Filamentous Fungi as Bioremediation Agents of Industrial Effluents: A Systematic Review
Abstract
:1. Introduction
2. Scientific Literature Indexing Tool for Data Collection
3. Publication Analysis
3.1. Characterization of Publications
Ranking | Article | Journal | IF | Citations | Year | InOrdinatio |
---|---|---|---|---|---|---|
1 | Phenolic removal in a model olive oil mill wastewater using Pleurotus ostreatus in bioreactor cultures and biological evaluation of the process [32] | Water Research | 18 | 325 | 2003 | 30,844,612 |
2 | Understanding the role of mediators in the efficiency of advanced oxidation processes using white-rot fungi [38] | Chemical Engineering Journal | 19.4 | 40 | 2019 | 26,873,684 |
3 | Evaluation of some white-rot fungi for their potential to decolorize industrial dyes [40] | Bioresource Technology | 17.4 | 190 | 2007 | 26,471,207 |
4 | Mycoremediation of phenols and polycyclic aromatic hydrocarbons from a biorefinery wastewater and concomitant production of lignin modifying enzymes [35] | Journal of Cleaner Production | 15.8 | 41 | 2020 | 25,655,263 |
5 | Degradation and toxicity reduction of the endocrine disruptors nonylphenol, 4-tert-octylphenol and 4-cumylphenol by the non-ligninolytic fungus Umbelopsis isabellina [39] | Bioresource Technology | 17.4 | 65 | 2016 | 24,603,947 |
6 | Olive mill wastewater biodegradation potential of white-rot fungi—mode of action of fungal culture extracts and effects of ligninolytic enzymes [33] | Bioresource Technology | 17.4 | 70 | 2015 | 24,125,146 |
7 | Biodegradation and detoxification of phenanthrene in in vitro and in vivo conditions by a newly isolated ligninolytic fungus Coriolopsis byrsina strain APC5 and characterization of their metabolites for environmental safety [41] | Environmental Science and Pollution Research | 6.6 | 33 | 2022 | 22,968,421 |
8 | Roles of lignin peroxidase and manganese peroxidase from Phanerochaete chrysosporium in the decolorization of olive mill wastewaters [37] | Bioresource Technology | 17.4 | 246 | 1995 | 22,198,548 |
9 | Activity and elution profile of laccase during biological decolorization and dephenolization of olive mill wastewater [36] | Water Research | 18 | 126 | 2004 | 218 |
10 | Panus tigrinus efficiently removes phenols, color and organic load from olive-mill wastewater [34] | Bioresource Technology | 17.4 | 134 | 2004 | 216 |
3.2. Distribution of Publications by Countries
3.3. Category, Journals, and Keywords Analysis
4. Microorganisms That Degrade Phenolic Compounds, and Bioremediation with Filamentous Fungi
5. Biochemical Mechanisms Involved in Bioremediation Processes with Filamentous Fungi
6. Summary, Perspectives, and Final Considerations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sunkad, S. The Role of Industries in the Development of the Nation. Eur. J. Res. Dev. Sustain. 2021, 2, 55–58. [Google Scholar]
- Heinz, O.L.; Cunha, M.A.A.; Amorim, J.S.; Barbosa-Dekker, A.M.; Dekker, R.F.H.; Barreto-Rodrigues, M. Combined Fungal and Photo-Oxidative Fenton Processes for the Treatment of Wood-Laminate Industrial Waste Effluent. J. Hazard. Mater. 2019, 379, 120790. [Google Scholar] [CrossRef]
- Saravanakumar, K.; De Silva, S.; Santosh, S.S.; Sathiyaseelan, A.; Ganeshalingam, A.; Jamla, M.; Sankaranarayanan, A.; Veeraraghavan, V.P.; MubarakAli, D.; Lee, J.; et al. Impact of Industrial Effluents on the Environment and Human Health and Their Remediation Using MOFs-Based Hybrid Membrane Filtration Techniques. Chemosphere 2022, 307, 135593. [Google Scholar] [CrossRef]
- Shabbir, S.; Faheem, M.; Ali, N.; Kerr, P.G.; Wu, Y. Periphyton Biofilms: A Novel and Natural Biological System for the Effective Removal of Sulphonated Azo Dye Methyl Orange by Synergistic Mechanism. Chemosphere 2017, 167, 236–246. [Google Scholar] [CrossRef]
- Chae, Y.; Kim, L.; Kim, D.; Cui, R.; Lee, J.; An, Y.-J. Deriving Hazardous Concentrations of Phenol in Soil Ecosystems Using a Species Sensitivity Distribution Approach. J. Hazard. Mater. 2020, 399, 123036. [Google Scholar] [CrossRef] [PubMed]
