Effect of Glucose Concentration on the Production of Proteolytic Extract by Different Strains of Aspergillus under Solid-State Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganism and Inoculum Preparation
2.2. Skimmed Milk Agar Plates
2.3. Strain Selection
2.4. Inert Supports
2.4.1. Polyurethane Foam
2.4.2. Agrolite
2.5. Drying Curves and Critical Moisture Point
2.6. Culture Medium for Solid-State Fermentation
2.7. Inocula Preparation
2.8. Fermentation Process
2.9. Kinetics of Fermentation
2.10. Analytic Methods
2.10.1. pH Determination
2.10.2. Determination of Moisture Content (M %) and Water Activity (Aw)
2.10.3. Water Absorption Index (WAI)
2.10.4. Chemical and Elemental Composition of Fish Flour
2.10.5. Protease Assay
2.11. Statistical Analysis
3. Results
3.1. Fungal Strain Selection
3.2. Fish Flour Composition
3.3. Fermentation Medium
3.3.1. Selection of Fish Flour-to-Inert Support Ratio (FF/IS)
3.3.2. Effect of Glucose Concentration on pH, Aw, and M % during Protease Production
3.3.3. Protease Production Kinetics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bond, J.S. Proteases: History, discovery, and roles in health and disease. J. Biol. Chem. 2019, 294, 1643–1651. [Google Scholar] [CrossRef] [PubMed]
- Razzaq, A.; Shamsi, S.; Ali, A.; Ali, Q.; Sajjad, M.; Malik, A.; Ashraf, M. Microbial Proteases Applications. Front. Bioeng. Biotechnol. 2019, 7, 110. [Google Scholar] [CrossRef] [PubMed]
- Novelli, P.K.; Barros, M.M.; Fleuri, L.F. Novel inexpensive fungi proteases: Production by solid state fermentation and characterization. Food Chem. 2016, 198, 119–124. [Google Scholar] [CrossRef]
- Puntambekar, A.; Dake, M. Microbial Proteases: Potential Tools for Industrial Applications. Res. J. Biotechnol. 2023, 18, 159–171. [Google Scholar] [CrossRef]
- Dhillon, A.; Sharma, K.; Rajulapati, V.; Goyal, A. Proteolytic Enzymes. In Current Developments in Biotechnology and Bioengineering; Pandey, A., Negi, S., Soccol, C.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 149–173. [Google Scholar] [CrossRef]
- Martínez-Medina, G.A.; Prado Barragán, A.; Ruiz, H.A.; Ilyina, A.; Martínez Hernández, J.L.; Rodríguez-Jasso, R.M.; Hoyos-Concha, J.L.; Aguilar-González, C.N. Fungal Proteases and Production of Bioactive Peptides for the Food Industry. In Enzymes in Food Biotechnology; Kuddus, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 221–246. [Google Scholar] [CrossRef]
- Dong, Z.; Yang, S.; Lee, B.H. Bioinformatic mapping of a more precise Aspergillus niger degradome. Sci. Rep. 2021, 11, 693. [Google Scholar] [CrossRef] [PubMed]
- Brandelli, A.; Daroit, D.J. Unconventional microbial proteases as promising tools for the production of bioactive protein hydrolysates. Crit. Rev. Food Sci. Nutr. 2022, 2022, 1–32. [Google Scholar] [CrossRef] [PubMed]
- da Silva, O.S.; de Oliveira, R.L.; Souza-Motta, C.M.; Porto, A.L.F.; Porto, T.S. Novel Protease from Aspergillus tamarii URM4634: Production and Characterization Using Inexpensive Agroindustrial Substrates by Solid-State Fermentation. Adv. Enzym. Res. 2016, 4, 125–143. [Google Scholar] [CrossRef]
- Doriya, K.; Jose, N.; Gowda, M.; Kumar, D.S. Solid-State Fermentation vs Submerged Fermentation for the Production of l-Asparaginase. Adv. Food Nutr. Res. 2016, 78, 115–135. [Google Scholar] [CrossRef]
- Sousa, D.; Salgado, J.M.; Cambra-López, M.; Dias, A.; Belo, I. Bioprocessing of oilseed cakes by fungi consortia: Impact of enzymes produced on antioxidants release. J. Biotechnol. 2023, 364, 5–12. [Google Scholar] [CrossRef]
