Research Progress on Heavy Metal Passivators and Passivation Mechanisms of Organic Solid Waste Compost: A Review
Abstract
:1. Introduction
2. Technologies for the Treatment of Heavy Metals in Organic Solid Waste
3. Definition, Classification, and Application of Heavy Metal Passivators in Organic Solid Waste Composting
3.1. Physical Type of Compost Passivator
3.2. Chemical Type of Compost Passivator
Types and Proportions of Passivators | Passivated Heavy Metals | Composting Materials | Passivation Effect | References |
---|---|---|---|---|
2.5% Rock phosphate | Pb | Sewage sludge | BF decreased by 6.88% | [49] |
10% Calcium magnesium phosphate fertilizer | Cu | Pig manure | BF decreased by 11.47% | [50] |
7.5% Rock phosphate | Cu, Zn | Pig manure | BF decreased by 23.8% and 0.64%, respectively | [51] |
7.5% Rock phosphate | Cu | Pig manure | BF decreased by 47.24% | [52] |
3.3. Biological Type of Compost Passivator
4. Mechanisms of Heavy Metal Passivation in Organic Solid Waste Composting
4.1. Ion Exchange Mechanisms
4.2. Microbial Community Structure
4.3. Degree of Humification
4.4. Mechanisms of Biomineralization
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zambrano-Monserrate, M.A.; Ruano, M.A.; Ormeño-Candelario, V. Determinants of municipal solid waste: A global analysis by countries’ income level. Environ. Sci. Pollut. Res. 2021, 28, 62421–62430. [Google Scholar] [CrossRef] [PubMed]
- Hoornweg, D.; Bhada-Tata, P.; Kennedy, C. Waste production must peak this century. Nature 2013, 502, 615–617. [Google Scholar] [CrossRef]
- Vuppaladadiyam, A.K.; Zhao, M.; Memon, M.Z.H.; Soomro, A.F.; Wei, W. Solid Waste as a Renewable Source of Energy: A Comparative Study on Thermal and Kinetic Behavior of Three Organic Solid Wastes. Energy Fuels 2019, 33, 4378–4388. [Google Scholar] [CrossRef]
- Barampouti, E.; Mai, S.; Malamis, D.; Moustakas, K.; Loizidou, M. Liquid biofuels from the organic fraction of municipal solid waste: A review. Renew. Sustain. Energy Rev. 2019, 110, 298–314. [Google Scholar] [CrossRef]
- Alshehrei, F.; Ameen, F. Vermicomposting: A management tool to mitigate solid waste. Saudi J. Biol. Sci. 2021, 28, 3284–3293. [Google Scholar] [CrossRef]
- Cardoso, P.H.S.; Gonçalves, P.W.B.; Alves, G.d.O.; Pegoraro, R.F.; Fernandes, L.A.; Frazão, L.A.; Sampaio, R.A. Improving the quality of organic compost of sewage sludge using grass cultivation followed by composting. J. Environ. Manag. 2022, 314, 115076. [Google Scholar] [CrossRef] [PubMed]
- Cui, P.; Ai, C.; Xu, Z.; Chen, Z.; Yu, Z.; Liao, H.; Zhou, S. Abundances of keystone genes confer superior performance in hyperthermophilic composting. J. Clean. Prod. 2021, 328, 129589. [Google Scholar] [CrossRef]
- Awasthi, S.K.; Duan, Y.; Liu, T.; Zhang, Z.; Pandey, A.; Varjani, S.; Awasthi, M.K.; Taherzadeh, M.J. Can biochar regulate the fate of heavy metals (Cu and Zn) resistant bacteria community during the poultry manure composting. J. Hazard. Mater. 2020, 406, 124593. [Google Scholar] [CrossRef]
- Jiang, W.; Li, D.; Yang, J.; Ye, Y.; Luo, J.; Zhou, X.; Yang, L.; Liu, Z. A combined passivator of zeolite and calcium magnesium phosphate fertilizer: Passivation behavior and mechanism for Cd (II) in composting. Environ. Res. 2023, 231, 116306. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, Q.; Li, H.; Ming, C.; Gao, J.; Li, Y.; Zhang, Y. Regulatory effects of different anionic surfactants on the transformation of heavy metal fractions and reduction of heavy metal resistance genes in chicken manure compost. Environ. Pollut. 2023, 335, 122297. [Google Scholar] [CrossRef]