- Mohamad Said, K.A.; Ismail, A.F.; Abdul Karim, Z.; Abdullah, M.S.; Hafeez, A. A Review of Technologies for the Phenolic Compounds Recovery and Phenol Removal from Wastewater. Process Saf. Environ. Prot. 2021, 151, 257–289. [Google Scholar] [CrossRef]
- Gami, A.A.; Shukor, M.Y.; Khalil, K.A.; Dahalan, F.A.; Khalid, A.; Ahmad, S.A. Phenol and Its Toxicity. J. Environ. Microbiol. Toxicol. 2014, 2, 11–23. [Google Scholar] [CrossRef]
- Goncharuk, E.A.; Zagoskina, N.V. Heavy Metals, Their Phytotoxicity, and the Role of Phenolic Antioxidants in Plant Stress Responses with Focus on Cadmium: Review. Molecules 2023, 28, 3921. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.; Meng, F.; Cui, H.; Lin, Y.; Wang, G.; Wu, J. Ecotoxicity of Phenol and Cresols to Aquatic Organisms: A Review. Ecotoxicol. Environ. Saf. 2018, 157, 441–456. [Google Scholar] [CrossRef]
- Anku, W.W.; Mamo, M.A.; Govender, P.P. Phenolic Compounds in Water: Sources, Reactivity, Toxicity and Treatment Methods. In Phenolic Compounds-Natural Sources, Importance and Applications; InTech: London, UK, 2017. [Google Scholar]
- Crane, J.L. Distribution and Toxic Potential of Alkylphenols, Nonylphenol Ethoxylates, and Pyrethroids in Minnesota, USA Lake Sediments. Sci. Total Environ. 2021, 776, 145974. [Google Scholar] [CrossRef]
- Raza, W.; Lee, J.; Raza, N.; Luo, Y.; Kim, K.-H.; Yang, J. Removal of Phenolic Compounds from Industrial Waste Water Based on Membrane-Based Technologies. J. Ind. Eng. Chem. 2019, 71, 1–18. [Google Scholar] [CrossRef]
- Nidheesh, P.V.; Ravindran, V.; Gopinath, A.; Kumar, M.S. Emerging Technologies for Mixed Industrial Wastewater Treatment in Developing Countries: An Overview. Environ. Qual. Manag. 2022, 31, 121–141. [Google Scholar] [CrossRef]
- Ken, D.S.; Sinha, A. Dimensionally Stable Anode (Ti/RuO2) Mediated Electro-Oxidation and Multi-Response Optimization Study for Remediation of Coke-Oven Wastewater. J. Environ. Chem. Eng. 2021, 9, 105025. [Google Scholar] [CrossRef]
- Chalaris, M.; Gkika, D.A.; Tolkou, A.K.; Kyzas, G.Z. Advancements and Sustainable Strategies for the Treatment and Management of Wastewaters from Metallurgical Industries: An Overview. Environ. Sci. Pollut. Res. 2023, 30, 119627–119653. [Google Scholar] [CrossRef]
- Mora-Ravelo, S.G. Bioremediation of Wastewater for Reutilization in Agricultural Systems: A Review. Appl. Ecol. Environ. Res. 2017, 15, 33–50. [Google Scholar] [CrossRef]
- Tripathi, S.; Sharma, P.; Purchase, D.; Chandra, R. Distillery Wastewater Detoxification and Management through Phytoremediation Employing Ricinus communis L. Bioresour. Technol. 2021, 333, 125192. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Thakur, I.S.; Shah, M.P. Bioremediation Approaches for Treatment of Pulp and Paper Industry Wastewater: Recent Advances and Challenges. In Microbial Bioremediation & Biodegradation; Springer: Singapore, 2020; pp. 1–48. [Google Scholar]
- Dong, R.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Removal of Phenol from Aqueous Solution Using Acid-Modified Pseudomonas putida-sepiolite/ZIF-8 Bio-Nanocomposites. Chemosphere 2020, 239, 124708. [Google Scholar] [CrossRef] [PubMed]
- Kubisch, C.; Ochsenreither, K. Detoxification of a Pyrolytic Aqueous Condensate from Wheat Straw for Utilization as Substrate in Aspergillus oryzae DSM 1863 Cultivations. Biotechnol. Biofuels Bioprod. 2022, 15, 18. [Google Scholar] [CrossRef] [PubMed]
- Swain, G.; Sonwani, R.K.; Singh, R.S.; Jaiswal, R.P.; Rai, B.N. Removal of 4-Chlorophenol by Bacillus flexus as Free and Immobilized System: Effect of Process Variables and Kinetic Study. Environ. Technol. Innov. 2021, 21, 101356. [Google Scholar] [CrossRef]
- Castaño, J.D.; Muñoz-Muñoz, N.; Kim, Y.M.; Liu, J.; Yang, L.; Schilling, J.S. Metabolomics Highlights Different Life History Strategies of White and Brown Rot Wood-Degrading Fungi. mSphere 2022, 7, e00545-22. [Google Scholar] [CrossRef]
- Grelska, A.; Noszczyńska, M. White Rot Fungi Can Be a Promising Tool for Removal of Bisphenol A, Bisphenol S, and Nonylphenol from Wastewater. Environ. Sci. Pollut. Res. 2020, 27, 39958–39976. [Google Scholar] [CrossRef]
