Development of a Novel Approach for Controlling and Predicting Residual Sugars in Wines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fermentation Conditions
2.2. Must and Wine Analysis
2.3. Statistical Analyses
3. Results
3.1. Measurement of Actual Residual Sugars in Synthetic Musts
3.2. Application of the Model to Natural Musts
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maicas, S. Advances in Wine Fermentation. Fermentation 2021, 7, 187. [Google Scholar] [CrossRef]
- Jacobson, J.L. Introduction to Wine Laboratory Practices and Procedures, 1st ed.; Springer: New York, NY, USA, 2006; ISBN 978-0-387-24377-1. [Google Scholar]
- Margalit, Y. Concepts in Wine Technology, 1st ed.; Wine Appreciation Guild: San Francisco, CA, USA, 2004. [Google Scholar]
- International Organisation of Vine and Wine. Compendium of International Methods of Wine and Must Analysis; OIV: Paris, France, 2022; Volume 1, ISBN 9782850380525. [Google Scholar]
- Son, H.S.; Hong, Y.S.; Park, W.M.; Yu, M.A.; Lee, C.H. A Novel Approach for Estimating Sugar and Alcohol Concentrations in Wines Using Refractometer and Hydrometer. J. Food Sci. 2009, 74, C106–C111. [Google Scholar] [CrossRef] [PubMed]
- Rogerson, F.S.; Symington, C. A Method for the Estimation of Alcohol in Fortified Wines Using Hydrometer Baumé and Refractometer Brix. Am. J. Enol. Vitic. 2006, 57, 486–490. [Google Scholar] [CrossRef]
- Magwaza, L.S.; Opara, U.L. Analytical methods for determination of sugars and sweetness of horticultural products—A review. Sci. Hortic. 2015, 184, 179–192. [Google Scholar] [CrossRef]
- Teixeira, G.G.; Santos, P.M. Simple and cost-effective approaches for quantification of reducing sugar exploiting digital image analysis. J. Food Compos. Anal. 2022, 113, 104719. [Google Scholar] [CrossRef]
- El-Shishtawy, R.M.; Al Angari, Y.M.; Alotaibi, M.M.; Almulaiky, Y.Q. Novel and Facile Colorimetric Detection of Reducing Sugars in Foods via In Situ Formed Gelatin-Capped Silver Nanoparticles. Polymers 2023, 15, 1086. [Google Scholar] [CrossRef] [PubMed]
- Swe, K.N.; Takai, S.; Noguchi, N. Novel approaches for a brix prediction model in Rondo wine grapes using a hyperspectral Camera: Comparison between destructive and Nondestructive sensing methods. Comput. Electron. Agric. 2023, 211, 108037. [Google Scholar] [CrossRef]
- Jalaludin, I.; Kim, J. Comparison of ultraviolet and refractive index detections in the HPLC analysis of sugars. Food Chem. 2021, 365, 130514. [Google Scholar] [CrossRef]
- Yeganeh-Zare, S.; Farhadi, K.; Amiri, S. Rapid detection of apple juice concentrate adulteration with date concentrate, fructose and glucose syrup using HPLC-RID incorporated with chemometric tools. Food Chem. 2022, 370, 131015. [Google Scholar] [CrossRef]
- Lindqvist, D.N.; Pedersen, H.Æ.; Rasmussen, L.H. A novel technique for determination of the fructose, glucose and sucrose distribution in nectar from orchids by HPLC-ELSD. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1081–1082, 126–130. [Google Scholar] [CrossRef]