- Song, C.; Zhao, Y.; Pan, D.; Wang, S.; Wu, D.; Wang, L.; Hao, J.; Wei, Z. Heavy metals passivation driven by the interaction of organic fractions and functional bacteria during biochar/montmorillonite-amended composting. Bioresour. Technol. 2021, 329, 124923. [Google Scholar] [CrossRef]
- Yang, Z.; Kappler, A.; Jiang, J. Reducing Capacities and Distribution of Redox-Active Functional Groups in Low Molecular Weight Fractions of Humic Acids. Environ. Sci. Technol. 2016, 50, 12105–12113. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, X.; Zhang, X.; Misselbrook, T.; Bai, Z.; Ma, L. An electric field immobilizes heavy metals through promoting combination with humic substances during composting. Bioresour. Technol. 2021, 330, 124996. [Google Scholar] [CrossRef]
- Yang, W.-Q.; Zhuo, Q.; Chen, Q.; Chen, Z. Effect of iron nanoparticles on passivation of cadmium in the pig manure aerobic composting process. Sci. Total Environ. 2019, 690, 900–910. [Google Scholar] [CrossRef]
- Zubair, M.; Wang, S.; Zhang, P.; Ye, J.; Liang, J.; Nabi, M.; Zhou, Z.; Tao, X.; Chen, N.; Sun, K.; et al. Biological nutrient removal and recovery from solid and liquid livestock manure: Recent advance and perspective. Bioresour. Technol. 2020, 301, 122823. [Google Scholar] [CrossRef]
- Zhang, Z.; Ju, R.; Zhou, H.; Chen, H. Migration characteristics of heavy metals during sludge pyrolysis. Waste Manag. 2020, 120, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Liao, Y.; Ma, X.; Niu, Y. Effect of co-combusted sludge in waste incinerator on heavy metals chemical speciation and environmental risk of horizontal flue ash. Waste Manag. 2019, 102, 645–654. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Yu, G.; Li, C.; Li, J.; Wang, G.; Dai, S.; Wang, Y. Treatment of high-ash industrial sludge for producing improved char with low heavy metal toxicity. J. Anal. Appl. Pyrolysis 2020, 150, 104866. [Google Scholar] [CrossRef]
- Devi, P.; Saroha, A.K. Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals. Bioresour. Technol. 2014, 162, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Øygard, J.K.; Måge, A.; Gjengedal, E. Estimation of the mass-balance of selected metals in four sanitary landfills in Western Norway, with emphasis on the heavy metal content of the deposited waste and the leachate. Water Res. 2004, 38, 2851–2858. [Google Scholar] [CrossRef]
- Srivastava, A.N.; Chakma, S. Bioavailability reduction of heavy metals through dual mode anaerobic Co-landfilling of municipal solid waste and industrial organic sludge. Chem. Eng. J. 2022, 439, 135725. [Google Scholar] [CrossRef]
- Yao, J.; Kong, Q.; Qiu, Z.; Chen, L.; Shen, D. Patterns of heavy metal immobilization by MSW during the landfill process. Chem. Eng. J. 2019, 375, 122060. [Google Scholar] [CrossRef]
- Xiong, Y.; Song, C.; Ren, J.; Jin, Y.; Nie, B.; Xu, Q.; Wu, Y.; Li, C.; Li, H.; Ding, Y. Sludge-incinerated ash based shape-stable phase change composites for heavy metal fixation and building thermal energy storage. Process. Saf. Environ. Prot. 2022, 162, 346–356. [Google Scholar] [CrossRef]
- Chang, Z.; Long, G.; Zhou, J.L.; Ma, C. Valorization of sewage sludge in the fabrication of construction and building materials: A review. Resour. Conserv. Recycl. 2020, 154, 104606. [Google Scholar] [CrossRef]
- Guo, B.; Liu, B.; Yang, J.; Zhang, S. The mechanisms of heavy metal immobilization by cementitious material treatments and thermal treatments: A review. J. Environ. Manag. 2017, 193, 410–422. [Google Scholar] [CrossRef]