- Brugnari, T.; Pereira, M.G.; Bubna, G.A.; de Freitas, E.N.; Contato, A.G.; Corrêa, R.C.G.; Castoldi, R.; de Souza, C.G.M.; Polizeli, M.d.L.T.d.M.; Bracht, A.; et al. A Highly Reusable MANAE-Agarose-Immobilized Pleurotus ostreatus Laccase for Degradation of Bisphenol A. Sci. Total Environ. 2018, 634, 1346–1351. [Google Scholar] [CrossRef] [PubMed]
- Zdarta, J.; Antecka, K.; Frankowski, R.; Zgoła-Grześkowiak, A.; Ehrlich, H.; Jesionowski, T. The Effect of Operational Parameters on the Biodegradation of Bisphenols by Trametes versicolor Laccase Immobilized on Hippospongia communis Spongin Scaffolds. Sci. Total Environ. 2018, 615, 784–795. [Google Scholar] [CrossRef]
- Latif, W.; Ciniglia, C.; Iovinella, M.; Shafiq, M.; Papa, S. Role of White Rot Fungi in Industrial Wastewater Treatment: A Review. Appl. Sci. 2023, 13, 8318. [Google Scholar] [CrossRef]
- Nurika, I.; Suhartini, S.; Barker, G.C. Biotransformation of Tropical Lignocellulosic Feedstock Using the Brown Rot Fungus Serpula lacrymans. Waste Biomass Valorization 2020, 11, 2689–2700. [Google Scholar] [CrossRef]
- Ahsan, M.M.; Cheng, W.; Hussain, A.B.; Chen, X.; Wajid, B.A. Knowledge Mapping of Research Progress in Vertical Greenery Systems (VGS) from 2000 to 2021 Using CiteSpace Based Scientometric Analysis. Energy Build. 2022, 256, 111768. [Google Scholar] [CrossRef]
- Zhang, D.; Xu, J.; Zhang, Y.; Wang, J.; He, S.; Zhou, X. Study on Sustainable Urbanization Literature Based on Web of Science, Scopus, and China National Knowledge Infrastructure: A Scientometric Analysis in CiteSpace. J. Clean. Prod. 2020, 264, 121537. [Google Scholar] [CrossRef]
- Li, J.; Jia, C.; Lu, Q.; Hungate, B.A.; Dijkstra, P.; Wang, S.; Wu, C.; Chen, S.; Li, D.; Shim, H. Mechanistic Insights into the Success of Xenobiotic Degraders Resolved from Metagenomes of Microbial Enrichment Cultures. J. Hazard. Mater. 2021, 418, 126384. [Google Scholar] [CrossRef]
- Yin, M.; Xu, C.; Ma, J.; Ye, J.; Mo, W. A Bibliometric Analysis and Visualization of Current Research Trends in the Treatment of Cervical Spondylotic Myelopathy. Glob. Spine J. 2021, 11, 988–998. [Google Scholar] [CrossRef] [PubMed]
- Aggelis, G.; Iconomou, D.; Christou, M.; Bokas, D.; Kotzailias, S.; Christou, G.; Tsagou, V.; Papanikolaou, S. Phenolic Removal in a Model Olive Oil Mill Wastewater Using Pleurotus ostreatus in Bioreactor Cultures and Biological Evaluation of the Process. Water Res. 2003, 37, 3897–3904. [Google Scholar] [CrossRef]
- Ntougias, S.; Baldrian, P.; Ehaliotis, C.; Nerud, F.; Merhautová, V.; Zervakis, G.I. Olive Mill Wastewater Biodegradation Potential of White-Rot Fungi—Mode of Action of Fungal Culture Extracts and Effects of Ligninolytic Enzymes. Bioresour. Technol. 2015, 189, 121–130. [Google Scholar] [CrossRef] [PubMed]
- D’Annibale, A.; Ricci, M.; Quaratino, D.; Federici, F.; Fenice, M. Panus tigrinus Efficiently Removes Phenols, Color and Organic Load from Olive-Mill Wastewater. Res. Microbiol. 2004, 155, 596–603. [Google Scholar] [CrossRef] [PubMed]
- Ariste, A.F.; Batista-García, R.A.; Vaidyanathan, V.K.; Raman, N.; Vaithyanathan, V.K.; Folch-Mallol, J.L.; Jackson, S.A.; Dobson, A.D.W.; Cabana, H. Mycoremediation of Phenols and Polycyclic Aromatic Hydrocarbons from a Biorefinery Wastewater and Concomitant Production of Lignin Modifying Enzymes. J. Clean. Prod. 2020, 253, 119810. [Google Scholar] [CrossRef]
- Dias, A.A.; Bezerra, R.M.; Pereira, A.N. Activity and Elution Profile of Laccase during Biological Decolorization and Dephenolization of Olive Mill Wastewater. Bioresour. Technol. 2004, 92, 7–13. [Google Scholar] [CrossRef]
- Sayadi, S.; Zorgani, F.; Ellouz, R. Role of Lignin Peroxidase and Manganese Peroxidase of Phanerochaete chrysosporium in the Decolorization of Olive Mill Wastewaters. In Environmental Biotechnology; Springer: Dordrecht, The Netherlands, 1995; pp. 511–523. [Google Scholar]
- Vasiliadou, I.A.; Molina, R.; Pariente, M.I.; Christoforidis, K.C.; Martinez, F.; Melero, J.A. Understanding the Role of Mediators in the Efficiency of Advanced Oxidation Processes Using White-Rot Fungi. Chem. Eng. J. 2019, 359, 1427–1435. [Google Scholar] [CrossRef]
