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Abstract: Hydrogen is ideal for replacing fossil fuels because upon combustion it generates only
water. Dark fermentation (DF) from lignocellulose might be a competitive process for hydrogen
production at the industrial scale. However, lignocellulose must be pretreated to obtain fermentable
sugars, which is costly and creates pollution. Microorganisms from bovine rumen efficiently degrade
lignocellulose. Unfortunately, they have scarcely been explored for the production of hydrogen.
Therefore, deeper studies on the culture conditions have to be undertaken to understand the behavior
of microbial consortia from the rumen of bovines (MCRB) during hydrogen production. In this
work, we evaluated the production of hydrogen by DF with MCRB by varying the incubation time,
two culture media (MB and Rhodospirillaceae), headspace (40 and 80 mL), and thermal treatment.
It was found that the production of hydrogen was maximum at 16 h MCRB incubation in MB. An
amount of 80 mL headspace resulted in a threefold production of hydrogen as compared to 40 mL;
the MCRB without heat treatment had a higher H2 yield. The production of hydrogen with 32 MCRB
was highly variable, ranging between 21 and 696 mL. Our findings show a different perspective on
the treatment of MCRB for the production of hydrogen and give insights on the impact of the culture
conditions for increasing hydrogen production.

Keywords: biohydrogen production; microbial consortia from rumen of bovines; dark fermentation;
culture conditions

1. Introduction

The enormous impact that fossil fuels have on global warming and environmental
pollution makes urgent the search for renewable, sustainable, and clean energy sources [1,2].
Hydrogen is a promising candidate as a sustainable fuel due to its high energy content
(2.75-fold higher energy as compared to fossil fuels, 122 kJ/g) and clean combustion, which
generates only water [3,4]. Although the storage and transportation of hydrogen and
hydrogen-based fuels is quite limited, scaling up is key as new applications arise. However,
the use of hydrogen is still minimal since it accounts for less than 0.1% of the hydrogen
demand in novel applications for heavy industry and long-distance transport. On the
other hand, the production of low-emission hydrogen is less than 1% of the total hydrogen
production [5]. It is noteworthy that nowadays, despite the great potential to use hydrogen
as a clean fuel, it is mainly utilized for the manufacture of ammonia, methanol, flat glass, in
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metallurgy, and the electronic and oil industries. Moreover, nearly 95% of the H2 produced
worldwide is derived from fossil fuels and is associated with significant amounts of CO2
emissions, ranging from 7.5 to 12 tons of CO2 per ton of hydrogen produced. Furthermore,
the global increase in CO2 accumulation is nearly ten times faster than any sustained
rise in history [6,7]. In this context, the biological production of hydrogen has significant
advantages over traditional processes because it requires a low temperature and is carried
out at atmospheric pressure, thus implying the use of less energy [8].

Biophotolysis, photo-fermentation, and dark fermentation are alternatives for the
production of hydrogen [4]. However, the most promising biological route to produce
hydrogen is dark fermentation as the conversion yields (60–70%), which are higher with
respect to other biological means, are comparable to the yields obtained by chemical
methods, which reach 60 to 75% conversion [9], and DF can be carried out in unsterilized
environments [10]. The selection of microorganisms to carry out dark fermentations is
essential because these dictate the performance of the process. Many studies have focused
on microorganisms that are able to produce H2 by employing axenic or mixed cultures that
originate from different ecosystems. Such microorganisms are widely distributed in various
natural sources including anaerobic and activated sludges, municipal sewage sludge, soil
samples, cow manure, compost, river sediments [11], and bovine rumen, among others [12].

