Optimization of Ultrasound Treatment for Watermelon Vinegar Using Response Surface Methodology: Antidiabetic—Antihypertensive Effects, Bioactive Compounds, and Minerals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vinegar Preparation
2.2. Ultrasound Treatment
2.3. Experimental Design
2.4. Angiotensin-Converting Enzyme Inhibition Assay
2.5. Inhibition of α-Amylase Enzyme
2.6. Inhibition of α-Glucosidase Enzyme
2.7. Storage Study
2.8. Determination of Lycopene
2.9. Contents of Total Phenolics and Flavonoids
2.10. Determination of Total Antioxidant Capacity by CUPRAC and DPPH
2.11. Determination of Total Monomeric Anthocyanin
2.12. Phenolic Compounds
2.13. Mineral Content
2.14. Statistical Analysis
3. Results and Discussion
3.1. Modeling Antidiabetic and Antihypertensive Effects
3.2. Antioxidant Activities
3.3. Bioactive Compounds
3.4. Phenolic Compounds
3.5. Antidiabetic and Antihypertensive Effects
3.6. Minerals
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, Z.; Luo, C.X.; Wu, H.J.; Peng, B.; Kang, B.S.; Liu, L.M.; Zhang, M.; Gu, Q.S. Colletotrichum Species Associated with Anthracnose Disease of Watermelon (Citrullus lanatus) in China. J. Fungi 2022, 8, 790. [Google Scholar] [CrossRef]
- Maletti, L.; D’Eusanio, V.; Durante, C.; Marchetti, A.; Tassi, L. VOCs Analysis of Three Different Cultivars of Watermelon (Citrullus lanatus L.) Whole Dietary Fiber. Molecules 2022, 27, 8747. [Google Scholar] [CrossRef]
- Ijaz, A.; Tufail, T.; Saeed, F.; Afzaal, M.; Shahid, M.Z.; Suleria, H.A.R. Health Benefits of Watermelon (Citrullus lanatus). In Bioactive Compounds from Multifarious Natural Foods for Human Health; Apple Academic Press: Palm Bay, FL, USA, 2022; pp. 77–98. [Google Scholar] [CrossRef]
- Wahid, M.; Saqib, F. Scientific Basis for Medicinal Use of Citrullus lanatus (Thunb.) in Diarrhea and Asthma: In Vitro, In Vivo and In Silico Studies. Phytomedicine 2022, 98, 153978. [Google Scholar] [CrossRef] [PubMed]
- Öztürk, H.İ. Kardinal Üzümü, Napolyon Kirazı, Mürdüm Eriği, Kivi ve Şeftali Meyvelerinden Doğal Fermantasyonla Sirke Üretim Potansiyeli: Fizikokimyasal ve Duyusal Özellikler. Akad. Gıda 2022, 20, 54–62. [Google Scholar] [CrossRef]
- Kandylis, P. Innovative Vinegar Products. In Advances in Vinegar Production; CRC Press: Boca Raton, FL, USA, 2019; pp. 265–297. [Google Scholar] [CrossRef]
- Park, W.L.; Cho, H.D.; Kim, J.H.; Min, H.J.; Seo, K. Il Antioxidant Activity and Blood Alcohol Concentration Lowering Effect of Fermented Hovenia Dulcis Fruit Vinegar. Food Sci. Biotechnol. 2023, 32, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Kara, M.; Assouguem, A.; El Fadili, M.; Benmessaoud, S.; Alshawwa, S.Z.; Al Kamaly, O.; Saghrouchni, H.; Zerhouni, A.R.; Bahhou, J. Contribution to the Evaluation of Physicochemical Properties, Total Phenolic Content, Antioxidant Potential, and Antimicrobial Activity of Vinegar Commercialized in Morocco. Molecules 2022, 27, 770. [Google Scholar] [CrossRef] [PubMed]
- Budak, H.N.; Guzel-Seydim, Z.B. Antioxidant Activity and Phenolic Content of Wine Vinegars Produced by Two Different Techniques. J. Sci. Food Agric. 2010, 90, 2021–2026. [Google Scholar] [CrossRef]
- Bakir, S.; Toydemir, G.; Boyacioglu, D.; Beekwilder, J.; Capanoglu, E. Fruit Antioxidants during Vinegar Processing: Changes in Content and in Vitro Bio-Accessibility. Int. J. Mol. Sci. 2016, 17, 1658. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, K.; Wang, Y.; Wen, L. Study on Development of Watermelon Rind Fruit Vinegar. China Condiment 2012, 7, 58–61. [Google Scholar]