- Janicki, T.; Krupiński, M.; Długoński, J. Degradation and Toxicity Reduction of the Endocrine Disruptors Nonylphenol, 4-Tert-Octylphenol and 4-Cumylphenol by the Non-Ligninolytic Fungus Umbelopsis Isabellina. Bioresour. Technol. 2016, 200, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Chander, M.; Arora, D.S. Evaluation of Some White-Rot Fungi for Their Potential to Decolourise Industrial Dyes. Dye. Pigment. 2007, 72, 192–198. [Google Scholar] [CrossRef]
- Agrawal, N.; Kumar, V.; Shahi, S.K. Biodegradation and Detoxification of Phenanthrene in in Vitro and in Vivo Conditions by a Newly Isolated Ligninolytic Fungus Coriolopsis byrsina Strain APC5 and Characterization of Their Metabolites for Environmental Safety. Environ. Sci. Pollut. Res. 2022, 29, 61767–61782. [Google Scholar] [CrossRef] [PubMed]
- Lee, Z.S.; Chin, S.Y.; Lim, J.W.; Witoon, T.; Cheng, C.K. Treatment Technologies of Palm Oil Mill Effluent (POME) and Olive Mill Wastewater (OMW): A Brief Review. Environ. Technol. Innov. 2019, 15, 100377. [Google Scholar] [CrossRef]
- Gueboudji, Z.; Addad, D.; Kadi, K.; Nagaz, K.; Secrafi, M.; Yahya, L.B.; Lachehib, B.; Abdelmalek, A. Biological Activities and Phenolic Compounds of Olive Oil Mill Wastewater from Abani, Endemic Algerian Variety. Sci. Rep. 2022, 12, 6042. [Google Scholar] [CrossRef]
- Ramos, R.L.; Moreira, V.R.; Lebron, Y.A.R.; Santos, A.V.; Santos, L.V.S.; Amaral, M.C.S. Phenolic Compounds Seasonal Occurrence and Risk Assessment in Surface and Treated Waters in Minas Gerais—Brazil. Environ. Pollut. 2021, 268, 115782. [Google Scholar] [CrossRef]
- Díaz, A.I.; Laca, A.; Sánchez, M.; Díaz, M. Evaluation of Phanerochaete chrysosporium for Swine Wastewater Treatment. Biochem. Eng. J. 2022, 187, 108599. [Google Scholar] [CrossRef]
- Hu, C.; Huang, D.; Zeng, G.; Cheng, M.; Gong, X.; Wang, R.; Xue, W.; Hu, Z.; Liu, Y. The Combination of Fenton Process and Phanerochaete chrysosporium for the Removal of Bisphenol A in River Sediments: Mechanism Related to Extracellular Enzyme, Organic Acid and Iron. Chem. Eng. J. 2018, 338, 432–439. [Google Scholar] [CrossRef]
- Pernyeszi, T.; Farkas, V.; Felinger, A.; Boros, B.; Dékány, I. Use of Non-Living Lyophilized Phanerochaete chrysosporium Cultivated in Various Media for Phenol Removal. Environ. Sci. Pollut. Res. 2018, 25, 8550–8562. [Google Scholar] [CrossRef]
- Wang, J.; Xie, Y.; Hou, J.; Zhou, X.; Chen, J.; Yao, C.; Zhang, Y.; Li, Y. Biodegradation of Bisphenol A by Alginate Immobilized Phanerochaete chrysosporium Beads: Continuous Cyclic Treatment and Degradation Pathway Analysis. Biochem. Eng. J. 2022, 177, 108212. [Google Scholar] [CrossRef]
- Werkneh, A.A.; Rene, E.R.; Lens, P.N. Simultaneous Removal of Selenite and Phenol from Wastewater in an Upflow Fungal Pellet Bioreactor. J. Chem. Technol. Biotechnol. 2018, 93, 1003–1011. [Google Scholar] [CrossRef]
- Murniati, A.; Buchari, B.; Gandasasmita, S.; Nurachman, Z.; Nurhanifah, N. Characterization of Polyphenol Oxidase Application as Phenol Removal in Extracts of Rejected White Oyster Mushrooms (Pleurotus ostreatus). Orient. J. Chem. 2018, 34, 1457–1468. [Google Scholar] [CrossRef]
- Zhang, S. Recent Advances of Polyphenol Oxidases in Plants. Molecules 2023, 28, 2158. [Google Scholar] [CrossRef]
- Kumar, V.V.; Venkataraman, S.; Kumar, P.S.; George, J.; Rajendran, D.S.; Shaji, A.; Lawrence, N.; Saikia, K.; Rathankumar, A.K. Laccase Production by Pleurotus ostreatus Using Cassava Waste and Its Application in Remediation of Phenolic and Polycyclic Aromatic Hydrocarbon-Contaminated Lignocellulosic Biorefinery Wastewater. Environ. Pollut. 2022, 309, 119729. [Google Scholar] [CrossRef]
- European Commission New System-Driven Bioremediation of Polluted Habitats and Environment. Available online: https://cordis.europa.eu/project/id/101060625 (accessed on 1 January 2023).
- European Commission Engineering Fungal Laccases by Directed Molecular Evolution and Semi-Rational Approaches: Application in Bioremediation of Polycyclic Aromatic Hydrocarbons (Pahs). Available online: https://cordis.europa.eu/project/id/40163. (accessed on 1 January 2023).
