used in
ruminant diets, but its use is limited in nonruminant diets, such as those for swine and
poultry, due to its high fiber content, which is an anti-nutritional factor [3,5]. Dietary fiber
retards the digestibility of nutrients in monogastric animals and reduces the surface area,
width and height of intestinal villi in poultry [6]. PKM utilization is also limited by other
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factors such as low protein, poor amino acid balance and poor nutrient digestibility [3,7].
Therefore, efforts should be focused on exploring techniques for improving PKM quality to
enhance its application potential in the feed industry.

The available literature for research on the solid-state fermentation (SSF) with ap-
propriate microbial strains validate that SSF is an efficient way to reduce anti-nutritional
factors, improve nutritional components and functional properties of feed resources [8–10].
SSF has generally been carried out using Bacillus, Lactobacillus, yeast and mold [8,9,11]. For
instance, SSF of soybean meal with Lactobacillus paracasei subsp. paracasei increased the
content of organic acids, free amino acids and bioactive isoflavones [4]. SSF with Bacil-
lus subtilis, Saccharomyces cerevisiae and Bacillus amyloliquefaciens enhanced the nutritional
content and antioxidant activity, and lowered the content of anti-nutritional factors [12].
Bacillus velezensis, a novel species explored in recent years, is a non-toxic probiotic which
exhibits significant potential in promoting the growth of aquaculture animals [13,14]. The
SSF of soybean meal with B. velezensis led to an improvement in nutritional value, revealing
the application potential of B. velezensis in the fermentation of feed resources [15,16].

The beneficial effects of SSF in enhancing the quality of PKM have been documented,
which primarily focused on fiber reduction and crude protein enhancement [17–19]. To the
best of our knowledge, SSF of PKM studies related to peptides, amino acids, total phenolics
and antioxidant activity have been less investigated. Trichoderma harzianum, Trichoderma lon-
giobrachiatum, Trichoderma koninggi, Aspergillus niger, Aspergillus oryzae, Aspergillus awamori,
B. amyloliquefaciens, Paenibacillus curdlanolyticus, Paenibacillus polymyxa, Bacillus megaterium
and Sclerotium rolfsii have been employed for SSF of PKM [17–19]. However, the potential
of SSF using B. velezensis, L. paracasei and S. cerevisiae to enhance the nutritional value and
antioxidant activity of PKM has not yet been explored.

Based on the above, the present study attempted to improve the quality of PKM by SSF
with a combination of B. velezensis, S. cerevisiae and L. paracasei. After the essential conditions
affecting SSF were optimized, the influence of SSF on nutritional components, anti-nutritional
factor and antioxidant activity were investigated. In addition, the changes in microbial count,
in vitro digestibility and microstructure of PKM before and after fermentation were evaluated.

2. Materials and Methods
2.1. Materials

Strain selection was primarily based on the ability to hydrolyze cellulose and mannan
(using sodium carboxymethyl cellulose and konjac mannan as sole carbon sources) and
secondarily on the capacity of producing reducing sugar during SSF. Lastly, B. velezensis
WZ1, S. cerevisiae NJ1 and L. paracasei LC86 were selected for the SSF of PKM based on
the comprehensive capacity described above. L. paracasei LC86 was purchased from Wecare
Probiotics Co., Ltd. (Suzhou, China). B. velezensis WZ1 and S. cerevisiae NJ1 were obtained from
Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute
of Technology. PKM was provided by Shandong Changrong Hanyuan Biotechnology Co.,
Ltd. (Binzhou, China). After drying at 60 ◦C for 24 h, PKM was milled and passed through a
40-mesh sieve before use. All chemicals used in the experiment were of analytical grade.

2.2. SSF of PKM

For preparation of starters, fresh cultures of B. velezensis, S. cerevisiae and L. paracasei
were aseptically inoculated to LB (Luria-Bertani), MRS (de Man, Rogosa and Sharpe) and
YPD (Yeast Extract Peptone Dextrose) media, respectively. B. velezensis was cultured at 37 ◦C,
180 rpm for 18 h. S. cerevisiae was cultured at 30 ◦C, 180 rpm for 18 h. L. paracasei was cultured
at 30 ◦C, 180 rpm for 18 h. The culture broth of three strains were mixed in a ratio of 1:1:1. Then,
the PKM was inoculated with 20% (v/w) of the mixture of three trains and supplemented
with 30% (v/w) of sterile water. Following thorough mixing, the PKM mixture was incubated
at 37 ◦C for 48 h. After SSF, samples of unfermented PKM and FPKM at 36 h (36 h FPKM),
48 h (48 h FPKM) and 60 h (60 h FPKM) were dried at 60 ◦C for 18 h for further analysis.
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2.3. Optimization of SSF Conditions

The conditions for SSF of PKM with B. velezensis, S. cerevisiae and L. paracasei were
optimized using reducing sugar as an indicator. Initially, a single-factor experiment (SFE) was
conducted to optimize the inoculation ratio of three strains, inoculation amount, moisture
content, fermentation temperature and fermentation time. Subsequently, response surface
methodology (RSM) was applied using a Box–Behnken design (BBD) with Design-Expert
13 software (Stat-Ease, Inc., Minneapolis, MN, USA) to further optimize significant factors.