- Chen, Y.; Bai, Y.; Li, D.; Wang, C.; Xu, N.; Hu, Y. Improvement of the Flavor and Quality of Watermelon Vinegar by High Ethanol Fermentation Using Ethanol-Tolerant Acetic Acid Bacteria. Int. J. Food Eng. 2017, 13, 20160222. [Google Scholar] [CrossRef]
- Wu, Q.; Luo, Q.; Xiao, J.; Tang, S.; Chen, Y.; Shen, Y.; Xu, N.; Zhou, M.; Hu, Y.; Wang, C.; et al. Catechin-Iron as a New Inhibitor to Control Advanced Glycation End-Products Formation during Vinegar Storage. LWT 2019, 112, 108245. [Google Scholar] [CrossRef]
- Feng, N.; Feng, Y.; Zhang, F.; Yan, J.; Niu, M.; Shi, L.; Xiong, H.; Zhou, M.; Wu, Q. Inhibition Mechanism of Mango Vinegar on Protein-AGEs Digestion in Vitro Gastrointestinal Environment. LWT 2023, 186, 115246. [Google Scholar] [CrossRef]
- Cavdaroglu, C.; Ozen, B. Detection of Vinegar Adulteration with Spirit Vinegar and Acetic Acid Using UV–Visible and Fourier Transform Infrared Spectroscopy. Food Chem. 2022, 379, 132150. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Kumar, G.; Prabhakar, P.K.; Sahu, J.K.; Naik, S. Ultrasound-Assisted Extraction of Bioactive Compounds from Giloy (Tinospora cordifolia) Stem: Quantitative Process Optimization and Bioactives Analysis. J. Food Process Eng. 2023, 46, e14259. [Google Scholar] [CrossRef]
- Seong, E.; Heo, H.; Sang Jeong, H.; Lee, H.; Lee, J. Enhancement of Bioactive Compounds and Biological Activities of Centella Asiatica through Ultrasound Treatment. Ultrason. Sonochem. 2023, 94, 106353. [Google Scholar] [CrossRef]
- Aghajanzadeh, S.; Ziaiifar, A.M. Pasteurization of Juices with Non-Thermal Technologies. In Sustainable Food Processing and Engineering Challenges; Academic Press: Cambridge, MA, USA, 2021; pp. 25–73. [Google Scholar] [CrossRef]
- Gavahian, M.; Manyatsi, T.S.; Morata, A.; Tiwari, B.K. Ultrasound-Assisted Production of Alcoholic Beverages: From Fermentation and Sterilization to Extraction and Aging. Compr. Rev. Food Sci. Food Saf. 2022, 21, 5243–5271. [Google Scholar] [CrossRef]
- Beitia, E.; Gkogka, E.; Chanos, P.; Hertel, C.; Heinz, V.; Valdramidis, V.; Aganovic, K. Microbial Decontamination Assisted by Ultrasound-Based Processing Technologies in Food and Model Systems: A Review. Compr. Rev. Food Sci. Food Saf. 2023, 22, 2802–2849. [Google Scholar] [CrossRef]
- Gueffai, A.; Gonzalez-Serrano, D.J.; Christodoulou, M.C.; Orellana-Palacios, J.C.; Ortega, M.L.S.; Ouldmoumna, A.; Kiari, F.Z.; Ioannou, G.D.; Kapnissi-Christodoulou, C.P.; Moreno, A.; et al. Phenolics from Defatted Black Cumin Seeds (Nigella sativa L.): Ultrasound-Assisted Extraction Optimization, Comparison, and Antioxidant Activity. Biomolecules 2022, 12, 1311. [Google Scholar] [CrossRef]
- Ribeiro, D.N.; Alves, F.M.S.; dos Santos Ramos, V.H.; Alves, P.; Narain, N.; Vedoy, D.R.L.; Cardozo-Filho, L.; de Jesus, E. Extraction of Passion Fruit (Passiflora cincinnata Mast.) Pulp Oil Using Pressurized Ethanol and Ultrasound: Antioxidant Activity and Kinetics. J. Supercrit. Fluids 2020, 165, 104944. [Google Scholar] [CrossRef]
- Rashid, R.; Mohd Wani, S.; Manzoor, S.; Masoodi, F.A.; Masarat Dar, M. Green Extraction of Bioactive Compounds from Apple Pomace by Ultrasound Assisted Natural Deep Eutectic Solvent Extraction: Optimisation, Comparison and Bioactivity. Food Chem. 2023, 398, 133871. [Google Scholar] [CrossRef]