- Panigrahy, N.; Priyadarshini, A.; Sahoo, M.M.; Verma, A.K.; Daverey, A.; Sahoo, N.K. A Comprehensive Review on Eco-Toxicity and Biodegradation of Phenolics: Recent Progress and Future Outlook. Environ. Technol. Innov. 2022, 27, 102423. [Google Scholar] [CrossRef]
- Azam, A.; Ahmed, A.; Wang, H.; Wang, Y.; Zhang, Z. Knowledge Structure and Research Progress in Wind Power Generation (WPG) from 2005 to 2020 Using CiteSpace Based Scientometric Analysis. J. Clean. Prod. 2021, 295, 126496. [Google Scholar] [CrossRef]
- Qin, F.; Zhu, Y.; Ao, T.; Chen, T. The Development Trend and Research Frontiers of Distributed Hydrological Models-Visual Bibliometric Analysis Based on Citespace. Water 2021, 13, 174. [Google Scholar] [CrossRef]
- Singh, D.K. Biodegradation and Bioremediation of Pesticide in Soil: Concept, Method and Recent Developments. Indian J. Microbiol. 2008, 48, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Lellis, B.; Fávaro-Polonio, C.Z.; Pamphile, J.A.; Polonio, J.C. Effects of Textile Dyes on Health and the Environment and Bioremediation Potential of Living Organisms. Biotechnol. Res. Innov. 2019, 3, 275–290. [Google Scholar] [CrossRef]
- Juárez-Hernández, J.; Castillo-Hernández, D.; Pérez-Parada, C.; Nava-Galicia, S.; Cuervo-Parra, J.A.; Surian-Cruz, E.; Díaz-Godínez, G.; Sánchez, C.; Bibbins-Martínez, M. Isolation of Fungi from a Textile Industry Effluent and the Screening of Their Potential to Degrade Industrial Dyes. J. Fungi 2021, 7, 805. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Duan, C.; Yang, Y.; Yuan, G.; Zhou, Y.; Zhu, X.; Wei, N.; Hu, Y. Heart Transplantation: A Bibliometric Review from 1990-2021. Curr. Probl. Cardiol. 2022, 47, 101176. [Google Scholar] [CrossRef] [PubMed]
- Biko, O.D.V.; Viljoen-Bloom, M.; van Zyl, W.H. Microbial Lignin Peroxidases: Applications, Production Challenges and Future Perspectives. Enzym. Microb. Technol. 2020, 141, 109669. [Google Scholar] [CrossRef] [PubMed]
- Santos, V.L.; Linardi, V.R. Biodegradation of Phenol by a Filamentous Fungi Isolated from Industrial Effluents—Identification and Degradation Potential. Process Biochem. 2004, 39, 1001–1006. [Google Scholar] [CrossRef]
- Biglari, H.; Afsharnia, M.; Alipour, V.; Khosravi, R.; Sharafi, K.; Mahvi, A.H. A Review and Investigation of the Effect of Nanophotocatalytic Ozonation Process for Phenolic Compound Removal from Real Effluent of Pulp and Paper Industry. Environ. Sci. Pollut. Res. 2017, 24, 4105–4116. [Google Scholar] [CrossRef]
- Mishra, S.; Lin, Z.; Pang, S.; Zhang, W.; Bhatt, P.; Chen, S. Recent Advanced Technologies for the Characterization of Xenobiotic-Degrading Microorganisms and Microbial Communities. Front. Bioeng. Biotechnol. 2021, 9, 632059. [Google Scholar] [CrossRef]
- Krastanov, A.; Alexieva, Z.; Yemendzhiev, H. Microbial Degradation of Phenol and Phenolic Derivatives. Eng. Life Sci. 2013, 13, 76–87. [Google Scholar] [CrossRef]
- Leitão, A.L. Potential of Penicillium Species in the Bioremediation Field. Int. J. Environ. Res. Public Health 2009, 6, 1393–1417. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Rusyn, I.; Dmytruk, O.V.; Dmytruk, K.V.; Onyeaka, H.; Gryzenhout, M.; Gafforov, Y. Filamentous Fungi for Sustainable Remediation of Pharmaceutical Compounds, Heavy Metal and Oil Hydrocarbons. Front. Bioeng. Biotechnol. 2023, 11, 1106973. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, P.; Bhandari, G.; Bhatt, K.; Maithani, D.; Mishra, S.; Gangola, S.; Bhatt, R.; Huang, Y.; Chen, S. Plasmid-Mediated Catabolism for the Removal of Xenobiotics from the Environment. J. Hazard. Mater. 2021, 420, 126618. [Google Scholar] [CrossRef] [PubMed]
- Pezzella, C.; Macellaro, G.; Sannia, G.; Raganati, F.; Olivieri, G.; Marzocchella, A.; Schlosser, D.; Piscitelli, A. Exploitation of Trametes versicolor for Bioremediation of Endocrine Disrupting Chemicals in Bioreactors. PLoS ONE 2017, 12, e0178758. [Google Scholar] [CrossRef]
- Ahmed Khali, D.M.; Massoud, M.S.; El-Zayat, S.A.; El-Sayed, M.A. Bioremoval Capacity of Phenol by Some Selected Endophytic Fungi Isolated from Hibiscus sabdariffa and Batch Biodegradation of Phenol in Paper and Pulp Effluents. Iran. J. Microbiol. 2021, 13, 407. [Google Scholar] [CrossRef]
