Sanitizers Used for Fungal Spoilage Control in Dry-Fermented Cured Meat Production
Abstract
:1. Introduction
2. Fungal Control through the Hygiene Process
2.1. Sodium Hypochlorite
2.1.1. Factors Influencing the Efficacy of Sodium Hypochlorite
Sanitizer | Interference Factor | Advantages | Disadvantages |
---|---|---|---|
Belzalkonium chloride | pH. Temperature. Concentration. Anionic detergents. | Low toxicity. Ability to be formulated for specific objectives. Food preservative. Residual action. | Gram− bacteria tolerance Unrestricted use Emerging pollutant. Toxic to many species of aquatic and terrestrial organisms. |
Sodium hyphoclorite | Organic load Concentration Exposition time pH. | Chloride source. Low cost. Low effect on nutritional qualities. Bleach action. | Toxic to the environment. Corrosion. Residual toxicity. Generation of disinfection by-products. |
Peracetic acid | Temperature Organic load | Sustainable. Low environmental impact. Prevent biofilms. | Slow inactivation kinetics. Organic content in the effluent. Microbial regeneration potential. Formation of acetic acid in high concentration. Higher cost. Damage to skin, eyes and respiratory tract. |
2.1.2. Disadvantages of Sodium Hypochlorite
2.2. Peracetic Acid
2.2.1. Factors Influencing the Efficacy of Peracetic Acid
2.2.2. Disadvantages of Peracetic Acid
2.3. Benzalkonium Chloride
2.3.1. Factors Influencing the Efficacy of Benzalkonium Chloride
2.3.2. Disadvantages of Benzalkonium Chloride
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Perrone, G.; Rodriguez, A.; Magista, D.; Magan, N. Insights into existing and future fungal and mycotoxin contamination of cured meats. Curr. Opin. Food Sci. 2019, 29, 20–27. [Google Scholar] [CrossRef]
- Asefa, D.T.; Kure, C.F.; Gjerde, R.O.; Omer, M.K.; Langsrud, S.; Nesbakken, T.; Skaar, I. Fungal growth patern, sources and factors of mould contamination in a dry-cured meat production facility. Int. J. Food Microbiol. 2010, 140, 131–135. [Google Scholar] [CrossRef]
- Davies, C.R.; Wohlgemuth, F.; Young, T.; Violet, J.; Dickinson, M.; Sanders, J.W.; Vallieres, C.; Avery, S.V. Challenges and evolving strategies for mold control in the food supply chain. Fungal Biol. Rev. 2021, 36, 15–26. [Google Scholar] [CrossRef]
- Krisch, J.; Tserennadmid, R.; VagvOlgyi, C. Essential oils against yeasts and molds that cause food spoilage. In Science against Microbial Pathogens: Communicating Current Research and Technological Advances; Mendez-Vilas, A., Ed.; FORMATEX: Badajoz, Spain, 2011; pp. 1135–1142. [Google Scholar]
- Visconti, V.; Coton, E.; Rigalma, K.; Dantigny, P. Effects of disinfectants on inactivation of mold spores relevant to the food industry: A review. Fungal Biol. Rev. 2021, 38, 44–66. [Google Scholar] [CrossRef]
- Parussolo, G.; Oliveira, M.S.; Garcia, M.V.; Bernardi, A.O.; Lemos, J.G.; Stefanello, A.; Mallmann, C.A.; Copetti, M.V. Ochratoxin A production by Aspergillus westerdijkiae in Italian-type salami. Food Microbiol. 2019, 83, 134–140. [Google Scholar] [CrossRef]
- Pitt, J.I.; Hocking, A.D. Fungi and Food Spoilage; Blackie Academic and Professional: London, UK, 2009; 593p. [Google Scholar]
- Battilani, P.; Pietri, A.; Giorni, P.; Formenti, S.; Bertuzzi, T.; Toscani, T.; Virgili, R.; Kozakiewicz, Z. Penicillium populations in dry-cured ham manufacturing plants. J. Food Prot. 2007, 70, 975–980. [Google Scholar] [CrossRef]
- Sørensen, L.M.; Jacobsen, T.; Nielsen, P.V.; Frisvad, J.C.; Koch, A.G. Mycobiota in the processing areas of two different meat products. Int. J. Food Microbiol. 2008, 124, 58–64. [Google Scholar] [CrossRef]
- Parussolo, G.; Bernardi, A.O.; Garcia, M.V.; Stefanello, A.; Silva, T.S.; Copetti, M.V. Fungi in air, raw materials and surface of dry fermented sausage produced in Brazil. LWT-Food Sci. Technol. 2019, 108, 190–198. [Google Scholar] [CrossRef]