- Rigane, G.; Yahyaoui, A.; Acar, A.; Mnif, S.; Salem, R.B.; Arslan, D. Change in Some Quality Parameters and Oxidative Stability of Olive Oils with Regard to Ultrasound Pretreatment, Depitting and Water Addition. Biotechnol. Rep. 2020, 26, e00442. [Google Scholar] [CrossRef]
- Shekhar, S.; Prakash, P.; Singha, P.; Prasad, K.; Singh, S.K. Modeling and Optimization of Ultrasound-Assisted Extraction of Bioactive Compounds from Allium Sativum Leaves Using Response Surface Methodology and Artificial Neural Network Coupled with Genetic Algorithm. Foods 2023, 12, 1925. [Google Scholar] [CrossRef]
- Yıkmış, S. Optimization of Uruset Apple Vinegar Production Using Response Surface Methodology for the Enhanced Extraction of Bioactive Substances. Foods 2019, 8, 107. [Google Scholar] [CrossRef]
- Siddeeg, A.; Zeng, X.A.; Rahaman, A.; Manzoor, M.F.; Ahmed, Z.; Ammar, A.F. Quality Characteristics of the Processed Dates Vinegar under Influence of Ultrasound and Pulsed Electric Field Treatments. J. Food Sci. Technol. 2019, 56, 4380–4389. [Google Scholar] [CrossRef] [PubMed]
- Zia, S.; Khan, M.R.; Shabbir, M.A.; Aadil, R.M. An Update on Functional, Nutraceutical and Industrial Applications of Watermelon by-Products: A Comprehensive Review. Trends Food Sci. Technol. 2021, 114, 275–291. [Google Scholar] [CrossRef]
- Ajiboye, B.O.; Shonibare, M.T.; Oyinloye, B.E. Antidiabetic Activity of Watermelon (Citrullus lanatus) Juice in Alloxan-Induced Diabetic Rats. J. Diabetes Metab. Disord. 2020, 19, 343–352. [Google Scholar] [CrossRef]
- Liljeberg, H.; Björck, I. Delayed Gastric Emptying Rate May Explain Improved Glycaemia in Healthy Subjects to a Starchy Meal with Added Vinegar. Eur. J. Clin. Nutr. 1998, 52, 368–371. [Google Scholar] [CrossRef] [PubMed]
- Brighenti, F.; Castellani, G.; Benini, L.; Casiraghi, M.C.; Leopardi, E.; Crovetti, R.; Testolin, G. Effect of Neutralized and Native Vinegar on Blood Glucose and Acetate Responses to a Mixed Meal in Healthy Subjects. Eur. J. Clin. Nutr. 1995, 49, 242–247. [Google Scholar]
- Sajjad, S.; Israr, B.; Ali, F.; Pasha, I. Investigating The Effect Of Phytochemicals Rich Watermelon Seeds against Hypertension. Pak. J. Agric. Sci. 2020, 56, 1157–1164. [Google Scholar]
- Mazloomi, S.N.; Mora, L.; Aristoy, M.C.; Mahoonak, A.S.; Ghorbani, M.; Houshmand, G.; Toldrá, F. Impact of Simulated Gastrointestinal Digestion on the Biological Activity of an Alcalase Hydrolysate of Orange Seed (Siavaraze, Citrus sinensis) by-Products. Foods 2020, 9, 1217. [Google Scholar] [CrossRef]
- Kim, S.H.; Jeong, W.S.; Kim, S.Y.; Yeo, S.H. Quality and Functional Characterization of Acetic Acid Bacteria Isolated from Farm-Produced Fruit Vinegars. Fermentation 2023, 9, 447. [Google Scholar] [CrossRef]
- Morgan, J.; Mosawy, S. The Potential of Apple Cider Vinegar in the Management of Type 2 Diabetes. Int. J. Diabetes Res. 2016, 2016, 129–134. [Google Scholar] [CrossRef]
- Volino-Souza, M.; Oliveira, G.V.D.; Conte-Junior, C.A.; Figueroa, A.; Alvares, T.S. Current Evidence of Watermelon (Citrullus lanatus) Ingestion on Vascular Health: A Food Science and Technology Perspective. Nutrients 2022, 14, 2913. [Google Scholar] [CrossRef]
- Saqib, F.; Wahid, M.; AL-Huqail, A.A.; Ahmedah, H.T.; Bigiu, N.; Irimie, M.; Moga, M.; Marc (Vlaic), R.A.; Pop, O.L.; Chicea, L.M. Metabolomics Based Mechanistic Insights to Vasorelaxant and Cardioprotective Effect of Ethanolic Extract of Citrullus lanatus (Thunb.) Matsum. & Nakai. Seeds in Isoproterenol Induced Myocardial Infraction. Phytomedicine 2022, 100, 154069. [Google Scholar] [CrossRef] [PubMed]