- Hofrichter, M.; Bublitz, F.; Fritsche, W. Unspecific Degradation of Halogenated Phenols by the Soil Fungus Penicillium frequentans Bi 7/2. J. Basic Microbiol. 1994, 34, 163–172. [Google Scholar] [CrossRef]
- Marr, J.; Kremer, S.; Sterner, O.; Anke, H. Transformation and Mineralization of Halophenols by Penicillium simplicissimum SK9117. Biodegradation 1996, 7, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Karas, P.A.; Perruchon, C.; Exarhou, K.; Ehaliotis, C.; Karpouzas, D.G. Potential for Bioremediation of Agro-Industrial Effluents with High Loads of Pesticides by Selected Fungi. Biodegradation 2011, 22, 215–228. [Google Scholar] [CrossRef] [PubMed]
- Ryan, D.R.; Leukes, W.D.; Burton, S.G. Fungal Bioremediation of Phenolic Wastewaters in an Airlift Reactor. Biotechnol. Prog. 2008, 21, 1068–1074. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.M.; Wang, L.L.; Wang, C.M.; Cheng, J.P.; He, Z.Q.; Sheng, Z.J.; Shen, R.Q. Molecular Cloning and Mapping of Phenol Degradation Genes from Bacillus stearothermophilus FDTP-3 and Their Expression in Escherichia Coli. Appl. Environ. Microbiol. 1992, 58, 2531–2535. [Google Scholar] [CrossRef] [PubMed]
- Arai, H.; Ohishi, T.; Chang, M.Y.; Kudo, T. Arrangement and Regulation of the Genes for Meta-Pathway Enzymes Required for Degradation of Phenol in Comamonas Testosteroni TA441 The DDBJ/EMBL/GenBank Accession Number for the Sequence Reported in This Paper Is AB029044. Microbiology 2000, 146, 1707–1715. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, P.; Sharma, A.; Sagarkar, S.; Kapley, A. Mapping Atrazine and Phenol Degradation Genes in Pseudomonas Sp. EGD-AKN5. Biochem. Eng. J. 2015, 102, 125–134. [Google Scholar] [CrossRef]
- Herrmann, H.; Müller, C.; Schmidt, I.; Mahnke, J.; Petruschka, L.; Hahnke, K. Localization and Organization of Phenol Degradation Genes Of Pseudomonas putida Strain H. Mol. Gen. Genet. MGG 1995, 247, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Qiu, C.; Yang, Q.; Zhang, Y.; Wang, M.; Ye, C.; Guo, M. Analysis of Phenol Biodegradation in Antibiotic and Heavy Metal Resistant Acinetobacter Iwoffii NL1. Front. Microbiol. 2021, 12, 725755. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Yang, X.; Yang, Q.; Guo, M. Comparative Genomic and Transcriptomic Analysis of Phenol Degradation and Tolerance in Acinetobacter iwoffii through Adaptive Evolution. Int. J. Mol. Sci. 2023, 24, 16529. [Google Scholar] [CrossRef]
- Zhan, Y.; Yan, Y.; Zhang, W.; Chen, M.; Lu, W.; Ping, S.; Lin, M. Comparative Analysis of the Complete Genome of an Acinetobacter calcoaceticus Strain Adapted to a Phenol-Polluted Environment. Res. Microbiol. 2012, 163, 36–43. [Google Scholar] [CrossRef] [PubMed]
- El-Naas, M.H.; Al-Muhtaseb, S.A.; Makhlouf, S. Biodegradation of Phenol by Pseudomonas putida Immobilized in Polyvinyl Alcohol (PVA) Gel. J. Hazard. Mater. 2009, 164, 720–725. [Google Scholar] [CrossRef]
- Bernats, M.; Juhna, T. Factors Governing Degradation of Phenol in Pharmaceutical Wastewater by White-Rot Fungi: A Batch Study. Open Biotechnol. J. 2015, 9, 93–99. [Google Scholar] [CrossRef]
- Sivasubramanian, S.; Namasivayam, S.K.R. Phenol Degradation Studies Using Microbial Consortium Isolated from Environmental Sources. J. Environ. Chem. Eng. 2015, 3, 243–252. [Google Scholar] [CrossRef]
- Lu, Y.; Yan, L.; Wang, Y.; Zhou, S.; Fu, J.; Zhang, J. Biodegradation of Phenolic Compounds from Coking Wastewater by Immobilized White Rot Fungus Phanerochaete Chrysosporium. J. Hazard. Mater. 2009, 165, 1091–1097. [Google Scholar] [CrossRef]
- Legorreta-Castañeda, A.; Lucho-Constantino, C.; Beltrán-Hernández, R.; Coronel-Olivares, C.; Vázquez-Rodríguez, G. Biosorption of Water Pollutants by Fungal Pellets. Water 2020, 12, 1155. [Google Scholar] [CrossRef]
- Zainab, R.; Hasnain, M.; Ali, F.; Dias, D.A.; El-Keblawy, A.; Abideen, Z. Exploring the Bioremediation Capability of Petroleum-Contaminated Soils for Enhanced Environmental Sustainability and Minimization of Ecotoxicological Concerns. Environ. Sci. Pollut. Res. 2023, 30, 104933–104957. [Google Scholar] [CrossRef] [PubMed]