- de Almeida, T.S.; dos Santos, B.A.; Stefanello, A.; dos Santos, I.D.; Fracari, J.C.; Silva, M.; Giongo, C.; Wagner, R.; Nalério, E.S.; Copetti, M.V. Spontaneously growing fungi on the surface and processing areas of matured sheep ham and volatile compounds produced. Food Res. Int. 2023, 173, 113287. [Google Scholar] [CrossRef]
- Scaramuzza, N.; Diaferia, C.; Berni, E. Monitoring the mycobiota of three plants manufacturing Culatello (a typical Italian meat product). Int. J. Food Microbiol. 2015, 203, 78–85. [Google Scholar] [CrossRef]
- Copetti, M.V. Sanitizers for controlling fungal spoilage in some food industries. Curr. Opin. Food Sci. 2023, 52, 101072. [Google Scholar] [CrossRef]
- Kuaye, A.Y. Limpeza e Sanitização na Indústria de Alimentos, 1st ed.; Atheneu: Rio de Janeiro, Brazil, 2017. [Google Scholar]
- Bernardi, A.O.; Stefanello, A.; Garcia, M.V.; Copetti, M.V. The control of cheese and meat product spoilage fungi by sanitizers: In vitro testing and food industry usage. Lebensm.-Wiss. Technol. 2021, 144, 111204. [Google Scholar] [CrossRef]
- Bernardi, A.O.; da Silva, T.S.; Stefanello, A.; Garcia, M.V.; Parussolo, G.; Dornelles, R.C.P.; Copetti, M.V. Sensitivity of food spoilage fungi to a smoke generator sanitizer. Int. J. Food Microbiol. 2019, 289, 72–76. [Google Scholar] [CrossRef]
- Silva, S.; Stefanello, A.; Santos, B.; Fracari, J.; Leães, G.; Copetti, M. Factors that interfere in the action of sanitizers against ochratoxigenic fungi deteriorating dry-cured meat products. Fermentation 2023, 9, 83. [Google Scholar] [CrossRef]
- Stefanello, A.; Fracari, J.C.; Silva, M.; Lemos, J.G.; Garcia, M.V.; dos Santos, B.A.; Copetti, M.V. Influence of type, concentration, exposure time, temperature, and presence of organic load on the antifungal efficacy of industrial sanitizers against Aspergillus brasiliensis (ATCC 16404). Food Microbiol. 2021, 97, 103740. [Google Scholar] [CrossRef]
- Andrade, M.J.; Peromingo, B.; Rodríguez, M.; Rodríguez, A. Effect of cured meat product ingredients on the Penicillium verrucosum growth and ochratoxin A production. Food Control 2018, 96, 310–317. [Google Scholar] [CrossRef]
- Hayes, P.R. Microbiologia e Higiene de los Alimentos; Acribia: Zaragoza, Spain, 1993; 369p. [Google Scholar]
- Morelli, A.M.F. Escherichia coli 0157:H7: Occurrence in a Milk Production Environment in the Viçosa Microregion, Adhesion to Different Surfaces and Resistance to Sanitizers. Ph.D. Thesis, Postgraduate in Food Science and Technology, Federal University of Viçosa, UFV, Viçosa, Brazil, 2008; p. 173. [Google Scholar]
- Bernardi, A.O.; Garcia, M.V.; Copetti, M.V. Food industry spoilage fungi control through facility sanitization. Curr. Opin. Food Sci. 2019, 29, 28–34. [Google Scholar] [CrossRef]
- Bernardi, A.O.; Stefanello, A.; Garcia, M.V.; Parussolo, G.; Stefanello, R.F.; Moro, C.B.; Copetti, M.V. Efficacy of commercial sanitizers against fungi of concern in the food industry. LWT-Food Sci. Technol. 2018, 97, 25–30. [Google Scholar] [CrossRef]
- Lee, W.-N.; Huang, C.-H. Formation of disinfection byproducts in wash water and lettuce by washing with sodium hypochlorite and peracetic acid sanitizers. Food Chem. X 2019, 1, 100003. [Google Scholar] [CrossRef]
- European Standard No. 13697 (2001); Chemical Disinfectants and Antiseptics—Quantitative Non-Porous Surface Test for the Evaluation of Bactericidal and/or Fungicidal Activity of Chemical Disinfectants Used in Food, Industrial, Domestic, and Institutional Areas-Test Method and Requirements without Mechanical Action (Phase 2, Step 2). iTeh Standards: San Francisco, CA, USA, 2001.