- Georgelis, N.; Fencil, K.; Richael, C.M. Validation of a rapid and sensitive HPLC/MS method for measuring sucrose, fructose and glucose in plant tissues. Food Chem. 2018, 262, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Croce, R.; Malegori, C.; Oliveri, P.; Medici, I.; Cavaglioni, A.; Rossi, C. Prediction of quality parameters in straw wine by means of FT-IR spectroscopy combined with multivariate data processing. Food Chem. 2020, 305, 125512. [Google Scholar] [CrossRef] [PubMed]
- Thanasi, V.; Catarino, S.; Ricardo-Da-Silva, J. Fourier transform infrared spectroscopy in monitoring the wine production. Cienc. e Tec. Vitivinic. 2022, 37, 79–99. [Google Scholar] [CrossRef]
- Jaywant, S.A.; Singh, H.; Arif, K.M. Sensors and Instruments for Brix Measurement: A Review. Sensors 2022, 22, 2290. [Google Scholar] [CrossRef] [PubMed]
- Amerine, M.A.; Ough, C.S. Methods for Analysis of Musts and Wines; Wiley: New York, NY, USA, 1980. [Google Scholar]
- Iland, P. Techniques for Chemical Analysis and Quality Monitoring during Winemaking; Patrick Iland Wine Promotions: Campbelltown, Australia, 2000. [Google Scholar]
- Rankine, B.C. Making Good Wine: A Manual of Winemaking Practice for Australia and New Zealand; Sun Books: South Melbourne, VIC, Australia, 1989. [Google Scholar]
- Zoecklein, B.W.; Fugelsang, K.C.; Gump, B.H.; Nury, F.S. Wine Analysis and Production; Aspen Publishers: Boston, MA, USA, 1995. [Google Scholar]
- Franco, M.d.O.K.; Suarez, W.T.; dos Santos, V.B.; Resque, I.S. A novel digital image method for determination of reducing sugars in aged and non-aged cachaças employing a smartphone. Food Chem. 2021, 338, 127800. [Google Scholar] [CrossRef]
- Hernández-López, A.; Sanchez Felix, D.A.; Sierra, Z.Z.; Bravo, I.G.; Dinkova, T.D.; Avila-Alejandre, A.X. Quantification of reducing sugars based on the qualitative technique of Benedict. ACS Omega 2020, 5, 32403–32410. [Google Scholar] [CrossRef] [PubMed]
- Martens, M.; Hadrich, M.J.; Nestler, F.; Ouda, M.; Schaadt, A. Combination of Refractometry and Densimetry—A Promising Option for Fast Raw Methanol Analysis. Chem.-Ing.-Tech. 2020, 92, 1474–1481. [Google Scholar] [CrossRef]
- D’Amato, D.; Corbo, M.R.; Del Nobile, M.A.; Sinigaglia, M. Effects of temperature, ammonium and glucose concentrations on yeast growth in a model wine system. Int. J. Food Sci. Technol. 2006, 41, 1152–1157. [Google Scholar] [CrossRef]
- Delfini, C.; Costa, A. Effects of the Grape Must Lees and Insoluble Materials on the Alcoholic Fermentation Rate and the Production of Acetic Acid, Pyruvic Acid, and Acetaldehyde. Am. J. Enol. Vitic. 1993, 44, 86–92. [Google Scholar] [CrossRef]
- Lema, C.L.; García-Jares, C.; Orriols, I.; Angulo, L.E.S. Contribution of Saccharomyces and Non-Saccharomyces Populations to the Production of Some Components of Albariño Wine Aroma. Am. J. Enol. Vitic. 1996, 47, 206–216. [Google Scholar] [CrossRef]
- Tiwari, A. Practical Biochemistry: A Student Companion; Lambert Academic Publishing: London, UK, 2015; ISBN 3659757160. [Google Scholar]
- Berthels, N.J.; Cordero Otero, R.R.; Bauer, F.F.; Thevelein, J.M. Pretorius, IS Discrepancy in glucose and fructose utilisation during fermentation by Saccharomyces cerevisiae wine yeast strains. FEMS Yeast Res. 2004, 4, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Viana, T.; Loureiro-Dias, M.C.; Prista, C. Efficient fermentation of an improved synthetic grape must by enological and laboratory strains of Saccharomyces cerevisiae. AMB Express 2014, 4, 16. [Google Scholar] [CrossRef] [PubMed]