- Cushman, D.W.; Cheung, H.S. Spectrophotometric Assay and Properties of the Angiotensin-Converting Enzyme of Rabbit Lung. Biochem. Pharmacol. 1971, 20, 1637–1648. [Google Scholar] [CrossRef]
- Zhang, L.; Hogan, S.; Li, J.; Sun, S.; Canning, C.; Zheng, S.J.; Zhou, K. Grape Skin Extract Inhibits Mammalian Intestinal α-Glucosidase Activity and Suppresses Postprandial Glycemic Response in Streptozocin-Treated Mice. Food Chem. 2011, 126, 466–471. [Google Scholar] [CrossRef]
- Oms-Oliu, G.; Odriozola-Serrano, I.; Soliva-Fortuny, R.; Martín-Belloso, O. Effects of High-Intensity Pulsed Electric Field Processing Conditions on Lycopene, Vitamin C and Antioxidant Capacity of Watermelon Juice. Food Chem. 2009, 115, 1312–1319. [Google Scholar] [CrossRef]
- Singleton, V.; Rossi, A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagent. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The Determination of Flavonoid Contents in Mulberry and Their Scavenging Effects on Superoxide Radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Esin Karademir, S.; Erçağ, E. The Cupric Ion Reducing Antioxidant Capacity and Polyphenolic Content of Some Herbal Teas. Int. J. Food Sci. Nutr. 2006, 57, 292–304. [Google Scholar] [CrossRef] [PubMed]
- Grajeda-Iglesias, C.; Salas, E.; Barouh, N.; Baréa, B.; Panya, A.; Figueroa-Espinoza, M.C. Antioxidant Activity of Protocatechuates Evaluated by DPPH, ORAC, and CAT Methods. Food Chem. 2016, 194, 749–757. [Google Scholar] [CrossRef] [PubMed]
- Giusti, M.M.; Wrolstad, R.E. Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, F1.2.1–F1.2.13. [Google Scholar] [CrossRef]
- Cemeroğlu, B. Gıda Analizleri, 2nd, ed.; Nobel Yayıncılık: Ankara, Turkey, 2010; ISBN 9759857868. [Google Scholar]
- Portu, J.; López, R.; Santamaría, P.; Garde-Cerdán, T. Elicitation with Methyl Jasmonate Supported by Precursor Feeding with Phenylalanine: Effect on Garnacha Grape Phenolic Content. Food Chem. 2017, 237, 416–422. [Google Scholar] [CrossRef]
- Sezer, B.; Apaydin, H.; Bilge, G.; Boyaci, I.H. Detection of Pistacia Vera Adulteration by Using Laser Induced Breakdown Spectroscopy. J. Sci. Food Agric. 2019, 99, 2236–2242. [Google Scholar] [CrossRef] [PubMed]
- Santos, H.O.; de Moraes, W.M.A.M.; da Silva, G.A.R.; Prestes, J.; Schoenfeld, B.J. Vinegar (Acetic Acid) Intake on Glucose Metabolism: A Narrative Review. Clin. Nutr. ESPEN 2019, 32, 1–7. [Google Scholar] [CrossRef]
- Kondo, S.; Tayama, K.; Tsukamoto, Y.; Ikeda, K.; Yamori, Y. Antihypertensive Effects of Acetic Acid and Vinegar on Spontaneously Hypertensive Rats. Biosci. Biotechnol. Biochem. 2001, 65, 2690–2694. [Google Scholar] [CrossRef]
- Yıkmış, S.; Aksu, F.; Altunatmaz, S.S.; Çöl, B.G. Ultrasound Processing of Vinegar: Modelling the Impact on Bioactives and Other Quality Factors. Foods 2021, 10, 1703. [Google Scholar] [CrossRef]
- Erdal, B.; Akalın, R.B.; Yılmaz, B.; Bozgeyik, E.; Yıkmış, S. Application of Ultrasound to the Organic Cornelian Cherry (Cornus mas L.) Vinegar: Changes in Antibacterial, Antidiabetic, Antihypertensive, and Anticancer Activities. J. Food Process Preserv. 2022, 46, e16952. [Google Scholar] [CrossRef]
- Yıkmış, S.; Ozer, H.; Levent, O.; Çöl, B.G.; Erdal, B. Effect of Thermosonication and Thermal Treatments on Antidiabetic, Antihypertensive, Mineral Elements and in Vitro Bioaccessibility of Bioactive Compounds in Freshly Squeezed Pomegranate Juice. J. Food Meas. Charact. 2022, 16, 3023–3041. [Google Scholar] [CrossRef]