- Park, K.; Mok, J.S.; Kwon, J.Y.; Ryu, A.R.; Kim, S.H.; Lee, H.J. Food-borne outbreaks, distributions, virulence, and antibiotic resistance profiles of Vibrio parahaemolyticus in Korea from 2003 to 2016: A review. Fish. Aquat. Sci. 2018, 21, 3. [Google Scholar] [CrossRef]
- Fukuzaki, S. Mechanisms of actions of sodium hypochlorite in cleaning and disinfection processes. Biocontrol Sci. 2006, 11, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Duarte, A.L.A.; Rosário, D.K.A.D.; Oliveira, S.B.S.; de Souza, H.L.S.; de Carvalho, R.V.; Carneiro, J.C.S.; Silva, P.I.; Bernardes, P.C. Ultrasound improves antimicrobial effect of sodium dichloroisocyanurate to reduce Salmonella Typhimurium on purple cabbage. Int. J. Food Microbiol. 2018, 269, 12–18. [Google Scholar] [CrossRef]
- Resende, A.; Souza, P.I.M.D.; Souza, J.R.D.; Blum, L.E.B. Ação do hipoclorito de sódio no controle do Erysiphe diffusana soja. Rev. Caatinga 2009, 22, 53–59. [Google Scholar]
- Wang, D.; Fletcher, G.C.; On, S.L.; Palmer, J.S.; Gagic, D.; Flint, S.H. Biofilm formation, sodium hypochlorite susceptibility and genetic diversity of Vibrio parahaemolyticus. Int. J. Food Microbiol. 2023, 385, 110011. [Google Scholar] [CrossRef]
- Petri, E.; Virto, R.; Mottura, M.; Parra, J. Comparison of peracetic acid and chlorine effectiveness during fresh-cut vegetable processing at industrial scale. J. Food Prot. 2021, 84, 1592–1602. [Google Scholar] [CrossRef]
- Teng, Z.; Luo, Y.; Alborzi, S.; Zhou, B.; Chen, L.; Zhang, J.; Zhang, B.; Millner, P.; Wang, Q. Investigation on chlorine-based sanitization under stabilized conditions in the presence of organic load. Int. J. Food Microbiol. 2018, 266, 150–157. [Google Scholar] [CrossRef]
- Pereira, S.S.P.; Oliveira, H.M.; Turrini, R.N.T.; Lacerda, R.A. Disinfection with sodium hypochlorite in hospital environmental surfaces in the reduction of contamination and infection prevention: A systematic review. Rev. Esc. Enferm. USP 2015, 49, 681–688. [Google Scholar] [CrossRef]
- Su, Y.; Shen, X.; Chiu, T.; Green, T.; Zhu, M.-J. Efficacy of chlorine and peroxyacetic acid to control Listeria monocytogenes on apples in simulated dump tank water system. Food Microbiol. 2022, 106, 104033. [Google Scholar] [CrossRef]
- Bernardi, A.O.; Stefanello, A.; Lemos, J.G.; Garcia, M.V.; Copetti, M.V. Antifungal activity of commercial sanitizers against strains of Penicillium roqueforti, Penicillium paneum, Hyphopichia burtonii, and Aspergillus pseudoglaucus: Bakery spoilage fungi. Food Microbiol. 2019, 83, 59–63. [Google Scholar] [CrossRef]
- Stefanello, A.; Magrini, L.N.; Lemos, J.G.; Garcia, M.V.; Bernardi, A.O.; Cichoski, A.J.; Copetti, M.V. Comparison of electrolized water and multiple chemical sanitizer action against heat-resistant molds (HRM). Int. J. Food Microbiol. 2020, 335, 108856. [Google Scholar] [CrossRef] [PubMed]
- Lemos, J.G.; Stefanello, A.; Bernardi, A.O.; Garcia, M.V.; Magrini, L.N.; Cichoski, A.J.; Wagner, R.; Copetti, M.V. Antifungal efficacy of sanitizers and electrolyzed waters against toxigenic Aspergillus. Food Res. Int. 2020, 137, 109451. [Google Scholar] [CrossRef]
- Parish, M.; Beuchat, L.; Suslow, T.; Harris, L.; Garrett, E.; Farber, J.; Busta, F. Methods to reduce/eliminate pathogens from fresh and fresh-cut produce. Compr. Rev. Food Sci. Food Saf. 2003, 2, 161–173. [Google Scholar] [CrossRef]
- Tomás-Callejas, A.; López-Gálvez, F.; Sbodio, A.; Artés, F.; Artés-Hernández, F.; Suslow, T.V. Chlorine dioxide and chlorine effectiveness to prevent Escherichia coli O157:H7 and Salmonella cross-contamination on fresh-cut Red Chard. Food Control 2012, 23, 325–332. [Google Scholar] [CrossRef]