- Novelli, P.K.; Barros, M.M.; Pezzato, L.E.; de Araujo, E.P.; de Mattos Botelho, R.; Fleuri, L.F. Enzymes produced by agro-industrial co-products enhance digestible values for Nile tilapia (Oreochromis niloticus): A significant animal feeding alternative. Aquaculture 2017, 481, 1–7. [Google Scholar] [CrossRef]
- Gajanan, P.G.; Elavarasan, K.; Shamasundar, B.A. Bioactive and functional properties of protein hydrolysates from fish frame processing waste using plant proteases. Environ. Sci. Pollut. Res. 2016, 23, 24901–24911. [Google Scholar] [CrossRef] [PubMed]
- Bui, X.D.; Vo, C.T.; Bui, V.C.; Pham, T.M.; Hien Bui, T.T.; Nguyen-Sy, T.; Nguyen, T.D.P.; Chew, K.W.; Mukatova, M.D.; Show, P.L. Optimization of production parameters of fish protein hydrolysate from Sarda Orientalis black muscle (by-product) using protease enzyme. Clean Technol. Environ. Policy 2021, 23, 31–40. [Google Scholar] [CrossRef]
- Cunha, S.A.; Pintado, M.E. Bioactive peptides derived from marine sources: Biological and functional properties. Trends Food Sci. Technol. 2022, 119, 348–370. [Google Scholar] [CrossRef]
- Kaur, H.; Kapoor, S.; Sharma, S. An Efficient Method for Qualitative Screening of Ligninolytic Enzyme Potential of Ganoderma lucidum. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2442–2459. [Google Scholar] [CrossRef]
- Raju, K.M.; Raju, M.P.; Mohan, Y.M. Synthesis and water absorbency of crosslinked superabsorbent polymers. J. Appl. Polym. Sci. 2002, 85, 1795–1801. [Google Scholar] [CrossRef]
- Bahadori, A. Chap. 10. Solids Handling Systems and Dryers. In Essentials of Oil and Gas Utilities, Process Design, Equipment, and Operations, 2nd ed.; Bioprocess Engineering Principles; Gulf Professional Publishing as an Imprint of Elsevier Inc.: Oxford, UK, 2016; ISBN 13 978-0128030882. [Google Scholar]
- Koutinas, A.A.; Wang, R.; Webb, C. Estimation of fungal growth in complex, heterogeneous culture. Biochem. Eng. J. 2003, 14, 93–100. [Google Scholar] [CrossRef]
- Orzua, M.C.; Mussatto, S.I.; Contreras-Esquivel, J.C.; Rodriguez, R.; de la Garza, H.; Teixeira, J.A.; Aguilar, C.N. Exploitation of agro-industrial wastes as immobilization carrier for solid-state fermentation. Ind. Crops Prod. 2009, 30, 24–27. [Google Scholar] [CrossRef]
- Londoño-Hernandez, L.; Ruiz, H.A.; Cristina Ramírez, T.; Ascacio, J.A.; Rodríguez-Herrera, R.; Aguilar, C.N. Fungal detoxification of coffee pulp by solid-state fermentation. Biocatal. Agric. Biotechnol. 2020, 23, 101467. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Ichishima, E. Acid proteinases. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1970; pp. 397–406. [Google Scholar]
- Vermelho, A.B.; Meirelles, M.N.L.; Lopes, A.; Petinate, S.D.G.; Chaia, A.A.; Branquinha, M.H. Detection of extracellular proteases from microorganisms on agar plates. Mem. Inst. Oswaldo Cruz 1996, 9, 755–760. [Google Scholar] [CrossRef]
- Ooijkaas, L.P.; Weber, F.J.; Buitelaar, R.M.; Tramper, J.; Rinzema, A. Defined media and inert supports: Their potential as solid-state fermentation production systems. Trends Biotechnol. 2000, 18, 356–360. [Google Scholar] [CrossRef] [PubMed]
- Ellouz, Y.; Bayoudh, A.; Kammoun, S.; Gharsallah, N.; Nasri, M. Production of protease by Bacillus subtilis grown on sardinelle heads and viscera flour. Biores. Technol. 2001, 80, 49–51. [Google Scholar] [CrossRef]