- Wang, Q.; Awasthi, M.K.; Ren, X.; Zhao, J.; Li, R.; Wang, Z.; Wang, M.; Chen, H.; Zhang, Z. Combining biochar, zeolite and wood vinegar for composting of pig manure: The effect on greenhouse gas emission and nitrogen conservation. Waste Manag. 2018, 74, 221–230. [Google Scholar] [CrossRef]
- Gao, X.; Tan, W.; Zhao, Y.; Wu, J.; Sun, Q.; Qi, H.; Xie, X.-Y.; Wei, Z. Diversity in the Mechanisms of Humin Formation during Composting with Different Materials. Environ. Sci. Technol. 2019, 53, 3653–3662. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, S.; Zhao, S.; Chang, H.; Li, Y.; Zhao, Y. Effects of an assistive electric field on heavy metal passivation during manure composting. Sci. Total Environ. 2023, 901, 165909. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, M.K.; Zhang, Z.; Wang, Q.; Shen, F.; Li, R.; Li, D.-S.; Ren, X.; Wang, M.; Chen, H.; Zhao, J. New insight with the effects of biochar amendment on bacterial diversity as indicators of biomarkers support the thermophilic phase during sewage sludge composting. Bioresour. Technol. 2017, 238, 589–601. [Google Scholar] [CrossRef]
- McKay, G.; Ho, Y.; Ng, J. Biosorption of copper from waste waters: A review. J. Environ. Manag. 1999, 28, 87–125. [Google Scholar] [CrossRef]
- Xu, S.; Li, L.; Zhan, J.; Guo, X. Variation and factors on heavy metal speciation during co-composting of rural sewage sludge and typical rural organic solid waste. J. Environ. Manag. 2022, 306, 114418. [Google Scholar] [CrossRef] [PubMed]
- Azizi, A.; Lim, M.; Noor, Z.; Abdullah, N. Vermiremoval of heavy metal in sewage sludge by utilising Lumbricus rubellus. Ecotoxicol. Environ. Saf. 2013, 90, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Sut-Lohmann, M.; Ramezany, S.; Kästner, F.; Raab, T.; Heinrich, M.; Grimm, M. Using modified Tessier sequential extraction to specify potentially toxic metals at a former sewage farm. J. Environ. Manag. 2022, 304, 114229. [Google Scholar] [CrossRef]
- Ure, A.M.; Quevauviller, P.; Muntau, H.; Griepink, B. Speciation of Heavy Metals in Soils and Sediments. An Account of the Improvement and Harmonization of Extraction Techniques Undertaken Under the Auspices of the BCR of the Commission of the European Communities. Int. J. Environ. Anal. Chem. 1993, 51, 135–151. [Google Scholar] [CrossRef]
- Nomeda, S.; Valdas, P.; Chen, S.-Y.; Lin, J.-G. Variations of metal distribution in sewage sludge composting. Waste Manag. 2008, 28, 1637–1644. [Google Scholar] [CrossRef]
- Walter, I.; Martínez, F.; Cala, V. Heavy metal speciation and phytotoxic effects of three representative sewage sludges for agricultural uses. Environ. Pollut. 2006, 139, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Han, W.; Wang, X.; Chen, H.; Zhu, F.; Wang, X.; Lei, C. Speciation of heavy metals and bacteria in cow dung after vermicomposting by the earthworm, Eisenia fetida. Bioresour. Technol. 2017, 245, 411–418. [Google Scholar] [CrossRef]
- Nejad, Z.D.; Jung, M.C.; Kim, K.-H. Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology. Environ. Geochem. Health 2018, 40, 927–953. [Google Scholar] [CrossRef]
- Cui, H.; Ou, Y.; Wang, L.; Yan, B.; Li, Y.; Ding, D. The passivation effect of heavy metals during biochar-amended composting: Emphasize on bacterial communities. Waste Manag. 2020, 118, 360–368. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Q.; Jiang, Z.; Wang, J.; Cao, B.; Zhang, S.; Yang, C.; Tao, Y.; Qu, J. Evaluation of the effects of adding activated carbon at different stages of composting on metal speciation and bacterial community evolution. Sci. Total Environ. 2022, 806, 151332. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ma, R.; Tang, R.; Kong, Y.; Wang, J.; Li, G.; Yuan, J. Effects of phosphate-containing additives and zeolite on maturity and heavy metal passivation during pig manure composting. Sci. Total Environ. 2022, 836, 155727. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Fu, M.; Ma, L.; Yang, H.; Li, Q. Zero-valent iron drives the passivation of Zn and Cu during composting: Fate of heavy metal resistant bacteria and genes. Chem. Eng. J. 2022, 452, 139136. [Google Scholar] [CrossRef]