- Xue, R.; Cui, E.-L.; Hu, G.-Q.; Zhu, M.-Q. The Composition, Physicochemical Properties, Antimicrobial and Antioxidant Activity of Wood Vinegar Prepared by Pyrolysis of Eucommia Ulmoides Oliver Branches under Different Refining Methods and Storage Conditions. Ind. Crops Prod. 2022, 178, 114586. [Google Scholar] [CrossRef]
- Muzaffar, S.; Ahmad, M.; Wani, S.M.; Gani, A.; Baba, W.N.; Shah, U.; Khan, A.A.; Masoodi, F.A.; Gani, A.; Wani, T.A. Ultrasound Treatment: Effect on Physicochemical, Microbial and Antioxidant Properties of Cherry (Prunus avium). J. Food Sci. Technol. 2016, 53, 2752–2759. [Google Scholar] [CrossRef]
- Wang, F.; Song, Y.; Vidyarthi, S.K.; Zhang, R. Physicochemical Properties, and Volatile Compounds of Blackened Jujube Vinegar as Prepared by Optimized Fermentation Process. Int. J. Food Prop. 2022, 25, 288–304. [Google Scholar] [CrossRef]
- Oliveira, C.S.; Gomes, F.S.; Constant, L.S.; Silva, L.F.M.; Godoy, R.L.O.; Tonon, R.V.; Cabral, L.M.C. Integrated Membrane Separation Processes Aiming to Concentrate and Purify Lycopene from Watermelon Juice. Innov. Food Sci. Emerg. Technol. 2016, 38, 149–154. [Google Scholar] [CrossRef]
- Makroo, H.A.; Saxena, J.; Rastogi, N.K.; Srivastava, B. Ohmic Heating Assisted Polyphenol Oxidase Inactivation of Watermelon Juice: Effects of the Treatment on PH, Lycopene, Total Phenolic Content, and Color of the Juice. J. Food Process Preserv. 2017, 41, e13271. [Google Scholar] [CrossRef]
- Quek, S.Y.; Chok, N.K.; Swedlund, P. The Physicochemical Properties of Spray-Dried Watermelon Powders. Chem. Eng. Process. Process Intensif. 2007, 46, 386–392. [Google Scholar] [CrossRef]
- Acharya, P.; Singh, J.; Jayaprakasha, G.K.; Jifon, J.L.; Crosby, K.M.; Patil, B.S. Impact of Storage Period and Nanoparticle Treatment on Phytochemical Composition of Watermelons (Citrullus lanatus). J. Food Compos. Anal. 2021, 104, 104139. [Google Scholar] [CrossRef]
- Fish, W.W.; Davis, A.R. The Effects of Frozen Storage Conditions on Lycopene Stability in Watermelon Tissue. J. Agric. Food Chem. 2003, 51, 3582–3585. [Google Scholar] [CrossRef]
- Perkins-Veazie, P.; Collins, J.K. Flesh Quality and Lycopene Stability of Fresh-Cut Watermelon. Postharvest Biol. Technol. 2004, 31, 159–166. [Google Scholar] [CrossRef]
- Galdeano, M.C.; dos Santos Gomes, F.; Chávez, D.W.H.; Almeida, E.L.; Moulin, L.C.; de Grandi Castro Freitas de Sá, D.; Tonon, R.V. Lycopene-Rich Watermelon Concentrate Used as a Natural Food Colorant: Stability during Processing and Storage. Food Res. Int. 2022, 160, 111691. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; Soteriou, G. Quality and Postharvest Performance of Watermelon Fruit in Response to Grafting on Interspecific Cucurbit Rootstocks. J. Food Qual. 2015, 38, 21–29. [Google Scholar] [CrossRef]
- Perkins-Veazie, P.; Collins, J.K.; Pair, S.D.; Roberts, W. Lycopene Content Differs among Red-Fleshed Watermelon Cultivars. J. Sci. Food Agric. 2001, 81, 983–987. [Google Scholar] [CrossRef]
- Ali, M.; Manzoor, M.F.; Goksen, G.; Aadil, R.M.; Zeng, X.A.; Iqbal, M.W.; Lorenzo, J.M. High-Intensity Ultrasonication Impact on the Chlorothalonil Fungicide and Its Reduction Pathway in Spinach Juice. Ultrason. Sonochem. 2023, 94, 106303. [Google Scholar] [CrossRef]
- Rybak, M.; Wojdyło, A. Inhibition of α-Amylase, α-Glucosidase, Pancreatic Lipase, 15-Lipooxygenase and Acetylcholinesterase Modulated by Polyphenolic Compounds, Organic Acids, and Carbohydrates of Prunus Domestica Fruit. Antioxidants 2023, 12, 1380. [Google Scholar] [CrossRef]