2.4. Chemical Compositions

The crude protein content was analyzed by the Kjeldahl method (990.03) [20]. The
lipid content was determined according to the method of Rayaroth et al. [21]. The neutral
detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), cellulose and
hemicellulose content were estimated according to the methods described by Iluyemi et al. [17].
The peptide content was detected according to the method described by Wang et al. [22]. The
amino acid content was analyzed according to our previous research [12].

To determine the reducing sugar content, sample (1 g) was extracted with 9 mL of boiling
water and then incubated at 100 ◦C for 5 min, followed by shaking at 37 ◦C, 180 rpm for 15 min.
After centrifuging at 5000× g for 5 min, the reducing sugar in the supernatant was measured by
DNS regent with glucose as standard [23] and expressed as mg reducing sugar/g dry sample.

To analyze the total phenolic content, sample (5 g) was extracted with 40% ethanol
(100 mL) by shaking at 70 ◦C, 150 rpm for 30 min. After centrifuging at 5000× g for 5 min,
the resulting supernatant was freeze-dried to test the total phenolic content and antioxidant
activity. The total phenolic content was analyzed by Folin–Ciocalteu’s reagent with gallic
acid as standard [24] and expressed as mg total phenolics/g of dry sample.

To measure the soluble protein content, sample (1 g) was extracted with 9 mL of deionized
water by shaking at 28 ◦C, 180 rpm for 60 min. After centrifuging at 5000× g for 5 min, the
protein in the supernatant was measured by the Bradford assay with bovine serum albumin
(BSA) as standard [25] and expressed as mg soluble protein/g of dry sample.

2.5. B. velezensis, S. cerevisiae, L. paracasei Counts

B. velezensis, S. cerevisiae and L. paracasei counts during SSF of PKM at different time
intervals were determined by the plate dilution method. Sample (2 g) was mixed with 20 mL
of deionized water and shaken at 180 rpm, 28 ◦C for 60 min. B. velezensi was enumerated
on LB agar incubated anaerobically at 37 ◦C for 36 h. S. cerevisiae was enumerated on YPD
agar incubated at 30 ◦C for 48 h. L. paracasei was enumerated on MRS (de Man, Rogosa
and Sharpe) agar incubated at 30 ◦C for 60 h. The results are expressed as the logarithm of
colony-forming unit per gram of sample (log CFU/g).

2.6. Total Titratable Acidity

The total titratable acidity (TTA) determination was carried out according to the
method described by Zhao et al. [26], with little difference. Sample (10 g) was mixed
with 90 mL of deionized water and stirred magnetically for 1 h at room temperature. The
suspension was titrated with 0.1 M NaOH to an endpoint at pH 8.2. TTA was expressed as
the volume (mL) of 0.1 M NaOH per gram of sample utilized.

2.7. In Vitro Digestibility

To evaluate the in vitro dry matter digestibility (IVDMD) and in vitro crude protein
digestibility (IVCPD) for nonruminants, a sequential digestion model with pepsin and
trypsin was employed, following the method described by Zhu et al. [27]. Essentially, 2 g
of sample was blended with 100 mL of phosphate buffer (0.1 M, pH 6.0) and 40 mL of HCl
solution (0.2 M). The pH was adjusted to 2.0 with 1 M HCl or 1 M NaOH. Then, 2 mL of
chloramphenicol solution (0.5 g/100 mL ethanol) and 4 mL of 2% pepsin solution were
added and incubated at 39 ◦C, 50 rpm for 2 h. Subsequently, 40 mL of phosphate buffer
(0.2 M, pH 6.8), 20 mL of 0.6 M NaOH and 4 mL of 10% trypsin solution were added. The
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mixture was incubated at 39 ◦C, 50 rpm for 4 h. At the end of digestion, the undigested
residue was collected by filtering through a 50 µm nylon cloth and then washed with
ethanol (2 × 25 mL, 95% ethanol) and acetone (2 × 25 mL, 99.5% acetone). Residue was
dried at 60 ◦C for 24 h and used for dry matter and crude protein analysis. IVDMD and
IVCPD were computed as follows:

IVDMD(IVCPD) = [dry weight (crude protein) of the sample before hydrolysis
− dry weight (crude protein) of the residue]/dry weight (crude protein) of the sample before hydrolysis