- El-Gendi, H.; Saleh, A.K.; Badierah, R.; Redwan, E.M.; El-Maradny, Y.A.; El-Fakharany, E.M. A Comprehensive Insight into Fungal Enzymes: Structure, Classification, and Their Role in Mankind’s Challenges. J. Fungi 2021, 8, 23. [Google Scholar] [CrossRef]
- Khan, M.F.; Hof, C.; Niemcová, P.; Murphy, C.D. Recent Advances in Fungal Xenobiotic Metabolism: Enzymes and Applications. World J. Microbiol. Biotechnol. 2023, 39, 296. [Google Scholar] [CrossRef]
- Singh, A.K.; Bilal, M.; Iqbal, H.M.N.; Meyer, A.S.; Raj, A. Bioremediation of Lignin Derivatives and Phenolics in Wastewater with Lignin Modifying Enzymes: Status, Opportunities and Challenges. Sci. Total Environ. 2021, 777, 145988. [Google Scholar] [CrossRef]
- Urlacher, V.B.; Girhard, M. Cytochrome P450 Monooxygenases in Biotechnology and Synthetic Biology. Trends Biotechnol. 2019, 37, 882–897. [Google Scholar] [CrossRef]
- Lin, S.; Wei, J.; Yang, B.; Zhang, M.; Zhuo, R. Bioremediation of Organic Pollutants by White Rot Fungal Cytochrome P450: The Role and Mechanism of CYP450 in Biodegradation. Chemosphere 2022, 301, 134776. [Google Scholar] [CrossRef]
- Raza, H. Dual Localization of Glutathione S-transferase in the Cytosol and Mitochondria: Implications in Oxidative Stress, Toxicity and Disease. FEBS J. 2011, 278, 4243–4251. [Google Scholar] [CrossRef]
- Koirala, B.K.S.; Moural, T.; Zhu, F. Functional and Structural Diversity of Insect Glutathione S-Transferases in Xenobiotic Adaptation. Int. J. Biol. Sci. 2022, 18, 5713–5723. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.A.; Varjani, S.; Taherzadeh, M.J. A Critical Review on the Ubiquitous Role of Filamentous Fungi in Pollution Mitigation. Curr. Pollut. Rep. 2020, 6, 295–309. [Google Scholar] [CrossRef]
- Verma, M.L.; Thakur, M.; Randhawa, J.S.; Sharma, D.; Thakur, A.; Meehnian, H.; Jana, A.K. Biotechnological Applications of Fungal Enzymes with Special Reference to Bioremediation. Environ. Biotechnol. 2020, 2, 221–247. [Google Scholar]
- Mayolo-Deloisa, K.; González-González, M.; Rito-Palomares, M. Laccases in Food Industry: Bioprocessing, Potential Industrial and Biotechnological Applications. Front. Bioeng. Biotechnol. 2020, 8, 222. [Google Scholar] [CrossRef] [PubMed]
- Haugland, J.O.; Kinney, K.A.; Johnson, W.H.; Camino, M.M.A.; Whitman, C.P.; Lawler, D.F. Laccase Removal of 2-chlorophenol and Sulfamethoxazole in Municipal Wastewater. Water Environ. Res. 2019, 91, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Hoyos, C.M.; Morales-Álvarez, E.D.; Poutou-Piñales, R.A.; Pedroza-Rodríguez, A.M.; RodrÍguez-Vázquez, R.; Delgado-Boada, J.M. Fungal Laccases. Fungal Biol. Rev. 2013, 27, 67–82. [Google Scholar] [CrossRef]
- Arregui, L.; Ayala, M.; Gómez-Gil, X.; Gutiérrez-Soto, G.; Hernández-Luna, C.E.; Herrera de los Santos, M.; Levin, L.; Rojo-Domínguez, A.; Romero-Martínez, D.; Saparrat, M.C.N.; et al. Laccases: Structure, Function, and Potential Application in Water Bioremediation. Microb. Cell Fact. 2019, 18, 200. [Google Scholar] [CrossRef] [PubMed]
- Giardina, P.; Faraco, V.; Pezzella, C.; Piscitelli, A.; Vanhulle, S.; Sannia, G. Laccases: A Never-Ending Story. Cell. Mol. Life Sci. 2010, 67, 369–385. [Google Scholar] [CrossRef]
- Bassanini, I.; Ferrandi, E.E.; Riva, S.; Monti, D. Biocatalysis with Laccases: An Updated Overview. Catalysts 2020, 11, 26. [Google Scholar] [CrossRef]
- Cañas, A.I.; Camarero, S. Laccases and Their Natural Mediators: Biotechnological Tools for Sustainable Eco-Friendly Processes. Biotechnol. Adv. 2010, 28, 694–705. [Google Scholar] [CrossRef]
- Khatami, S.H.; Vakili, O.; Movahedpour, A.; Ghesmati, Z.; Ghasemi, H.; Taheri-Anganeh, M. Laccase: Various Types and Applications. Biotechnol. Appl. Biochem. 2022, 69, 2658–2672. [Google Scholar] [CrossRef]
- Okal, E.J.; Heng, G.; Magige, E.A.; Khan, S.; Wu, S.; Ge, Z.; Zhang, T.; Mortimer, P.E.; Xu, J. Insights into the Mechanisms Involved in the Fungal Degradation of Plastics. Ecotoxicol. Environ. Saf. 2023, 262, 115202. [Google Scholar] [CrossRef]