- Choi, M.H.; Kim, G.H.; Lee, H.S. Effects of Ascorbic Acid Retention on Juice Color and Pigment Stability in Blood Orange (Citrus sinensis) Juice during Refrigerated Storage. Food Res. Int. 2002, 35, 753–759. [Google Scholar] [CrossRef]
- Montenegro-Landívar, M.F.; Tapia-Quirós, P.; Vecino, X.; Reig, M.; Valderrama, C.; Granados, M.; Cortina, J.L.; Saurina, J. Polyphenols and Their Potential Role to Fight Viral Diseases: An Overview. Sci. Total Environ. 2021, 801, 149719. [Google Scholar] [CrossRef]
- Duan, W.; Xia, T.; Zhang, B.; Li, S.; Zhang, C.; Zhao, C.; Song, J.; Wang, M. Changes of Physicochemical, Bioactive Compounds and Antioxidant Capacity during the Brewing Process of Zhenjiang Aromatic Vinegar. Molecules 2019, 24, 3935. [Google Scholar] [CrossRef] [PubMed]
- Rawson, A.; Tiwari, B.K.; Patras, A.; Brunton, N.; Brennan, C.; Cullen, P.J.; O’Donnell, C. Effect of Thermosonication on Bioactive Compounds in Watermelon Juice. Food Res. Int. 2011, 44, 1168–1173. [Google Scholar] [CrossRef]
- Chen, G.L.; Zheng, F.J.; Lin, B.; Lao, S.B.; He, J.; Huang, Z.; Zeng, Y.; Sun, J.; Verma, K.K. Phenolic and Volatile Compounds in the Production of Sugarcane Vinegar. ACS Omega 2020, 5, 30587–30595. [Google Scholar] [CrossRef]
- Chatatikun, M.; Tedasen, A.; Pattaranggoon, N.C.; Palachum, W.; Chuaijit, S.; Mudpan, A.; Pruksaphanrat, S.; Sohbenalee, S.; Yamasaki, K.; Klangbud, W.K. Antioxidant Activity, Anti-Tyrosinase Activity, Molecular Docking Studies, and Molecular Dynamic Simulation of Active Compounds Found in Nipa Palm Vinegar. PeerJ 2023, 11, e16494. [Google Scholar] [CrossRef]
- Wu, Q.; Kong, Y.; Liang, Y.; Niu, M.; Feng, N.; Zhang, C.; Qi, Y.; Guo, Z.; Xiao, J.; Zhou, M.; et al. Protective Mechanism of Fruit Vinegar Polyphenols against AGEs-Induced Caco-2 Cell Damage. Food Chem. X 2023, 19, 100736. [Google Scholar] [CrossRef]
- Tokatlı Demirok, N.; Yıkmış, S.; Duman Altan, A.; Apaydın, H. Optimization of Ultrasound-Treated Horsetail-Fortified Traditional Apple Vinegar Using RSM and ANFIS Modeling: Bioactive and Sensory Properties. J. Food Meas. Charact. 2023, 18, 256–271. [Google Scholar] [CrossRef]
- Liu, Q.; Tang, G.Y.; Zhao, C.N.; Gan, R.Y.; Li, H. Bin Antioxidant Activities, Phenolic Profiles, and Organic Acid Contents of Fruit Vinegars. Antioxidants 2019, 8, 78. [Google Scholar] [CrossRef] [PubMed]
- Wen, M.; Zhou, F.; Zhu, M.; Han, Z.; Lai, G.; Jiang, Z.; Long, P.; Zhang, L. Monitoring of Pickled Tea during Processing: From LC-MS Based Metabolomics Analysis to Inhibitory Activities on α-Amylase and α-Glycosidase. J. Food Compos. Anal. 2023, 117, 105108. [Google Scholar] [CrossRef]
- Yim, E.-J.; Jo, S.-W.; Lee, E.-S.; Park, H.-S.; Ryu, M.-S.; Uhm, T.-B.; Kim, H.-Y.; Cho, S.-H. Fermentation Characteristics of Mulberry (Cudrania tricuspidata) Fruit Vinegar Produced by Acetic Acid Bacteria Isolated from Traditional Fermented Foods. Korean J. Food Preserv. 2015, 22, 108–118. [Google Scholar] [CrossRef]
- Rasouli, H.; Hosseini-Ghazvini, S.M.B.; Adibi, H.; Khodarahmi, R. Differential α-Amylase/α-Glucosidase Inhibitory Activities of Plant-Derived Phenolic Compounds: A Virtual Screening Perspective for the Treatment of Obesity and Diabetes. Food Funct. 2017, 8, 1942–1954. [Google Scholar] [CrossRef] [PubMed]
- National Agricultural Library. Available online: https://www.nal.usda.gov/ (accessed on 17 October 2023).