(1)

2.8. Antioxidant Activity Determination
2.8.1. DPPH Radical Scavenging Activity

The 2-2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay was carried out
according to the method described by Oskoueian et al. [28]. In brief, 1 mL of 0.2 mM DPPH
solution was added to 1 mL of sample solution, and the mixture was reacted in the dark at
25 ◦C for 30 min. The absorbance was measured at 517 nm. The scavenging activity was
calculated using the following equation:

DPPH radical scavenging activity (%) = [1 − (A1 − A2)/A0)] × 100% (2)

where A0, A1 and A2 represent the absorbance of DPPH in ethanol, the sample mixed with
DPPH and the sample in ethanol solution, respectively.

2.8.2. Hydroxyl Radical Scavenging Activity

Hydroxyl radical scavenging activity was measured by the method reported by
Jiang et al. [29] with slight modification. Briefly, 1 mL of sample solution was mixed
with 1 mL of 6 mM ferrous sulfate solution and 1 mL of 6 mM salicylic acid ethanol solution
(70%). The reaction was initiated by adding 1.0 mL of 6 mM H2O2 solution. The mixture
was incubated at 37 ◦C for 30 min and the absorbance was measured at 510 nm. The
hydroxyl radical scavenging activity was calculated by the following equation:

Hydroxyl radical scavenging activity (%) = [1 − (A1 − A2)/A0)] × 100% (3)

where A0, A1 and A2 represent the absorbance of the H2O2 in deionized water, the sample
mixed with H2O2 and the sample in deionized water, respectively.

2.8.3. Reducing Power

Reducing power was determined following a previously reported method [30]. Briefly,
2.5 mL of sample solution was mixed with 2.5 mL of phosphate buffer (0.2 M, pH 6.6) and 1 mL
of 1% potassium ferricyanide solution. The mixture was incubated at 50 ◦C for 20 min. Then,
2.5 mL of 10% trichloroacetic acid solution was added and centrifuged at 4000 rpm for 5 min.
Subsequently, 2.5 mL of the supernatant, 2.5 mL of deionized water and 0.5 mL of 1% ferric
chloride solution were mixed and reacted for 10 min at room temperature. After centrifugation
at 6000 rpm for 10 min, the absorbance of the supernatant at 700 nm was detected.

2.9. Scanning Electron Microscope Analysis

The PKM samples before and after fermentation were dried and crushed through an
80-mesh sieve. Then, the samples were fixed to the specimen holder and sputter-coated with
gold. The microstructures of PKM and FPKM were observed using field-emission scanning
electron microscopy (SEM; Quanta 250 FEG, FEI, Hillsboro, OR, USA) at ×4000 magnification.

2.10. Statistical Analysis

All experiments were performed in triplicate, and the data were expressed as
mean ± standard deviation. Statistical analyses were performed by OriginPro 8 software
(OriginLab Corp, Northampton, MA, USA). Data were analyzed for mean differences by
one-way analysis of variance (ANOVA) using the Tukey test at a significance level of p < 0.05.
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3. Results and Discussion
3.1. SFE Optimization
3.1.1. Inoculation Ratio of Three Strains

Appropriate inoculation ratio of microorganisms is essential for effective SSF, as
microorganisms work synergistically in multi-microbial fermentation [31]. As shown in
Table 1, the optimal inoculation ratio of B. velezensis, S. cerevisiae and L. paracasei was 4:2:1,
yielding the highest value of reducing sugar (66.8 mg/g), which was 2.28 times that of the
unfermented PKC (29.3 mg/g). Similarly, the inoculation ratio of B. velezensis, Enterococcus
faecium and Saccharomyces boulardii was investigated in the SSF of soybean meal with an
optimal ratio at 3:2:3 [13].

Table 1. Effect of inoculation ratio of three strains on reducing sugar yield in FPKM.

Group B. velezensis S. cerevisiae L. paracasei Reducing Sugar (mg/g)

PKM 0 0 0 29.3 f ± 1.1
FPKM 1 1 1 1 57.6 de ± 2.3
FPKM 2 1 2 2 58.1 de ± 2.0
FPKM 3 1 4 4 56.3 e ± 2.1
FPKM 4 2 1 2 59.7 d ± 1.2
FPKM 5 2 2 4 60.1 cd ± 2.0
FPKM 6 2 4 1 62.4 bc ± 2.1
FPKM 7 4 1 4 62.6 bc ± 1.0
FPKM 8 4 2 1 66.8 a ± 1.7
FPKM 9 4 4 2 64.4 ab ± 1.5

Note: Different superscript letters above the same row indicated significant difference (p < 0.05).