- Gómez, L.V.M. Generation of trihalomethanes with chlorine-based sanitizers and impact on microbial, nutritional, and sensory quality of baby spinach. Postharvest Biol. Technol. 2013, 85, 210–217. [Google Scholar] [CrossRef]
- Ramos, B.; Miller, F.A.; Brandão, T.R.S.; Teixeira, P.; Silva, C.L.M. Fresh fruits and vegetables—An overview on applied methodologies to improve its quality and safety. Innov. Food Sci. Emerg. Technol. 2013, 20, 1–15. [Google Scholar] [CrossRef]
- Gómez-López, V.M.; Lannoo, A.S.; Gil, M.I.; Allende, A. Minimum free chlorine residual level required for the inactivation of Escherichia coli O157:H7 and tri-halomethane generation during dynamic washing of fresh-cut spinach. Food Control 2014, 42, 132–138. [Google Scholar] [CrossRef]
- Bari, M.L.; Kawamoto, S. Process hygiene: Types of sterilant. In Encyclopedia of Food Microbiology; Batt, C.A., Tortorello, M.L., Eds.; Academic Press: Cambridge, MA, USA, 2014; pp. 216–225. [Google Scholar]
- Izumi, H. Process Hygiene: Overall Approach to Hygienic Processing; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Ribeiro, M.; Freitas-Silva, O.; Castro, I.; Teixeira, A.; Marques-Da-Silva, S.; Sales-Moraes, A.; Abreu, L.; Sousa, C. Efficacy of sodium hypochlorite and peracetic acid against Aspergillus nomius in Brazil nuts. Food Microbiol. 2020, 90, 103449. [Google Scholar] [CrossRef]
- Salomão, B.C.M.; Aragão, G.M.F.; Churey, J.J.; Worobo, R.W. Efficacy of sanitizing treatments against Penicillium expan-sum inoculated on six varieties of apples. J. Food Prot. 2008, 71, 643–647. [Google Scholar] [CrossRef]
- Chen, X.; Hung, Y.-C. Effects of organic load, sanitizer pH and initial chlorine concentration of chlorine-based sanitizers on chlorine demand of fresh produce wash waters. Food Control 2017, 77, 96–101. [Google Scholar] [CrossRef]
- Cuggino, S.G.; Bascón-Villegas, I.; Rincón, F.; Pérez, M.A.; Posada-Izquierdo, G.; Marugán, J.; Carro, C.P.; Pérez-Rodríguez, F. Modelling the combined effect of chlorine, benzyl isothiocyanate, exposure time and cut size on the reduction of Salmonella in fresh-cut lettuce during washing process. Food Microbiol. 2020, 86, 103346. [Google Scholar] [CrossRef]
- Weng, S.; Luo, Y.; Li, J.; Zhou, B.; Jacangelo, J.G.; Schwab, K.J. Assessment and speciation of chlorine demand in fresh-cut produce wash water. Food Control 2016, 60, 543–551. [Google Scholar] [CrossRef]
- Marriott, N.G.; Schilling, M.W.; Gravani, R.B. Sanitizers. In Principles of Food Sanitation; Springer International Publishing: Cham, Switzerland, 2018; pp. 175–198. [Google Scholar]
- Zoellner, C.; Aguayo-Acosta, A.; Siddiqui, M.W.; Dávila-Aviña, J.E. Peracetic Acid in Disinfection of Fruits and Vegetables. In Postharvest Disinfection of Fruits and Vegetables; Academic Press: Cambridge, MA, USA, 2018; pp. 53–66. [Google Scholar] [CrossRef]
- Cardador, M.J.; Gallego, M. Effect of the chlorinated washing of minimally processed vegetables on the generation of haloacetic acids. J. Agric. Food Chem. 2012, 60, 7326–7332. [Google Scholar] [CrossRef]
- Banach, J.L.; Van Bokhorst-Van De Veen, H.; Van Overbeek, L.S.; Van Der Zouwen, P.S.; Zwietering, M.H.; van Der Fels-Klerx, H.J. Effectiveness of a peracetic acid solution on Escherichia coli reduction during fresh-cut lettuce processing at the laboratory and industrial scales. Int. J. Food Microbiol. 2020, 321, 108537. [Google Scholar] [CrossRef]
- Hrudey, S.E. Chlorination disinfection by-products, public health risk tradeoffs and me. Water Res. 2009, 43, 2057–2092. [Google Scholar] [CrossRef]