- Zheng, W.; Yang, Z.; Huang, L.; Chen, Y. Roles of organic matter transformation in the bioavailability of Cu and Zn during sepiolite-amended pig manure composting. J. Environ. Manag. 2022, 314, 115046. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.; Yue, J.; Jia, Y.; Chen, F.; Ma, H.; Li, S.; Hu, J. Effect of Peanut Shell Biochar on Dynamic Changes of Nutrient Elements and Heavy Metals during Sewage Sludge Composting. IOP Conf. Ser. Mater. Sci. Eng. 2019, 562, 012013. [Google Scholar] [CrossRef]
- Cui, H.; Ou, Y.; Wang, L.-X.; Yan, B.-X.; Li, Y.-X.; Ding, D.-W. Phosphate rock reduces the bioavailability of heavy metals by influencing the bacterial communities during aerobic composting. J. Integr. Agric. 2021, 20, 1137–1146. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Z.; Awasthi, M.K.; Jiang, Y.; Li, R.; Ren, X.; Zhao, J.; Shen, F.; Wang, M.; Zhang, Z. Evaluation of medical stone amendment for the reduction of nitrogen loss and bioavailability of heavy metals during pig manure composting. Bioresour. Technol. 2016, 220, 297–304. [Google Scholar] [CrossRef]
- Mandpe, A.; Paliya, S.; Kumar, S.; Kumar, R. Fly ash as an additive for enhancing microbial and enzymatic activities in in-vessel composting of organic wastes. Bioresour. Technol. 2019, 293, 122047. [Google Scholar] [CrossRef]
- Zheng, G.; Wang, X.; Chen, T.; Yang, J.; Yang, J.; Liu, J.; Shi, X. Passivation of lead and cadmium and increase of the nutrient content during sewage sludge composting by phosphate amendments. Environ. Res. 2020, 185, 109431. [Google Scholar] [CrossRef]
- Kong, Y.; Ma, R.; Li, G.; Wang, G.; Liu, Y.; Yuan, J. Impact of biochar, calcium magnesium phosphate fertilizer and spent mushroom substrate on humification and heavy metal passivation during composting. Sci. Total Environ. 2022, 824, 153755. [Google Scholar] [CrossRef]
- Wang, L.; Liu, H.; Prasher, S.O.; Ou, Y.; Yan, B.; Zhong, R. Effect of inorganic additives (rock phosphate, PR and boron waste, BW) on the passivation of Cu, Zn during pig manure composting. J. Environ. Manag. 2021, 285, 112101. [Google Scholar] [CrossRef]
- Lu, D.; Wang, L.; Yan, B.; Ou, Y.; Guan, J.; Bian, Y.; Zhang, Y. Speciation of Cu and Zn during composting of pig manure amended with rock phosphate. Waste Manag. 2014, 34, 1529–1536. [Google Scholar] [CrossRef]
- Li, C.; Li, H.; Yao, T.; Su, M.; Ran, F.; Li, J.; He, L.; Chen, X.; Zhang, C.; Qiu, H. Effects of swine manure composting by microbial inoculation: Heavy metal fractions, humic substances, and bacterial community metabolism. J. Hazard. Mater. 2021, 415, 125559. [Google Scholar] [CrossRef]
- Hait, S.; Tare, V. Transformation and availability of nutrients and heavy metals during integrated composting–vermicomposting of sewage sludges. Ecotoxicol. Environ. Saf. 2012, 79, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Zhao, Y.; Zhao, X.; Gao, X.; Zheng, Y.; Zuo, H.; Wei, Z. Roles of different humin and heavy-metal resistant bacteria from composting on heavy metal removal. Bioresour. Technol. 2020, 296, 122375. [Google Scholar] [CrossRef] [PubMed]
- Stylianou, M.; Inglezakis, V.; Moustakas, K. Loizidou Improvement of the quality of sewage sludge compost by adding natural clinoptilolite. Desalination 2008, 224, 240–249. [Google Scholar] [CrossRef]