3.1.2. Moisture Content

The reducing sugar content was increased significantly (p < 0.01) as moisture content
rose from 40% to 50%, reaching a peak value of 68.0 mg/g at 50% moisture (Figure 1a).
Then, the reducing sugar content was decreased with further increases in moisture. The
result was similar to the finding of Hou et al., who found that the moisture content of 50%
was optimal for SSF of rapeseed meal by B. subtilis [32]. Lower moisture content reduces
nutrient solubility and substrate swelling, thereby inhibiting microbial activity. However,
microbial activities were also suppressed due to limited nutrition and oxygen mass transfer
caused by upper moisture content [33,34].
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fermentation time (d) on reducing sugar content. Different superscript letters above the columns
indicated significant differences (p < 0.05).

3.1.3. Fermentation Temperature

Fermentation temperature significantly influenced the yield of reducing sugar during
SSF of PKM (Figure 1b). The reducing sugar content reached its highest value, 78.4 mg/g,
at 33 ◦C. However, the yields of reducing sugar showed a decline at 37 ◦C and 41 ◦C.
Therefore, it can be concluded that the growth and metabolic activities of B. velezensis,
S. cerevisiae and L. paracasei were strongest at 33 ◦C. The fermentation temperature may
vary significantly depending on the substrate and microorganisms. Hou et al. reported
that 55 ◦C was the optimum fermentation temperature for SSF of rapeseed meal using
Geobacillus stearothermophilus [32].

3.1.4. Inoculum Amount

The reducing sugar content was increased significantly (p < 0.05) from 39.1 mg/g to
84.3 mg/g with the increase of inoculum amount from 5% to 20% (Figure 1b). Increasing the
inoculum amount beyond 25% did not lead to a significant rise (p > 0.05) in reducing sugar
content. Then, it decreased to 79.1 mg/g at an inoculum amount of 40%. Low inoculation
amount may cause insufficient enzyme secretion by microorganisms, thereby affecting
the enzymatic hydrolysis of the substrate. Meanwhile, excessive inoculation amount may
accelerate microbial growth and reproduction, depleting nutrients and moisture in the
substrate and ultimately affecting product formation [13].

3.1.5. Fermentation Time

Fermentation time is also a crucial factor influencing SSF [9]. As shown in Figure 1c, the
reducing sugar content was significantly increased (p < 0.05) from 29.6 mg/g to 92.8 mg/g
when the fermentation time was increased from 24 h to 60 h, and then it gradually decreased
to 75.8 mg/g at 84 h. The decrease in reducing sugar content may be due to the participation
of reducing sugars in the Maillard reaction in the later stages of fermentation or the
consumption of reducing sugars by microorganisms [35].

3.2. RSM Optimization

Based on the SFE results, four variables, namely inoculum amount (A), moisture
content (B), fermentation temperature (C) and fermentation time (D) were chosen for the
subsequent RSM. Table 2 shows the design and results of the BBD experiments.

Table 2. BBD design and results.

Run A B C D Reducing Sugar (mg/g)

1 20 50 29 48 75.8
2 20 45 33 48 69.6
3 30 50 33 48 71.5
4 10 50 33 48 78.5
5 20 55 33 48 86.1
6 20 50 37 48 79.1
7 20 45 29 60 67.1
8 30 50 29 60 70.3
9 10 50 29 60 75.2
10 20 55 29 60 78.8
11 30 45 33 60 69.3
12 10 45 33 60 69.4
13 10 55 33 60 80.7
14 30 55 33 60 82.7
15 20 50 33 60 92.9
16 20 50 33 60 94.8
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Table 2. Cont.

Run A B C D Reducing Sugar (mg/g)

17 20 50 33 60 94.9
18 10 50 37 60 65.2
19 20 45 37 60 68.7
20 30 50 37 60 78.9
21 20 55 37 60 80.6
22 20 50 29 72 72.7
23 10 50 33 72 71.8
24 30 50 33 72 79.8
25 20 45 33 72 81.3
26 20 55 33 72 86.6
27 20 50 37 72 82.2

The polynomial model for the estimation of reducing sugar (Y, mg/g) in terms of
inoculum amount (A), moisture content (B), fermentation temperature (C) and fermentation
time (D) was fitted by the following equation:

Y = 93.51 + 0.98A + 5.83B + 1.22C + 1.14D + 0.5175AB + 4.64AC + 3.74AD + 0.03BC
− 2.80BD + 1.56CD − 11.02A2 − 7.56B2 − 10.85C2 − 5.79D2

(4)

To validate the regression coefficient, the analysis of variance was performed for
reducing sugar production (Table 3). The p-value of the regression model was less than
0.0001, which indicated that the linear relationship between every variable and reducing
sugar yield was extremely significant. Furthermore, the p-value of lack of fit for the model
exceeded 0.05, indicating that accidental factors might not significantly affect the response
values. Overall, this suggested that the model accurately represented the experimental data,
accounting for over 95% of the variability in the dependent variables [36]. The coefficient
of determination (R2 = 0.950) indicated that the variations in reducing sugar content could
be effectively explained by the selected independent variables, confirming the suitability of
the regression model for analyzing response trends. Moisture content was identified as the
most critical factor influencing reducing sugar yield (p < 0.0001) (Table 3).