- Ozturk, I.; Caliskan, O.; Tornuk, F.; Ozcan, N.; Yalcin, H.; Baslar, M.; Sagdic, O. Antioxidant, Antimicrobial, Mineral, Volatile, Physicochemical and Microbiological Characteristics of Traditional Home-Made Turkish Vinegars. LWT Food Sci. Technol. 2015, 63, 144–151. [Google Scholar] [CrossRef]
- Antoniewicz, J.; Jakubczyk, K.; Kupnicka, P.; Bosiacki, M.; Chlubek, D.; Janda, K. Analysis of Selected Minerals in Homemade Grape Vinegars Obtained by Spontaneous Fermentation. Biol. Trace Elem. Res. 2022, 200, 910–919. [Google Scholar] [CrossRef]
- Chou, C.H.; Liu, C.W.; Yang, D.J.; Wu, Y.H.S.; Chen, Y.C. Amino Acid, Mineral, and Polyphenolic Profiles of Black Vinegar, and Its Lipid Lowering and Antioxidant Effects in Vivo. Food Chem. 2015, 168, 63–69. [Google Scholar] [CrossRef]
Run no. | Independent Variables | Dependent Variables | ||||||
---|---|---|---|---|---|---|---|---|
Time (X1) | Amplitude (X2) | ACE Inhibitory Activity % | α-Amylase Inhibitory Activity % | α-Glucosidase Inhibitory Activity % | ||||
Experimental Data | RSM Predicted | Experimental Data | RSM Predicted | Experimental Data | RSM Predicted | |||
1 | 11 (+1) | 55(−1) | 21.78 ± 0.42 | 21.95 | 36.59 ± 1.27 | 33.43 | 32.96 ± 1.14 | 37.02 |
2 | 11 (+1) | 85 (+1) | 24.15 ± 1.15 | 23.93 | 38.85 ± 1.45 | 36.17 | 36.36 ± 0.70 | 38.85 |
3 | 8(0) | 70 (0) | 27.38 ± 0.55 | 27.41 | 42.92 ± 1.42 | 40.24 | 40.12 ± 0.96 | 43.81 |
4 | 2 (−1.41) | 70 (0) | 23.34 ± 1.36 | 23.27 | 39.21 ± 1.36 | 34.45 | 34.45 ± 1.19 | 38.66 |
5 | 8(0) | 70 (0) | 27.35 ± 0.18 | 27.41 | 44.27 ± 1.42 | 40.24 | 40.32 ± 1.40 | 43.81 |
6 | 8(0) | 70 (0) | 27.35 ± 0.58 | 27.41 | 44.27 ± 0.94 | 40.24 | 40.32 ± 1.08 | 43.81 |
7 | 8(0) | 70 (0) | 27.35 ± 0.58 | 27.41 | 44.27 ± 0.71 | 40.24 | 40.32 ± 1.55 | 43.81 |
8 | 14 (+1.41) | 70 (0) | 18.43 ± 1.55 | 18.46 | 31.64 ± 1.10 | 28.94 | 29.03 ± 1.01 | 31.71 |
9 | 5 (−1) | 85 (+1) | 23.71 ± 0.67 | 23.60 | 39.83 ± 1.21 | 35.97 | 36.27 ± 1.26 | 40.44 |
10 | 8 (0) | 100 (+1.41) | 19.95 ± 0.94 | 20.13 | 35.85 ± 0.87 | 32.34 | 32.05 ± 1.95 | 35.83 |
11 | 5 (−1) | 55 (−1) | 26.82 ± 0.46 | 27.10 | 41.34 ± 1.43 | 39.15 | 38.79 ± 0.77 | 42.38 |
12 | 8 (0) | 70 (0) | 27.69 ± 1.25 | 27.41 | 44.27 ± 1.42 | 40.24 | 40.32 ± 1.40 | 43.81 |
13 | 8 (0) | 40 (−1.41) | 21.87 ± 0.25 | 21.65 | 36.41 ± 0.86 | 32.78 | 33.16 ± 1.15 | 35.94 |
UT-WV | 6.7 | 69 | 27.72 | 40.50 | 44.17 | |||
Experimental values | 26.70 ± 0.67 | 38.56 ± 1.34 | 42.35 ± 0.48 | |||||
% Difference | 3.68 | 4.86 | 4.19 |
Source | DF | ACE Inhibitory Activity % | α-Amylase Inhibitory Activity % | α-Glucosidase Inhibitory Activity % | |||
---|---|---|---|---|---|---|---|
F-Value | p-Value | F-Value | p-Value | F-Value | p-Value | ||
Model | 5 | 496.75 | 0.000 | 334.6 | 0.000 | 71.34 | 0.000 |
Linear | 2 | 194.67 | 0.000 | 107.46 | 0.000 | 33.53 | 0.000 |
X1 | 1 | 353.66 | 0.000 | 213.55 | 0.000 | 67.05 | 0.000 |
X2 | 1 | 35.68 | 0.001 | 1.37 | 0.279 | 0.02 | 0.892 |
Square | 2 | 970.6 | 0.000 | 688.19 | 0.000 | 141.54 | 0.000 |
X12 | 1 | 1250.97 | 0.000 | 975.08 | 0.000 | 196.82 | 0.000 |
X22 | 1 | 1241.43 | 0.000 | 788.19 | 0.000 | 166.12 | 0.000 |