- Urbano-Cuadrado, M.; Luque De Castro, M.D.; Pérez-Juan, P.M.; García-Olmo, J.; Gómez-Nieto, M.A. Near infrared reflectance spectroscopy and multivariate analysis in enology: Determination or screening of fifteen parameters in different types of wines. Anal. Chim. Acta 2004, 527, 81–88. [Google Scholar] [CrossRef]
- Páscoa, R.N.M.J.; Porto, P.A.L.S.; Cerdeira, A.L.; Lopes, J.A. The application of near infrared spectroscopy to wine analysis: An innovative approach using lyophilization to remove water bands interference. Talanta 2020, 214, 120852. [Google Scholar] [CrossRef] [PubMed]
- Vamvakas, S.S.; Kapolos, J. Factors affecting yeast ethanol tolerance and fermentation efficiency. World J. Microbiol. Biotechnol. 2020, 36, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Pizarro, F.J.; Jewett, M.C.; Nielsen, J.; Agosin, E. Growth temperature exerts differential physiological and transcriptional responses in laboratory and wine strains of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2008, 74, 6358–6368. [Google Scholar] [CrossRef]
- Rodrigues, A.J.; Raimbourg, T.; Gonzalez, R.; Morales, P. Environmental factors influencing the efficacy of different yeast strains for alcohol level reduction in wine by respiration. LWT 2016, 65, 1038–1043. [Google Scholar] [CrossRef]
- Ruiz-Rodríguez, A.; Palma, M.; Barroso, C.G. Influence of temperature during pre-fermentative maceration and alcoholic fermentation on the phenolic composition of ‘cabernet sauvignon’ wines. Foods 2021, 10, 1053. [Google Scholar] [CrossRef]
- Tronchoni, J.; Gonzalez, R.; Guindal, A.M.; Calleja, E.; Morales, P. Exploring the suitability of Saccharomyces cerevisiae strains for winemaking under aerobic conditions. Food Microbiol. 2022, 101, 103893. [Google Scholar] [CrossRef]
- Rossi, S.; Bestulić, E.; Horvat, I.; Plavša, T.; Lukić, I.; Bubola, M.; Ganić, K.K.; Ćurko, N.; Jagatić Korenika, A.M.; Radeka, S. Comparison of different winemaking processes for improvement of phenolic composition, macro- and microelemental content, and taste sensory attributes of Teran (Vitis vinifera L.) red wines. LWT 2022, 154, 112619. [Google Scholar] [CrossRef]
- Pretorius, I.S. Tailoring wine yeast for the new millennium: Novel approaches to the ancient art of winemaking. Yeast 2000, 16, 675–729. [Google Scholar] [CrossRef]
- Bartowsky, E.; Bellon, J.; Borneman, A.; Chambers, P.; Cordente, A.; Costello, P.; Curtin, C.; Forgan, A.; Henschke, P.; Kutyna, D.; et al. Not all wine yeast are equal. Microbiol. Aust. 2007, 28, 55. [Google Scholar] [CrossRef]
Treatment | Equation | Average Slope (m) | Average Intercept (b) | Average R2 |
---|---|---|---|---|
A (26.6 °Bx) | Y = 2.030x − 1997.6 | 2.030 ± 0.004 | −1997.6 ± 1.6 | 0.973 ± 0.020 |
B (24.4 °Bx) | Y = 2.046x − 2012.2 | 2.046 ± 0.013 | −2012.2 ± 15.3 | 0.994 ± 0.002 |
C (22.4 °Bx) | Y = 2.188x − 2167.7 | 2.188 ± 0.011 | −2167.7 ± 9.4 | 0.984 ± 0.008 |
D (20.3 °Bx) | y = 2.197x − 2173.9 | 2.197 ± 0.011 | −2173.9 ± 11.5 | 0.976 ± 0.011 |
E (18.1 °Bx) | Y = 2.369x − 2350.9 | 2.369 ± 0.016 | −2350.9 ± 15.9 | 0.982 ± 0.009 |
Time (Days) | Parameter | Treatment/°Bx | |||||||