- Soudejani, H.T.; Kazemian, H.; Inglezakis, V.J.; Zorpas, A.A. Application of zeolites in organic waste composting: A review. Biocatal. Agric. Biotechnol. 2019, 22, 101396. [Google Scholar] [CrossRef]
- Wu, J.; Zhao, Y.; Zhao, W.; Yang, T.; Zhang, X.; Xie, X.; Cui, H.; Wei, Z. Effect of precursors combined with bacteria communities on the formation of humic substances during different materials composting. Bioresour. Technol. 2017, 226, 191–199. [Google Scholar] [CrossRef]
- Cao, Y.; Zhao, J.; Wang, Q.; Bai, S.; Yang, Q.; Wei, Y.; Wang, R. Industrial aerobic composting and the addition of microbial agents largely reduce the risks of heavy metal and ARG transfer through livestock manure. Ecotoxicol. Environ. Saf. 2022, 239, 113694. [Google Scholar] [CrossRef]
- Guo, H.-N.; Liu, H.-T.; Wu, S.-B. Immobilization pathways of heavy metals in composting: Interactions of microbial community and functional gene under varying C/N ratios and bulking agents. J. Hazard. Mater. 2022, 426, 128103. [Google Scholar] [CrossRef]
- He, X.-S.; Xi, B.-D.; Li, D.; Guo, X.-J.; Cui, D.-Y.; Pan, H.-W.; Ma, Y. Influence of the composition and removal characteristics of organic matter on heavy metal distribution in compost leachates. Environ. Sci. Pollut. Res. 2014, 21, 7522–7529. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Xing, R.; Yang, X.; Zhao, Z.; Liao, H.; Zhou, S. Enhanced in situ Pb(II) passivation by biotransformation into chloropyromorphite during sludge composting. J. Hazard. Mater. 2021, 408, 124973. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Pan, X.; Chen, H.; Guan, X.; Lin, Z. Biomineralization of Pb(II) into Pb-hydroxyapatite induced by Bacillus cereus 12-2 isolated from Lead–Zinc mine tailings. J. Hazard. Mater. 2016, 301, 531–537. [Google Scholar] [CrossRef] [PubMed]
Types and Proportions of Passivators | Passivated Heavy Metals | Composting Materials | Passivation Effect | References |
---|---|---|---|---|
10% Biochar | Zn, Cu, Cd, Pb | Pig manure | BF decreased by 4.10%, 44.12%, 18.75%, and 30.06%, respectively | [40] |
7% Activated carbon | Cu, Zn | Chicken manure | BF decreased by up to 84% and 10%, respectively | [41] |
10% Zeolite | Cu | Pig manure | BF decreased by up to 3.1% | [42] |
20 g/kg ZVI | Zn, Cu | Dairy manure | BF decreased by up to 8.25% and 19.84%, respectively | [43] |
9% Sepiolite | Cu, Zn | Pig manure | BF decreased by 33.3% and 32.7%, respectively | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, Y.; Yang, W.; Zhuo, Q.; Cao, Z.; Chen, Q.; Xiao, L. Research Progress on Heavy Metal Passivators and Passivation Mechanisms of Organic Solid Waste Compost: A Review. Fermentation 2024, 10, 88. https://doi.org/10.3390/fermentation10020088
Zhong Y, Yang W, Zhuo Q, Cao Z, Chen Q, Xiao L. Research Progress on Heavy Metal Passivators and Passivation Mechanisms of Organic Solid Waste Compost: A Review. Fermentation. 2024; 10(2):88. https://doi.org/10.3390/fermentation10020088
Chicago/Turabian StyleZhong, Yuanping, Wenqing Yang, Qian Zhuo, Zhi Cao, Qinghua Chen, and Liren Xiao. 2024. "Research Progress on Heavy Metal Passivators and Passivation Mechanisms of Organic Solid Waste Compost: A Review" Fermentation 10, no. 2: 88. https://doi.org/10.3390/fermentation10020088
APA StyleZhong, Y., Yang, W., Zhuo, Q., Cao, Z., Chen, Q., & Xiao, L. (2024). Research Progress on Heavy Metal Passivators and Passivation Mechanisms of Organic Solid Waste Compost: A Review. Fermentation, 10(2), 88. https://doi.org/10.3390/fermentation10020088