- Zeghal, E.; Vaksmaa, A.; Vielfaure, H.; Boekhout, T.; Niemann, H. The Potential Role of Marine Fungi in Plastic Degradation—A Review. Front. Mar. Sci. 2021, 8, 738877. [Google Scholar] [CrossRef]
- Gao, R.; Pan, H.; Lian, J. Recent Advances in the Discovery, Characterization, and Engineering of Poly(Ethylene Terephthalate) (PET) Hydrolases. Enzym. Microb. Technol. 2021, 150, 109868. [Google Scholar] [CrossRef]
- Zhang, Z.; Peng, H.; Yang, D.; Zhang, G.; Zhang, J.; Ju, F. Polyvinyl Chloride Degradation by a Bacterium Isolated from the Gut of Insect Larvae. Nat. Commun. 2022, 13, 5360. [Google Scholar] [CrossRef]
- Temporiti, M.E.E.; Nicola, L.; Nielsen, E.; Tosi, S. Fungal Enzymes Involved in Plastics Biodegradation. Microorganisms 2022, 10, 1180. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Arora, P.K. Biotechnological Applications of Manganese Peroxidases for Sustainable Management. Front. Environ. Sci. 2022, 10, 875157. [Google Scholar] [CrossRef]
- Pham, L.T.M.; Deng, K.; Northen, T.R.; Singer, S.W.; Adams, P.D.; Simmons, B.A.; Sale, K.L. Experimental and Theoretical Insights into the Effects of PH on Catalysis of Bond-Cleavage by the Lignin Peroxidase Isozyme H8 from Phanerochaete chrysosporium. Biotechnol. Biofuels 2021, 14, 108. [Google Scholar] [CrossRef]
- Schneider, W.D.H.; Camassola, M.; Fontana, R.C. How Ligninolytic Enzymes Can Help in the Degradation of Biomass Polysaccharides, Cleavage, and Catalytic Mechanisms? In Polysaccharide-Degrading Biocatalysts; Elsevier: Amsterdam, The Netherlands, 2023; pp. 177–190. [Google Scholar]
- Knop, D.; Levinson, D.; Makovitzki, A.; Agami, A.; Lerer, E.; Mimran, A.; Yarden, O.; Hadar, Y. Limits of Versatility of Versatile Peroxidase. Appl. Environ. Microbiol. 2016, 82, 4070–4080. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.; Rodrigues, C.F.; Lorena, C.; Borges, P.T.; Martins, L.O. Biocatalysis for Biorefineries: The Case of Dye-Decolorizing Peroxidases. Biotechnol. Adv. 2023, 65, 108153. [Google Scholar] [CrossRef]
- Kita, D.M.; Giovanella, P.; Yoshinaga, T.T.; Pellizzer, E.P.; Sette, L.D. Antarctic Fungi Applied to Textile Dye Bioremediation. An. Acad. Bras. Cienc. 2022, 94, e20210234. [Google Scholar] [CrossRef]
Microorganisms | Phenolic/Concentration | Degradation (%) |
---|---|---|
Aspergillus niger 13r7 | Cathecol/0.6% | 92.48 |
Resorcinol/0.6% | 97.41 | |
Aspergillus japonicus 4r2 | Cathecol/0.6% | 92.24 |
Resorcinol/0.8% | 85.55 | |
Alternaria chlamydospora 6l4 | Cathecol/0.6% | 94.58 |
Resorcinol/0.6% | 97.06 | |
Cochliobolus australiensis 5l7 | Cathecol/0.8% | 83.45 |
Resorcinol/0.8% | 99.20 | |
Emericella quadrilenata 1f7 | Cathecol/0.6% | 98.50 |
Resorcinol/0.6% | 89.74 | |
Fusarium poae 11r7 | Cathecol/0.6% | 83.99 |
Resorcinol/0.8% | 98.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosa, F.M.; Mota, T.F.M.; Busso, C.; Arruda, P.V.d.; Brito, P.E.M.; Miranda, J.P.M.; Trentin, A.B.; Dekker, R.F.H.; Cunha, M.A.A.d. Filamentous Fungi as Bioremediation Agents of Industrial Effluents: A Systematic Review. Fermentation 2024, 10, 143. https://doi.org/10.3390/fermentation10030143
Rosa FM, Mota TFM, Busso C, Arruda PVd, Brito PEM, Miranda JPM, Trentin AB, Dekker RFH, Cunha MAAd. Filamentous Fungi as Bioremediation Agents of Industrial Effluents: A Systematic Review. Fermentation. 2024; 10(3):143. https://doi.org/10.3390/fermentation10030143
Chicago/Turabian StyleRosa, Fernanda Maria, Thaís Fernandes Mendonça Mota, Cleverson Busso, Priscila Vaz de Arruda, Patrícia Elena Manuitt Brito, João Paulo Martins Miranda, Alex Batista Trentin, Robert F. H. Dekker, and Mário Antônio Alves da Cunha. 2024. "Filamentous Fungi as Bioremediation Agents of Industrial Effluents: A Systematic Review" Fermentation 10, no. 3: 143. https://doi.org/10.3390/fermentation10030143
APA StyleRosa, F. M., Mota, T. F. M., Busso, C., Arruda, P. V. d., Brito, P. E. M., Miranda, J. P. M., Trentin, A. B., Dekker, R. F. H., & Cunha, M. A. A. d. (2024). Filamentous Fungi as Bioremediation Agents of Industrial Effluents: A Systematic Review. Fermentation, 10(3), 143. https://doi.org/10.3390/fermentation10030143