- Simpson, A.M.-A.; Mitch, W.A. Chlorine and ozone disinfection and disinfection byproducts in postharvest food processing facilities: A review. Crit. Rev. Environ. Sci. Technol. 2022, 52, 1825–1867. [Google Scholar] [CrossRef]
- Fan, X.; Sokorai, K.J. Formation of trichloromethane in chlorinated water and fresh-cut produce and as a result of reaction with citric acid. Postharvest Biol. Technol. 2015, 109, 65–72. [Google Scholar] [CrossRef]
- Shen, C.; Norris, P.; Williams, O.; Hagan, S.; Li, K. Generation of chlorine by-products in simulated wash water. Food Chem. 2016, 190, 97–102. [Google Scholar] [CrossRef]
- Van Haute, S.; Sampers, I.; Holvoet, K.; Uyttendaele, M. Physicochemical Quality and Chemical Safety of Chlorine as a Reconditioning Agent and Wash Water Disinfectant for Fresh-Cut Lettuce Washing. Appl. Environ. Microbiol. 2013, 79, 2850–2861. [Google Scholar] [CrossRef] [PubMed]
- Dunkin, N.; Weng, S.; Schwab, K.J.; McQuarrie, J.; Bell, K.Y.; Jacangelo, J.G. Comparative inactivation of murine norovirus and MS2 bacteriophage by peracetic acid and monochloramine in municipal secondary wastewater effluent. Environ. Sci. Technol. 2017, 51, 2972–2981. [Google Scholar] [CrossRef] [PubMed]
- Elhalwagy, M.; Biabani, R.; Bertanza, G.; Wisdom, B.; Goldman-Torres, J.; McQuarrie, J.; Straatman, A.; Santoro, D. Mechanistic modeling of peracetic acid wastewater disinfection using computational fluid dynamics: Integrating solids settling with microbial inactivation kinetics. Water Res. 2021, 201, 117355. [Google Scholar] [CrossRef]
- Ao, X.-W.; Eloranta, J.; Huang, C.-H.; Santoro, D.; Sun, W.-J.; Lu, Z.-D.; Li, C. Peracetic acid-based advanced oxidation processes for decontamination and disinfection of water: A review. Water Res. 2021, 188, 116479. [Google Scholar] [CrossRef]
- Fallik, E. Microbial quality and safety of fresh produce. In Postharvest Handling; Elsevier: Amsterdam, The Netherlands, 2014; pp. 313–339. [Google Scholar]
- Osaili, T.M.; Alaboudi, A.R.; Al-Quran, H.N.; Al-Nabulsi, A.A. Decontamination and survival of Enterobacteriaceae on shredded iceberg lettuce during storage. Food Microbiol. 2018, 73, 129–136. [Google Scholar] [CrossRef]
- Singh, P.; Hung, Y.; Qi, H. Efficacy of Peracetic Acid in Inactivating Foodborne Pathogens on Fresh Produce Surface: Use of PAA to ensure produce safety. J. Food Sci. 2018, 83, 432–439. [Google Scholar] [CrossRef]
- Srey, S.; Jahid, I.K.; Ha, S.-D. Biofilm formation in food industries: A food safety concern. Food Control 2013, 31, 572–585. [Google Scholar] [CrossRef]
- Kim, J.; Huang, C.-H. Reactivity of peracetic acid with organic compounds: A critical review. ACS ES&T Water 2021, 1, 15–33. [Google Scholar] [CrossRef]
- Lazado, C.C.; Sveen, L.R.; Soleng, M.; Pedersen, L.-F.; Timmerhaus, G. Crowding reshapes the mucosal but not the sys-temic response repertoires of Atlantic salmon to peracetic acid. Aquaculture 2021, 531, 735830. [Google Scholar] [CrossRef]
- Du, P.; Liu, W.; Cao, H.; Zhao, H.; Huang, C.-H. Oxidation of amino acids by peracetic acid: Reaction kinetics, pathways and theoretical calculations. Water Res. X 2018, 1, 100002. [Google Scholar] [CrossRef]
- Lieke, T.; Meinelt, T.; Hoseinifar, S.H.; Pan, B.; Straus, D.L.; Steinberg, C.E.W. Sustainable aquaculture requires environmental-friendly treatment strategies for fish diseases. Rev. Aquac. 2019, 12, 943–965. [Google Scholar] [CrossRef]
- Lazado, C.C.; Voldvik, V. Temporal control of responses to chemically induced oxidative stress in the gill mucosa of Atlantic salmon (Salmosalar). J. Photochem. Photobiol. B Biol. 2020, 205, 111851. [Google Scholar] [CrossRef] [PubMed]