Table 3. Analysis of variance in BBD.

Source Sum of Squares df Mean Square F-Value p-Value
Prob > F Significance

Model 1686 14 120 17.8 <0.0001 **
A-Inoculation amount 11.5 1 11.5 1.71 0.216

B-Moisture content 408 1 408 60.4 <0.0001 **
C-Fermentation temperature 17.9 1 17.9 2.64 0.130

D-Fermentation time 15.5 1 15.5 2.29 0.156
AB 1.07 1 1.07 0.159 0.698
AC 86.2 1 86.2 12.8 0.0038 **
AD 56.0 1 56.0 8.28 0.0139 *
BC 0.0036 1 0.0036 0.0005 0.982
BD 31.4 1 31.4 4.64 0.0522
CD 9.77 1 9.77 1.45 0.252
A2 687 1 687 102 <0.0001 **
B2 332 1 332 49.2 <0.0001 **
C2 667 1 667 98.7 <0.0001 **
D2 200 1 200 29.6 0.0002 **

Residual 81.1 12 6.75
Lack of Fit 78.5 10 7.85 6.21 0.147
Pure Error 2.5 2 1.27
Cor Total 1766 26

Note: * p < 0.05, ** p < 0.01.

Models are plotted as 3D response surface and contour curves within the tested pa-
rameters to investigate the interactive effects of the four factors on the yield of reducing
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sugar (Figure 2). The steep slope of 3D response surface plot indicated that the interaction
between the two factors was significant [37]. The interactions between inoculum amount
and fermentation temperature, as well as inoculum amount and fermentation time, were
significant (p < 0.05). The model predicted that the maximum reducing sugar content
(95.3 mg/g) was located at inoculum amount of 20.7%, moisture content of 51.8%, fermen-
tation temperature of 33.3 ◦C and fermentation time of 60.5 h. Based on the predicted values
and considering practical conditions, the optimal conditions were set as follows: inoculum
amount, 21%; moisture content, 52%; fermentation temperature, 34 ◦C; and fermentation
time, 60 h. The triplicate test showed an actual reducing sugar content of 96.3 mg/g, which
was close to the predicted response, thus affirming the rationality of the model.
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Models are plotted as 3D response surface and contour curves within the tested pa-
rameters to investigate the interactive effects of the four factors on the yield of reducing 
sugar (Figure 2). The steep slope of 3D response surface plot indicated that the interaction 
between the two factors was significant [37]. The interactions between inoculum amount 
and fermentation temperature, as well as inoculum amount and fermentation time, were 
significant (p < 0.05). The model predicted that the maximum reducing sugar content (95.3 
mg/g) was located at inoculum amount of 20.7%, moisture content of 51.8%, fermentation 
temperature of 33.3 °C and fermentation time of 60.5 h. Based on the predicted values and 
considering practical conditions, the optimal conditions were set as follows: inoculum 
amount, 21%; moisture content, 52%; fermentation temperature, 34 °C; and fermentation 
time, 60 h. The triplicate test showed an actual reducing sugar content of 96.3 mg/g, which 
was close to the predicted response, thus affirming the rationality of the model. 
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3.3. Anti-Nutritional Factor