- Pizardi, C.; Gutierrez, M.C.; Fernández, C.D.; Fernández, J.A. Producción piloto de hidrolizado de residuos de pescado por fermentación de sustratos sólidos con hongos filamentosos. In Anales Científicos Universidad Agraria La Molina, Lima, Perú; Red Panamericana de Manejo Ambiental de Residuos (REPAMAR) Centro Panamericano de Ingeniería Sanitaria y Ciencias del Ambiente (CEPIS): Lima, Peru, 1999; pp. 1–22. [Google Scholar]
- Talhi, I.; Dehimat, L.; Jaouani, A.; Cherfia, R.; Berkani, M.; Almomanid, F.; Vasseghiane, Y.; Chaouche, N.K. Optimization of thermostable proteases production under agro-wastes solid-state fermentation by a new thermophilic Mycothermus thermophilus isolated from a hydrothermal spring Hammam Debagh, Algeria. Chemosphere 2022, 286, 131479. [Google Scholar] [CrossRef] [PubMed]
- Venugopal, V. Production of fish protein hydrolyzates by microorganisms. In Fisheries Processing: Biotechnological Applications; Martin, A.M., Ed.; Springer: Boston, MA, USA, 1994; pp. 223–243. [Google Scholar] [CrossRef]
- Battaglino, R.A.; Huergo, M.; Pilosof, A.M.R.; Bartholomai, G.B. Culture requirements for the production of protease by Aspergillus oryzae in solid state fermentation. Appl. Microbiol. Biotechnol. 1991, 35, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.M.; Kumar, R.; Panwar, S.; Kumar, A. Microbial alkaline proteases: Optimization of production parameters and their properties. J. Gen. Eng. Biotechnol. 2017, 15, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Villamil, O.; Váquiro, H.; Solanilla, J.F. Fish viscera protein hydrolysates: Production, potential applications and functional and bioactive properties. Food Chem. 2017, 224, 160–171. [Google Scholar] [CrossRef]
- García-Gómez. M.J. Comparación entre un extracto comercial y un extracto proteolítico fúngico producido por fermentación en medio sólido. Ph.D. Thesis, Ciencias Biológicas y da la Salud, Posgrado en Biotecnología. Universidad Autónoma Metropolitana, Mexico City, Mexico, 2008.
- Gomez-Ramos, G.A.; Castillo-Araiza, C.O.; Huerta-Ochoa, S.; Couder-García, M.; Prado-Barragan, A. Assessment of hydrodynamics in a novel bench-scale wall-cooled packed bioreactor under abiotic conditions. Chem. Eng. J. 2019, 375, 121945. [Google Scholar] [CrossRef]
- Raimbault, M. General and microbiological aspects of solid substrate fermentation. Electron. J. Biotechnol. 1998, 1, 174–188. [Google Scholar] [CrossRef]
- Adler-Nissen, J. Limited enzymic degradation of proteins: A new approach in the industrial application of hydrolases. J. Chem. Technol. Biotechnol. 2007, 32, 138–156. [Google Scholar] [CrossRef]
- Huang, X.; Yu, S.; Han, B.; Chen, J. Bacterial community succession and metabolite changes during sufu fermentation. LWT-Food Sci. Technol. 2018, 97, 537–545. [Google Scholar] [CrossRef]
- Yang, B.; Tan, Y.; Kan, J. Regulation of quality and biogenic amine production during sofu fermentation by pure Mucor strains. LWT-Food Sci. Technol. 2020, 117, 108637. [Google Scholar] [CrossRef]
- Badui, S. Química de los Alimentos; 3a Edición, 2a Reimpresión; Pearson Educación: London, UK, 1995. [Google Scholar]