- Acosta, F.; Montero, D.; Izquierdo, M.; Galindo-Villegas, J. High-level biocidal products effectively eradicate pathogenic γ-proteobacteria biofilms from aquaculture facilities. Aquaculture 2021, 532, 736004. [Google Scholar] [CrossRef]
- Banach, J.L.; Sampers, I.; Van Haute, S.; Van Der Fels-Klerx, H. Effect of disinfectants on preventing the cross-contamination of pathogens in fresh produce washing water. Int. J. Environ. Res. Public Health 2015, 12, 8658–8677. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-M.; Zhang, B.-Z.; Park, J.-M. Comparison of sanitization efficacy of sodium hypochlorite and peroxyacetic acid used as disinfectants in poultry food processing plants. Food Control 2023, 152, 109865. [Google Scholar] [CrossRef]
- da Silva Fernandes, M.; Kabuki, D.Y.; Kuaye, A.Y. Behavior of Listeria monocytogenes in a multi-species biofilm with Enterococcus faecalis and Enterococcus faecium and control through sanitation procedures. Int. J. Food Microbiol. 2015, 200, 5–12. [Google Scholar] [CrossRef]
- Wang, R.Y.; Shen, X.; Su, Y.; Critzer, F.; Zhu, M.-J. Chlorine and peroxyacetic acid inactivation of Listeria monocytogenes in simulated apple dump tank water. Food Control 2023, 144, 109314. [Google Scholar] [CrossRef]
- Lippman, B.; Yao, S.; Huang, R.; Chen, H. Evaluation of the combined treatment of ultraviolet light and peracetic acid as an alternative to chlorine washing for lettuce decontamination. Int. J. Food Microbiol. 2020, 323, 108590. [Google Scholar] [CrossRef]
- Bai, Y.; Shi, C.; Zhou, Y.; Zhou, Y.; Zhang, H.; Chang, R.; Hu, X.; Hu, J.; Yang, C.; Peng, K.; et al. Enhanced inactivation of Escherichia coli by ultrasound combined with peracetic acid during water disinfection. Chemosphere 2023, 322, 138095. [Google Scholar] [CrossRef] [PubMed]
- Crathorne, B. Sewage Disinfection: By-Product Formation, Ecotoxicology and Microbiological Efficacy, 43rd ed.; National Rivers Authority: Medmenham, UK, 1991. [Google Scholar]
- Kitis, M. Disinfection of wastewater with peracetic acid: A review. Environ. Int. 2004, 30, 47–55. [Google Scholar] [CrossRef]
- Van Haute, S.; Tryland, I.; Escudero, C.; Vanneste, M.; Sampers, I. Chlorine dioxide as water disinfectant during fresh-cut iceberg lettuce washing: Disinfectant demand, disinfection efficiency, and chlorite formation. LWT-Food Sci. Technol. 2017, 75, 301–304. [Google Scholar] [CrossRef]
- Taverner, P.; Leo, A.; Cunningham, N. Efficacy of peracetic acid in ambient and warm water to control conidia of Penicillium digitatum. N. Z. J. Crop. Hortic. Sci. 2017, 46, 264–268. [Google Scholar] [CrossRef]
- Zhang, K.; Zhou, X.; Du, P.; Zhang, T.; Cai, M.; Sun, P.; Huang, C.-H. Oxidation of β-lactam antibiotics by peracetic acid: Reaction kinetics, product and pathway evaluation. Water Res. 2017, 123, 153–161. [Google Scholar] [CrossRef]
- Cavallini, G.S.; de Campos, S.X.; de Souza, J.B.; de Sousa, V.C.M. Evaluation of the physical–chemical characteristics of wastewater after disinfection with peracetic acid. Water Air Soil Pollut. 2013, 224, 1752. [Google Scholar] [CrossRef]
- Araújo, P.A.; Lemos, M.; Mergulhão, F.; Melo, L.; Simões, M. The Influence of interfering substances on the antimicrobial activity of selected quaternary ammonium compounds. Int. J. Food Sci. 2013, 2013, 237581. [Google Scholar] [CrossRef]
- Rossi, S.; Antonelli, M.; Mezzanotte, V.; Nurizzo, C. Peracetic acid disinfection: A feasible alternative to wastewater chlorination. Water Environ. Res. 2007, 79, 341–350. [Google Scholar] [CrossRef]