While estimating the crude protein, a steady increase in crude protein was observed in
FPKM (Table 4). Crude protein content in FPKM of different times showed a variable range
rising from 14.4% to 17.4%. Fiber is the anti-nutritional factor of PKM, potentially hindering
nutrient digestion and absorption in animals. The fiber fraction primarily originates
from plant cell walls and consists of various structural polysaccharides, predominantly
cellulose, diverse hemicelluloses and pectic polysaccharides [38]. The main polysaccharide
component of PKM is β-mannan (hemicellulose), followed by cellulose [39]. Cellulose
and hemicellulose can be hydrolyzed by cellulase and hemicellulase to generate reducing
sugars [40]. The NDF, ADF, ADL, cellulose and hemicellulose content of the unfermented
PKM and FPKM are presented in Table 4. In the detergent fiber analysis, cellulose is often
estimated as the difference between ADF and ADL, while hemicellulose is often estimated
as the difference between NDF and ADF [41]. After fermentation of 60 h, the NDF, ADF,
ADL, cellulose and hemicellulose content of PKM were decreased significantly (p < 0.05) by
22.5%, 18.2%, 20.2%, 17.6% and 32.4%, respectively. Meanwhile, the reducing sugar content
was increased remarkably (p < 0.05) by 228%. It reflected that B. velezensis, S. cerevisiae and L.
paracasei produced cellulase and hemicellulase, biotransforming cellulose and hemicellulose
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in PKM into reducing sugars. Similarly, Shi et al. found that SSF of rapeseed meal with
A. niger reduced the content of NDF and hemicellulose by 6.3% and 25.5%, respectively,
due to cellulase and hemicellulase activity [42]. Alshelmani et al. reported that the SSF
process, utilizing a combination of four cellulolytic and hemicellulolytic bacteria, including
B. amyloliquefaciens, P. curdlanolyticus, P. polymyxa and B. megaterium, resulted in a significant
reduction (p < 0.05) in NDF, ADF, hemicellulose and cellulose compared to the untreated
palm kernel cake, whereas there was no significant effect (p > 0.05) on the ADL content [18].
In our study, SSF also led to a reduction in the ADL content of PKM, indicating that
enzymes capable of degrading ADL were produced during the fermentation process. The
substantial reduction in fiber fractions is crucial for improving the quality of PKM, thereby
expanding its potential applications in non-ruminant feed.

Table 4. Nutritional components and anti-nutritional factor analysis of PKM and FPKM.

Ingredient PKM FPKM (36 h) FPKM (48 h) FPKM (60 h)

NDF (%) 64.7 a ± 1.2 61.4 b ± 0.7 54.0 c ± 0.5 50.1 d ± 0.6
ADF (%) 45.1 a ± 1.1 43.9 a ± 1.5 40.2 b ± 0.6 36.9 c ± 0.9
ADL (%) 10.2 a ± 0.2 10.3 a ± 0.3 8.6 ab ± 1.00 8.1 b ± 0.8

Cellulose (%) 34.9 a ± 1.0 33.6 a ± 1.3 31.6 ab ± 0.4 28.7 b ± 1.7
Hemicellulose (%) 19.6 a ± 0.1 17.5 a ± 0.0 13.8 b± 1.0 13.3 b ± 0.6

Reducing sugar (mg/g) 29.3 d ± 0.3 47.1 c ± 2.1 81.2 b ± 1.3 96.3 a ± 2.5
Crude protein (%) 13.7 c ± 0.2 14.4 b ± 0.2 15.3 b ± 0.5 17.4 a ± 0.3

Soluble protein (µg/g) 542 b ±17 230 c ± 10 648 b ± 28 1592 a ± 46
Lipid (%) 6.86 ± 0.20 6.58 ± 0.16 6.82 ± 0.05 6.85 ± 0.06

Peptides (mg/g) 1.41 d ± 0.04 2.26 c ± 0.04 2.86 b ± 0.15 3.31 a ± 0.22

Note: Cellulose content was estimated as the difference between ADF and ADL. Hemicellulose content was
estimated as the difference between NDF and ADF. Different superscript letters above the same row indicate
significant differences (p < 0.05).

3.4. Nutritional Components

While estimating the crude protein, a steady increase in crude protein was observed
in FPKM (Table 4). Crude protein content in FPKM of different times showed a variable
range rising from 14.4% to 17.4%. The highest crude protein content was observed in 60 h
FPKM, showing a 27.3% increase compared to unfermented PKM. Similarly, SSF applied
to fermented rapeseed meal with S. cerevisiae and S. boulardii significantly increased the
crude protein content by 11.2% and 10.1%, respectively [43]. The increased crude protein
was possibly due to the mycoprotein synthesis in the SSF process [44]. The decline in fiber
content was also considered as a possible reason for the increase in crude protein, as the
decomposed fiber could serve as an energy source for microbial growth and be partially
converted into protein [31].

As shown in Table 4, the soluble protein content in unfermented PKM was decreased
sharply (p < 0.05) from 542 µg/g to 230 µg/g (36 h FPKM). Then, the soluble protein con-
tent was increased significantly to 648 µg/g and 1592 µg/g at 48 h and 60 h, respectively,
which was 19.4% and 193% higher than that of the unfermented PKM. A similar result
was reported by Liu et al., who observed a significant improvement in soluble protein
content following SSF of soybean meal with B. velezensis [16]. An initial decline in soluble
protein during fermentation may be linked to the consumption of soluble protein in PKM
by B. velezensis, S. cerevisiae and L. paracasei. As the PKM fermentation progressed, the
microorganisms may have synthesized new proteins, which were secreted extracellularly,
leading to the rise in soluble protein content. Additionally, the increase in soluble pro-
tein could be due to the secretion of proteases by the microorganisms, which degraded
insoluble macromolecular proteins into smaller soluble proteins and peptides during fer-
mentation [15,16,45].