- Anwara, M.F.; Yu, L.J.; Lim, Y.M.; Tarawneh, M.A.; Se Yong, E.N.; Lai, N.Y.G. Water absorption properties of polyurethane foam reinforced with paper pulp. In Materials Today Proceedings; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Mamo, J.; Kangwa, M.; Fernandez-Lahore, H.M.; Assefa, F. Optimization of media composition and growth conditions for production of milk-clotting protease (MCP) from Aspergillus oryzae DRDFS13 under solid-state fermentation. Braz. J. Microbiol. 2020, 51, 571–584. [Google Scholar] [CrossRef] [PubMed]
- Villegas, E.; Aubague, S.; Alcantara, L.; Auria, R.; Revah, S. Solid state fermentation: Acid protease production in controlled CO2 and O2 environments. Biotechnol. Adv. 1993, 11, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Acevedo, M.C.; Huerta Ochoa, S.; Favela, E.; Prado, A. Proteasas fúngicas obtenidas por fermentación en medio sólido a partir de harina de pescado y su aplicación en la hidrólisis de músculo de carpa dorada (Carassius auratus). In Proceedings of the 10th Congreso Nacional de Biotecnología y Bioingeniería, Puerto Vallarta, México, 8–12 September 2003; p. 3781. [Google Scholar]
- Nagel, F.J.; Oostra, J.; Tramper, J.; Rinzema, A. Improved model system for solid-substrate fermentation: Effects of pH, nutrients and buffer on fungal growth rate. Proc. Biochem. 1999, 35, 69–75. [Google Scholar] [CrossRef]
- Sparringa, R.A.; Owens, J.D. Causes of alkalinization in tempe solid substrate fermentation. Enzym. Microb. Technol. 1999, 25, 677–681. [Google Scholar] [CrossRef]
- Clark, D.S.; Blanch, H.W. Biochemical Engineering, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1997; ISBN 9780429258732. [Google Scholar] [CrossRef]
- Pirt, S.J. Effect of Chemical Inhibition and Activation of Growth. Principles of Microbe and Cell Cultivation; Blackwell Scientific Publications: Oxford, UK, 1985; ISBN 9780632081509. [Google Scholar]
- Malathi, S.; Chakraborty, R. Production of alkaline protease by a new Aspergillus flavus isolate under solid-substrate fermentation conditions for use as a depilation agent. Appl. Environ. Microbiol. 1991, 57, 712–716. [Google Scholar] [CrossRef]
- Couri, S.; da Costa Terzi, S.; Pinto, G.A.S.; Freitas, S.P.; da Costa, A.C.A. Hydrolytic enzyme production in solid-state fermentation by Aspergillus niger 3T5B8. Proc. Biochem. 2000, 36, 255–261. [Google Scholar] [CrossRef]
- Tunga, R.; Banerjee, R.; Bhattacharyya, B.C. Studies of some physical parameters for large scale protease production by SSF. Bioproc. Eng. 1999, 21, 107–112. [Google Scholar] [CrossRef]
- Tunga, R.; Banerjee, R.; Bhattacharya, B.C. Some studies on optimization of extraction process for protease production in SSF. Bioproc. Eng. 1999, 20, 485–489. [Google Scholar] [CrossRef]
- Aikat, K.; Bhattacharyya, B.C. Protease extraction in solid state fermentation of wheat bran by a local strain of Rhizopus oryzae and growth studies by the soft gel technique. Proc. Biochem. 2000, 35, 907–914. [Google Scholar] [CrossRef]
- Tunga, R.; Banerjee, R.; Bhattacharyya, B.C. Optimizing some factors affecting protease production under solid state fermentation. Bioproc. Eng. 1998, 9, 187–190. [Google Scholar] [CrossRef]
Strain | Diameter of Strain Colony (cm) | Diameter of Hydrolysis Halo (cm) | Potency Index (PI) |
---|---|---|---|
A. oryzae 2095 | 1.1 | 2.1 | 1.9 |
A. niger 2088 | 1.9 | 2.9 | 1.5 |
A. niger ANH-15 | 2.2 | 3.2 | 1.4 |
Component | % |
---|---|
Carbon | 43.25 |
Nitrogen | 10.60 |
Hydrogen | 6.44 |
Glucose ** | 1.45 |
Protein | 62.85 |
Support | FF/IS | Moisture Saturation (%) | Critical Moisture Point | Texture |
---|---|---|---|---|
Agrolite 20 | 50/50 | 76.03 | 0.61 | + |