---|---|---|---|---|---|---|---|---|---|
8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | ||
- | - | - | 1000.0 | 1001.0 | 1015.0 | 1035.0 | 1071.0 | Density | 17.3 |
- | - | - | 2.0 | 2.2 | 16.9 | 54.3 | 146.2 | Residual sugars | |
- | - | 996.5 | 997.0 | 1000.0 | 1013.0 | 1041.0 | 1080.0 | Density | 19.0 |
- | - | 1.8 | 1.9 | 2.4 | 29.5 | 61.8 | 174.8 | Residual sugars | |
- | - | 997.0 | 998.0 | 1008.0 | 1036.0 | 1058.0 | 1089.0 | Density | 20.6 |
- | - | 2.1 | 3.5 | 16.3 | 70.5 | 120.8 | 185.2 | Residual sugars | |
- | 994.6 | 996.4 | 998.0 | 1006.0 | 1037.0 | 1066.0 | 1100.0 | Density | 22.8 |
- | 2.1 | 2.6 | 3.2 | 15.0 | 66.3 | 173.0 | 197.5 | Residual sugars | |
- | 995.0 | 997.0 | 999.0 | 1011.0 | 1041.0 | 1061.0 | 1098.0 | Density | 23.2 |
- | 1.5 | 1.8 | 4.0 | 29.5 | 81.4 | 139.8 | 173.1 | Residual sugars | |
- | 995.0 | 995.6 | 999.0 | 1008.0 | 1039.0 | 1065.0 | 1103.0 | Density | 24.0 |
- | 1.5 | 1.3 | 2.8 | 21.7 | 57.4 | 145.6 | 194.0 | Residual sugars | |
995.0 | 996.2 | 1005.0 | 1012.0 | 1021.0 | 1051.0 | 1080.0 | 1103.0 | Density | 25.7 |
3.1 | 7.6 | 31.4 | 46.3 | 53.6 | 118.5 | 186.0 | 195.5 | Residual sugars |
Treatment/°Bx | Linear Equation | R2 |
---|---|---|
17.3 | Y = 2.107x − 2116.4 | 0.980 |
19.0 | Y = 2.033x − 2031.9 | 0.967 |
20.6 | Y = 2.029x − 2026.6 | 0.997 |
22.8 | Y = 2.000x − 1993.9 | 0.980 |
23.2 | Y = 1.970x − 1960.4 | 0.991 |
24.0 | Y = 1.951x − 1945.3 | 0.947 |
25.7 | Y = 1.873x − 1854.8 | 0.983 |
Initial Brix (°Bx) | Slope (m) | Intercept (b) | Density (kg·m−3) |
---|---|---|---|
17.0 | 2.10 | −2110.9 | 1007.3 |
17.5 | 2.09 | −2098.4 | 1006.9 |
18.0 | 2.08 | −2085.8 | 1006.4 |
18.5 | 2.07 | −2073.3 | 1006.0 |
19.0 | 2.06 | −2060.7 | 1005.5 |
19.5 | 2.05 | −2048.2 | 1005.1 |
20.0 | 2.04 | −2035.6 | 1004.6 |
20.5 | 2.03 | −2023.1 | 1004.1 |
21.0 | 2.01 | −2010.5 | 1003.6 |
21.5 | 2.00 | −1998.0 | 1003.2 |
22.0 | 1.99 | −1985.5 | 1002.7 |
22.5 | 1.98 | −1972.9 | 1002.2 |
23.0 | 1.97 | −1960.4 | 1001.6 |
23.5 | 1.96 | −1947.8 | 1001.1 |
24.0 | 1.95 | −1935.3 | 1000.6 |
24.5 | 1.94 | −1922.7 | 1000.0 |
25.0 | 1.92 | −1910.2 | 999.5 |
25.5 | 1.91 | −1897.6 | 998.9 |
26.0 | 1.90 | −1885.1 | 998.4 |
26.5 | 1.89 | −1872.5 | 997.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaa’ri, R.; Schneiderman, E.; Ben Aharon, V.; Stanevsky, M.; Drori, E. Development of a Novel Approach for Controlling and Predicting Residual Sugars in Wines. Fermentation 2024, 10, 125. https://doi.org/10.3390/fermentation10030125
Yaa’ri R, Schneiderman E, Ben Aharon V, Stanevsky M, Drori E. Development of a Novel Approach for Controlling and Predicting Residual Sugars in Wines. Fermentation. 2024; 10(3):125. https://doi.org/10.3390/fermentation10030125
Chicago/Turabian StyleYaa’ri, Ronit, Eitan Schneiderman, Vicky Ben Aharon, Maria Stanevsky, and Elyashiv Drori. 2024. "Development of a Novel Approach for Controlling and Predicting Residual Sugars in Wines" Fermentation 10, no. 3: 125. https://doi.org/10.3390/fermentation10030125
APA StyleYaa’ri, R., Schneiderman, E., Ben Aharon, V., Stanevsky, M., & Drori, E. (2024). Development of a Novel Approach for Controlling and Predicting Residual Sugars in Wines. Fermentation, 10(3), 125. https://doi.org/10.3390/fermentation10030125