The peptide content of PKM was increased significantly (p < 0.05) by 135% after fer-
mentation (Table 4). Likewise, Chi et al. reported an increase in the peptide content in
soybean meal by SSF with B. myloliquefaciens, Lactobacillus spp. and S. cerevisiae [46]. The
rise in peptide content was probably because proteolytic enzymes produced by microor-



Fermentation 2024, 10, 655 10 of 16

ganisms degraded macromolecular proteins into small peptides during fermentation [47].
Low molecular weight peptides hold significant advantages over high molecular weight
proteins, as they are more readily digested and absorbed, and display bioactivities such as
antioxidant activity, immune activity, antibacterial activity, as well as improvements in the
animal intestinal microenvironment [22,48].

3.5. Amino Acids

The amino acid profiles of unfermented PKM and FPKM at different fermentation
times are presented in Figure 3. After 60 h of fermentation, the total essential amino acid
content in PKC was increased significantly (p < 0.05) from 3.74 g/100 g to 4.25 g/100 g.
Especially, the content of Lys, which is the major limiting amino acid in PKM [17], was
increased significantly (p < 0.05) by 53.2%. The content of Thr and Phe in 60 h FPKM
were 1.31 and 1.30 times that of unfermented PKM, respectively. The content of total
non-essential amino acid (10.1 g/100 g) in 60 h FPKM was observed to be higher than that
of unfermented PKM (8.62%). The contents of Asp, Glu, His, Gly, Pro and Cys in 60 h FPKM
were 1.37, 1.26, 1.22, 1.27, 1.30 and 1.52 times that of unfermented FPKM, respectively. The
total amino acid content was increased (p < 0.05) by 16.3% after fermentation for 60 h. The
increase in amino acid content after fermentation aligned with previous findings, which
reported that SSF of soybean meal with B. subtilis 21,927 and 22,983 enhanced the content of
total amino acids by 16.1% and 12.9%, and total essential amino acids by 16.0% and 16.5%,
respectively [49]. The increase in total amino acid content and changes in the AA profile
may be attributed to the rise in protein content and hydrolysis of proteins or peptides [50].
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3.6. Microbial Counts

In Figure 4a, the initial counts of B. velezensis, S. cerevisiae and L. paracasei inoculated
into unfermented PKM and their growth during SSF at different time intervals are shown. B.
velezensis counts were increased significantly (p < 0.05) from 8.65 log CFU/g (unfermented
PKM) to 11.1 log CFU/g (60 h FPKM). S. cerevisiae started at 7.12 log CFU/g (unfermented
PKM), increasing to 9.10 log CFU/g (48 h FPKM), with no significant difference (p > 0.05)
between 48 h and 60 h. SSF also enriched L. paracasei counts, reaching 9.68 log CFU/g
at 60 h. The favorable growth of all three strains reflected the suitable environment and
appropriate nutritional requirements in PKM for propagation.
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3.7. TTA

The TTA values of PKM were increased gradually in the process of SSF (Figure 4b).
The initial TTA value of PKM was 3.16 mL/g and increased significantly (p < 0.05) to
the highest value of 4.81 mL/g in 60 h FPKM. The result was in line with a previous
study, which showed a rise in the TTA value of defatted adlay after SSF with yeast [51].
The increase in the TTA value was presumably due to the production of organic acids by
three strains during the fermentation of PKM. The breakdown of carbohydrates into sugars
and organic acids may also contribute to the increase in TTA [52].

3.8. In Vitro Digestibility Analysis

The IVDMD and IVCPD of unfermented PKM and FPKM at different fermentation
times are shown in Figure 4c. SSF of PKM for 60 h significantly increased (p < 0.05) the
IVDMD and IVCPD by 32.4% and 24.1%, respectively. Similarly, SSF demonstrated the
ability to improve the IVCPD of lupin flour and IVDMD of sugarcane bagasse [53,54].
The increase in IVDMD and IVCPD may be attributed to fiber-degrading enzymes and
proteolytic enzymes produced by microorganisms in SFF. Lee et al. reported that fiber-
degrading enzymes improved the IVDMD of canola cake, possibly due to fiber hydrolysis
enhancing the availability for pepsin and trypsin digestion [55]. The increase in IVCPD may
be linked to the proteolytic enzymes produced during microbial fermentation, hydrolyzing
large proteins into smaller molecules [56].