Agrolite 20 | 70/30 | 65.03 | 0.08 | ++ |
Agrolite 20 | 90/10 | 53.73 | 0.08 | +++ |
PUF | 50/50 | 85.76 | 0.13 | + |
PUF | 70/30 | 75.39 | 0.11 | ++ |
PUF | 90/10 | 59.88 | 0.09 | +++ |
Time (h) | Glucose Concentration | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0% | 5% | 10% | 15% | |||||||||
pH | Aw | M% | pH | Aw | M% | pH | Aw | M% | pH | Aw | M% | |
Aspergillus niger 2088 | ||||||||||||
0 | 5.3 | 0.984 | 44.60 | 5.4 | 0.980 | 50.17 | 5.3 | 0.976 | 48.13 | 5.3 | 0.972 | 47.79 |
36 | 6.8 | 0.989 | 49.68 | 6.9 | 0.989 | 46.81 | 6.5 | 0.988 | 50.64 | 6.0 | 0.983 | 50.20 |
72 | 8.1 | 0.981 | 51.53 | 7.7 | 0.982 | 51.78 | 7.5 | 0.979 | 51.51 | 7.4 | 0.976 | 53.19 |
Aspergillus nigerANH-15 | ||||||||||||
0 | 5.4 | 0.990 | 48.59 | 5.4 | 0.988 | 48.71 | 5.4 | 0.983 | 48.37 | 5.4 | 0.978 | 47.75 |
36 | 6.4 | 0.991 | 49.21 | 6.0 | 0.991 | 48.78 | 5.3 | 0.990 | 48.97 | 5.3 | 0.985 | 48.20 |
72 | 7.3 | 0.991 | 51.53 | 7.2 | 0.983 | 51.78 | 7.3 | 0.982 | 51.51 | 7.3 | 0.980 | 53.19 |
Aspergillus oryzae 2095 | ||||||||||||
0 | 5.5 | 0.992 | 49.22 | 5.5 | 0.985 | 48.71 | 5.5 | 0.980 | 47.62 | 5.4 | 0.975 | 46.48 |
36 | 7.5 | 0.978 | 49.75 | 7.4 | 0.976 | 49.34 | 6.2 | 0.985 | 47.67 | 5.85 | 0.991 | 54.61 |
72 | 7.7 | 0.959 | 49.74 | 7.7 | 0.960 | 50.81 | 7.8 | 0.966 | 49.99 | 7.7 | 0.964 | 50.82 |
Protease | Substrate | Fungi Strain | Proteolytic Activity | Reference |
---|---|---|---|---|
Alkaline | Fish Flour | A. oryzae 2095 | 21.77 U/mL 62.2 U/g SS | * Present study |
Neutral | Fish Flour | A. oryzae 2095 | 17.21 U/mL 51 U/g SS | * Present study |
Alkaline | Wheat bran | A. flavus | 10.47 U/mL | [48] |
Acid | Wheat bran | A. niger | 52 U/g SS | [42] |
Alkaline | Wheat bran | R. oryzae | 341 U/g SS | [53] |
Alkaline | Wheat bran | R. oryzae | 60 U/mL or 290 U/g SS | [50] |
Alkaline | Wheat bran | R. oryzae | 275 U/g SS | [51,52] |
Acid | Wheat bran and mango peel | A. niger | 5.27 U/mL | [49] |
Alkaline | Wheat bran | R. oryzae | 50 U/mL | [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Londoño-Hernández, L.; García-Gómez, M.d.J.; Huerta-Ochoa, S.; Polanía-Rivera, A.M.; Aguilar, C.N.; Prado-Barragán, L.A. Effect of Glucose Concentration on the Production of Proteolytic Extract by Different Strains of Aspergillus under Solid-State Fermentation. Fermentation 2024, 10, 97. https://doi.org/10.3390/fermentation10020097
Londoño-Hernández L, García-Gómez MdJ, Huerta-Ochoa S, Polanía-Rivera AM, Aguilar CN, Prado-Barragán LA. Effect of Glucose Concentration on the Production of Proteolytic Extract by Different Strains of Aspergillus under Solid-State Fermentation. Fermentation. 2024; 10(2):97. https://doi.org/10.3390/fermentation10020097
Chicago/Turabian StyleLondoño-Hernández, Liliana, María de Jesús García-Gómez, Sergio Huerta-Ochoa, Anna María Polanía-Rivera, Cristóbal Noé Aguilar, and Lilia Arely Prado-Barragán. 2024. "Effect of Glucose Concentration on the Production of Proteolytic Extract by Different Strains of Aspergillus under Solid-State Fermentation" Fermentation 10, no. 2: 97. https://doi.org/10.3390/fermentation10020097
APA StyleLondoño-Hernández, L., García-Gómez, M. d. J., Huerta-Ochoa, S., Polanía-Rivera, A. M., Aguilar, C. N., & Prado-Barragán, L. A. (2024). Effect of Glucose Concentration on the Production of Proteolytic Extract by Different Strains of Aspergillus under Solid-State Fermentation. Fermentation, 10(2), 97. https://doi.org/10.3390/fermentation10020097