2-Way Interaction | 1 | 153.23 | 0.000 | 81.68 | 0.000 | 6.57 | 0.037 |
X1 * X2 | 1 | 153.23 | 0.000 | 81.68 | 0.000 | 6.57 | 0.037 |
Error | 7 | ||||||
Lack-of-Fit | 3 | 3.8 | 0.115 | 31.02 | 0.003 | 2.16 | 0.236 |
Pure Error | 4 | ||||||
Total | 12 | ||||||
R2 | 99.72% | 99.58% | 98.08% | ||||
Adj R2 | 99.52% | 99.29% | 96.70% | ||||
Pred. R2 | 97.79% | 95.99% | 89.36% |
Phenolic Compound | Storage Period (Month) | |||
---|---|---|---|---|
0 | 6 | 12 | 24 | |
Protecatechuic Aldehyde | <0.027 | <0.027 | <0.027 | <0.027 |
Gallic acid | 29.76 ± 0.49 a | 34.41 ± 0.36 b | 35.84 ± 0.88 b | 34.89 ± 0.46 b |
Protecatechuic Acid | 10.27 ± 0.27 a | 15.93 ± 0.08 c | 12.36 ± 0.04 b | 10.19 ± 0.05 a |
Catechin | <0.01 | <0.01 | <0.01 | <0.01 |
Sesamol | <0.034 | <0.034 | <0.034 | <0.034 |
Syringic Acid | <0.104 | <0.104 | <0.104 | <0.104 |
Epicatechin | n.d | n.d | n.d | n.d |
Caffeic Acid | 0.23 ± 0.00 b | 0.24 ± 0.01 b | 0.18 ± 0.01 a | 0.18 ± 0.00 a |
Ferulic Acid | <0.064 | <0.064 | <0.064 | <0.064 |
Vanniline | 0.84 ± 0.03 a | 0.69 ± 0.01 b | 0.01 ± 0.01 a | 0.58 ± 0.01 c |
Taxifolin | 1.59 ± 0.06 a | 1.06 ± 0.05 b | 1.13 ± 0.04 b | 1.07 ± 0.02 b |
p_coumaric Acid | 0.06 ± 0.08 a | 0.59 ± 0.01 ab | 0.52 ± 0.01 b | 0.73 ± 0.02 c |
Rosmarinic Acid | <0.003 | <0.003 | <0.003 | <0.003 |
4-hydroxybenzoic acid | 20.17 ± 0.06 a | 13.41 ± 0.26 b | 11.63 ± 0.25 c | 11.73 ± 0.12 c |
Salicylic acid | 13.86 ± 0.13 a | 9.48 ± 0.06 b | 8.32 ± 0.04 c | 8.45 ± 0.06 c |
Oleuropein | 0.23 ± 0.01 a | 0.15 ± 0.00 b | 0.15 ± 0.01 b | 0.01 ± 0.01 c |
Rezveratrol | <0.019 | <0.019 | <0.019 | <0.019 |
Routine | <0.022 | <0.022 | <0.022 | <0.022 |
Quercetin | 2.79 ± 0.03 a | 1.93 ± 0.02 b | 2.03 ± 0.03 b | 1.65 ± 0.06 c |
Kaempferol | n.d. | n.d. | n.d. | n.d. |
Ellagic Acid | 0.67 ± 0.04 a | 0.44 ± 0.01 b | 0.42 ± 0.01 b | 0.23 ± 0.02 c |
Flavone | <0.057 | <0.057 | <0.057 | <0.057 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tokatlı Demirok, N.; Yıkmış, S. Optimization of Ultrasound Treatment for Watermelon Vinegar Using Response Surface Methodology: Antidiabetic—Antihypertensive Effects, Bioactive Compounds, and Minerals. Fermentation 2024, 10, 133. https://doi.org/10.3390/fermentation10030133
Tokatlı Demirok N, Yıkmış S. Optimization of Ultrasound Treatment for Watermelon Vinegar Using Response Surface Methodology: Antidiabetic—Antihypertensive Effects, Bioactive Compounds, and Minerals. Fermentation. 2024; 10(3):133. https://doi.org/10.3390/fermentation10030133
Chicago/Turabian StyleTokatlı Demirok, Nazan, and Seydi Yıkmış. 2024. "Optimization of Ultrasound Treatment for Watermelon Vinegar Using Response Surface Methodology: Antidiabetic—Antihypertensive Effects, Bioactive Compounds, and Minerals" Fermentation 10, no. 3: 133. https://doi.org/10.3390/fermentation10030133
APA StyleTokatlı Demirok, N., & Yıkmış, S. (2024). Optimization of Ultrasound Treatment for Watermelon Vinegar Using Response Surface Methodology: Antidiabetic—Antihypertensive Effects, Bioactive Compounds, and Minerals. Fermentation, 10(3), 133. https://doi.org/10.3390/fermentation10030133