3.9. Total Phenolic Content

The total phenolic contents of unfermented PKM and FPKM at different fermentation
times were detected (Figure 5a). The total phenolic content of 36 h FPKM (2.96 mg/g) and
48 h FPKM (4.43 mg/g) was significantly higher than that of unfermented PKM (2.48 mg/g)
(p < 0.05), with no significant difference (p > 0.05) between 48 h and 60 h. The result was in
accordance with the finding of Dai et al., who reported that SSF of soybean meal increased
the total phenolic content [57]. Phenolic compounds are of great interest due to their
antioxidant capacity. Phenolics mainly exist in conjugated forms [58]. Changes in total
phenolic content reflected that the free phenolics were liberated from insoluble matrices
by the action of enzymes derived from microbial fermentation [35]. In addition, phenolic
compounds may be released during lignin degradation in the fermentation process [59].
The increase in phenolic content could also be attributed to the synthesis of more or new
phenolics by microorganisms during fermentation [60,61].
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3.10. Antioxidant Activity

The DPPH radical scavenging activities of unfermented PKM and FPKM at different
fermentation times were monitored (Figure 5b). The DPPH radical scavenging activities
showed no significant increase in the initial stage of fermentation (0–36 h), but were
visibly increased (p < 0.05) at 48 h and 60 h. PKM and FPKM showed the highest DPPH
radical scavenging activities at the concentration of 0.6 mg/mL, with a rise from 45.7%
(unfermented PKM) to 61.6% (48 h FPKM) and 66.9% (60 h FPKM), respectively. The EC50
values of unfermented PKM, 36 h FPKM, 48 h FPKM and 60 h FPKM were 0.676 mg/mL,
0.585 mg/mL, 0.439 mg/mL and 0.335 mg/mL, respectively.

Figure 5c shows the hydroxyl radical scavenging activities of unfermented PKM and
FPKM at different fermentation times. PKM fermented for 48 h and 60 h was observed to
own the superior hydroxyl radical scavenging activities compared to unfermented PKM in
the concentration range of 1–6 mg/mL. At the concentration of 0.6 mg/mL, the hydroxyl
radical scavenging activity of unfermented PKM was 25.9% and significantly increased to
33.3% (48 h FPKM) and 39.3% (60 h FPKM), respectively. The EC50 values of unfermented
PKM, 36 h FPKM, 48 h FPKM and 60 h FPKM were 8.96 mg/mL, 6.78 mg/mL, 4.17 mg/mL
and 3.7 mg/mL, respectively.

The reducing powers of PKM and FPKM at different fermentation times are shown in
Figure 5d. At the concentration of 6 mg/mL, the OD700nm values for unfermented PKM
and PKM fermented for 36 h, 48 h and 60 h were 0.441, 0.503, 0.594 and 0.659 respectively.
The EC50 values of unfermented PKM, 36 h FPKM, 48 h FPKM and 60 h FPKM were
8.73 mg/mL, 8.72 mg/mL, 7.32 mg/mL and 6.74 mg/mL, respectively.
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The results for DPPH radical scavenging activity, hydroxyl radical scavenging activity
and reducing power confirmed that FPKM had a higher antioxidant activity than unfer-
mented PKM, suggesting that SSF produced more antioxidant compounds. Yang et al.
reported that the improvement in antioxidant activity may be attributed to the hydrolysis
of proteins into peptides as well as the rise in the total phenolic and flavonoid content
after fermentation [62]. Similarly, peptides and total phenolics were observed to be related
to the antioxidant capacity of rapeseed meal [12]. In this study, the content of peptides
and total phenolics in PKM were increased significantly (p < 0.05) from 1.31% to 3.31%,
2.48 mg/g to 4.58 mg/g, respectively, after SSF, which was consistent with the antioxidant
activity results.

3.11. Microstructure Analysis

The microstructures of PKM and FPKM at different fermentation times were inves-
tigated by SEM (Figure 6). The surface of unfermented PKM was dense and compact.
However, the surface of FPKM gradually became rough, loose, porous and irregular with
increased fermentation duration. The microstructural alteration and disruption in FPKM
may be attributed to extracellular enzymes, particularly fiber-degrading enzymes, secreted
during SSF by the microbial strains, which decomposed the fiber and other structural
components of PKM [42]. Correspondingly, the decomposition enhanced the contact area
between microbial enzymes and PKM, facilitating the release of bioactive substances [52].
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4. Conclusions

In the present study, a novel SSF process of PKM with B. velezensis, S. cerevisiae and
L. paracasei was developed to transform the agro-industrial by-product PKM into value
-added feed resource enriched in nutritional components and bioactive compounds. SSF
increased the nutritional components, especially soluble protein content, and reduced the
fiber content of PKM. In addition, SSF improved the total phenolic content, antioxidant
activity, IVDMD and IVCPD. In summary, SSF with B. velezensis, S. cerevisiae and L. paracasei
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is a promising strategy to enhance the nutritional value and antioxidant activity of PKM
and FPKM as promising nutritional and functional ingredients for animal feed.
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