- Chenjiao, W.; Hongyan, Z.; Qing, G.; Xiaoqi, Z.; Liying, G.; Ying, F. In-use evaluation of peracetic acid for high-level disinfection of endoscopes. Gastroenterol. Nurs. 2016, 39, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Luongo, G.; Previtera, L.; Ladhari, A.; Di Fabio, G.; Zarrelli, A. Peracetic acid vs. sodium hypochlorite: Degradation and transformation of drugs in wastewater. Molecules 2020, 25, 2294. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Brown, P.J.; Hu, Z. Thermodynamic properties of an emerging chemical disinfectant, peracetic acid. Sci. Total Environ. 2018, 621, 948–959. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, R.C.; Martínez, R.S.; Tejero, M. An evaluation of the efficiency and impact of raw wastewater disinfection with peracetic acid prior to ocean discharge. Water Sci. Technol. 1995, 32, 159–166. [Google Scholar] [CrossRef]
- Merchel Piovesan Pereira, B.; Tagkopoulos, I. Benzalkonium chlorides: Uses, regulatory status, and microbial resistance. Appl. Environ. Microbiol. 2019, 85, e00377-19. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Cho, E.; Rakhmat, S.; Hyun, M.; Park, C.-B.; Kim, S. Characterization of structure isomers of ethylbenzalkyl dimethyl ammonium chlorides and quantification in commercial household disinfectant products. Environ. Technol. Innov. 2023, 29, 102979. [Google Scholar] [CrossRef]
- Kuca, K.; Marek, J.; Stodulka, P.; Musilek, K.; Hanusova, P.; Hrabinova, M.; Jun, D. Preparation of benzalkonium salts differing in the length of a side alkyl chain. Molecules 2007, 12, 2341–2347. [Google Scholar] [CrossRef]
- Gerba, C.P. Quaternary ammonium biocides: Efficacy in application. Appl. Environ. Microbiol. 2015, 81, 464–469. [Google Scholar] [CrossRef]
- Prieto-Blanco, M.C.; Planas-Franco, A.; Muniategui-Lorenzo, S.; González-Castro, M.J. Mixed-mode chromatography of mixed functionalized analytes as the homologues of benzalkonium chloride. Application to pharmaceutical formulations. Talanta 2023, 255, 124228. [Google Scholar] [CrossRef]
- Núñez, O.; Moyano, E.; Galceran, M.T. Determination of quaternary ammonium biocides by liquid chromatography–mass spectrometry. J. Chromatogr. A 2004, 1058, 89–95. [Google Scholar] [CrossRef]
- Barber, O.W.; Hartmann, E.M. Benzalkonium chloride: A systematic review of its environmental entry through wastewater treatment, potential impact, and mitigation strategies. Crit. Rev. Environ. Sci. Technol. 2021, 52, 2691–2719. [Google Scholar] [CrossRef]
- Makvandi, P.; Jamaledin, R.; Jabbari, M.; Nikfarjam, N.; Borzacchiello, A. Antibacterial quaternary ammonium compounds in dental materials: A systematic review. Dent. Mater. 2018, 34, 851–867. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Cui, F.; Zeng, G.-M.; Jiang, M.; Yang, Z.-Z.; Yu, Z.-G.; Zhu, M.-Y.; Shen, L.-Q. Quaternary ammonium compounds (QACs): A review on occurrence, fate and toxicity in the environment. Sci. Total Environ. 2015, 518–519, 352–362. [Google Scholar] [CrossRef] [PubMed]
- Lavorgna, M.; Russo, C.; D’Abrosca, B.; Parrella, A.; Isidori, M. Toxicity and genotoxicity of the quaternary ammonium compound benzalkonium chloride (BAC) using Daphnia magna and Ceriodaphnia dubia as model systems. Environ. Pollut. 2016, 210, 34–39. [Google Scholar] [CrossRef]
- Wessels, S.; Ingmer, H. Modes of action of three disinfectant active substances: A review. Regul. Toxicol. Pharmacol. 2013, 67, 456–467. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, R.H. Basic Elements of Equipment Cleaning and Sanitizing in Food Processing and Handling Operations; University of Florida Cooperative Extension Service Institute of Food and Agriculture Sciences EDIS, 1997; Available online: http://purl.fcla.edu/UF/lib/FS077 (accessed on 19 January 2024).
- European Food Safety Authority (EFSA). Evaluation of Monitoring Data on Residues of Didecyldimethylammonium Chloride (DDAC) and Benzalkonium Chloride (BAC); European Food Safety Authority: Parma, Italy, 2013; Available online: https://www.efsa.europa.eu/en/supporting/pub/en-483 (accessed on 19 January 2024).
- Bertuzzi, T.; Pietri, A. Determination of benzalkonium homologues and didecyldimethylammonium in powdered and liquid milk for infants by hydrophilic interaction liquid chromatography–mass spectrometry. Food Anal. Methods 2013, 7, 1278–1284. [Google Scholar] [CrossRef]
- Ertekin, E.; Hatt, J.K.; Konstantinidis, K.T.; Tezel, U. Similar microbial consortia and genes are involved in the biodegradation of benzalkonium chlorides in different environments. Environ. Sci. Technol. 2016, 50, 4304–4313. [Google Scholar] [CrossRef] [PubMed]
- Tezel, U.; Pavlostathis, S.G. Quaternary ammonium disinfectants: Microbial Adaptation, degradation and ecology. Curr. Opin. Biotechnol. 2015, 33, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Mc Cay, P.H.; Ocampo-Sosa, A.A.; Fleming, G.T.A. Effect of subinhibitory concentrations of benzalkonium chloride on the competitiveness of Pseudomonas aeruginosa grown in continuous culture. Microbiology 2010, 156 Pt 1, 30–38. [Google Scholar] [CrossRef]
- Oh, S.; Tandukar, M.; Pavlostathis, S.G.; Chain, P.S.G.; Konstantinidis, K.T. Microbial community adaptation to quaternary ammonium biocides as revealed by metagenomics. Environ. Microbiol. 2013, 15, 2850–2864. [Google Scholar] [CrossRef] [PubMed]
Sanitizer | Active Principle | Suggested Use Concentration |
---|---|---|
Benzalkonium chloride | Benzalkonium chloride | 0.3–5% |
Sodium hypochlorite | Sodium hypochlorite, 10–12% of active chlorine | 0.1–1% |
Peracetic acid | Peracetic acid, hydrogen peroxide, acetic acid | 0.15–3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, S.; Bernardi, A.O.; Garcia, M.V.; Bisello, T.N.; Borstmann, L.; Copetti, M.V. Sanitizers Used for Fungal Spoilage Control in Dry-Fermented Cured Meat Production. Fermentation 2024, 10, 169. https://doi.org/10.3390/fermentation10030169
Silva S, Bernardi AO, Garcia MV, Bisello TN, Borstmann L, Copetti MV. Sanitizers Used for Fungal Spoilage Control in Dry-Fermented Cured Meat Production. Fermentation. 2024; 10(3):169. https://doi.org/10.3390/fermentation10030169
Chicago/Turabian StyleSilva, Sarah, Angélica Olivier Bernardi, Marcelo Valle Garcia, Thais Nunes Bisello, Larissa Borstmann, and Marina Venturini Copetti. 2024. "Sanitizers Used for Fungal Spoilage Control in Dry-Fermented Cured Meat Production" Fermentation 10, no. 3: 169. https://doi.org/10.3390/fermentation10030169
APA StyleSilva, S., Bernardi, A. O., Garcia, M. V., Bisello, T. N., Borstmann, L., & Copetti, M. V. (2024). Sanitizers Used for Fungal Spoilage Control in Dry-Fermented Cured Meat Production. Fermentation, 10(3), 169. https://doi.org/10.3390/fermentation10030169