The bovine rumen is an esophageal compartment from the digestive apparatus of
ruminates. It can be considered as an anaerobic chamber for methanogenic fermentation
that contains an ample spectrum of microorganisms that include bacteria, protozoa, fungus,
and archaea [13]. Most rumen microorganisms have the genetic potential to participate
in the degradation of waste agricultural materials. Ruminal microbiota has shown excel-
lent results on the biological conversion of lignocellulosic biomass into renewable energy,
due to its efficiency to degrade lignocellulose by synergistic interactions among multiple
microbiomes [14,15]. Moreover, around ten billion tons of biomass are generated each
year worldwide. The efficient utilization of agricultural residues may be key to mitigating
both the energy crisis and environmental pollution. However, the majority of agricultural
residues are disposed of or burned in the fields, generating waste and creating environ-
mental distress. On the other hand, obtaining fermentable sugars for dark fermentation
from lignocellulose requires improving the methods for hydrolysis. Pretreatments used
to hydrolyze biomass generate secondary pollution (acid hydrolysis) or are expensive
(enzymatic hydrolysis) and the efficiency of hydrolysis is low [16]. By using ruminal
microbiota, pretreatments for lignocellulose could be skipped. The microbiome of the
rumen is densely populated, highly diverse, and has complex interactions. Owing to the
complexity of the ruminal microbiota, a vast field is open for exploration on the production
of biohydrogen [17]. Nevertheless, ruminal microorganisms have scarcely been explored
for the production of hydrogen. Among the few studies reported to produce H2 with
bovine rumen, the enrichment of the ruminal liquid, temperature, pH, and using cellulose
as the substrate were studied [12]; the production of H2 from cellulose and ruminal fluid
pretreated with perchloric acid (HClO4) was also reported [18]; and hydrogen production
was investigated by the acid pretreatment of the ruminal fluid with hydrochloric acid
using office paper as the substrate [19]. However, it is necessary to deepen the study of
the culture conditions of ruminal microbiota to understand their behavior before its use
for the production of hydrogen from lignocellulosic biomass. Therefore, the objective of
this study was to evaluate the culture conditions for the production of hydrogen by bovine
ruminal microbiota. The novelty of this contribution lies in the following: (a) finding
culture conditions that enhance the production of hydrogen, despite the variability in
the composition within the ruminal microbiota as well as among the different consortia
(different bovines); and (b) identifying conditions that allow the observation of the same
tendency for hydrogen production. To the best of our knowledge, there are no reports of
the conditions analyzed in this study.
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2. Materials and Methods
2.1. Materials

Ruminal samples were collected from slaughtered cattle in the cities of Colotlán and
Zapopan, both in the state of Jalisco, México. NaCl, KH2PO4, CaCl2·2H2O, MgCl2·6H2O,
MnCl2·4H2O, CoCl2·6H2O, and (NH4)2SO4, K2HPO4, all analytical grade, were purchased
from Fermont (Monterrey, México). Yeast extract was purchased from BD Bioxon (Cuau-
titlán Izcalli, Estado de México, México). Glucose, starch, xylose, acetic acid, propionic acid,
butyric acid, n-valeric acid, isovaleric acid, pyridoxine hydrochloride, riboflavin, thiamine
hydrochloride, pantothenic acid, p-aminobenzoic acid, vitamin B12, folic acid, and biotin
were purchased from Sigma Aldrich (St. Louis, MO, USA).

2.2. General Procedures

The experiments carried out in this study were performed to maximize the production
of hydrogen with ruminal microorganisms from bovines. Thirty-two samples were taken
from the ruminal liquid of cattle; twelve samples were obtained from the city of Colotlan
and the rest from the city of Zapopan, Jalisco, Mexico. A sample or consortium is the
ruminal content of a particular bovine and was designated as microbial consortium from
the rumen of bovines (MCRB). In order to evaluate the production of hydrogen, each
consortium was used to prepare the seeding culture or inoculum. The inoculum was
incubated at 39 ◦C for 12–24 h (the preparation of inoculum is detailed in Section 2.3); after
incubation, the inoculum was placed in a culture medium to produce hydrogen at 39 ◦C;
then, gaseous samples were taken to determine the hydrogen content (the procedure to
produce and quantify hydrogen is described in Section 2.4). All the experiments were
carried out in duplicate, and the results show their average. The conditions analyzed were
as follows:

2.2.1. Incubation Time

The incubation time for the inoculum was varied in order to establish the time in
which the production of hydrogen was higher and then to select the appropriate incubation
time for the following stages. Inocula from MCRB 3, 4, and 7 were incubated at 12,
16, and 24 h; after the incubation time, each inoculum was transferred to the hydrogen
production medium, MB [20], and incubated at 39 ◦C; sampling was performed periodically
to determine the production of hydrogen.

2.2.2. Selection of Culture Media and Preparation of Culture Medium

The effect of the culture medium on the production of hydrogen was investigated
by testing the culture media MB [20] and Rhodospirillaceae [21], whose composition can
be seen in Table 1. Production of hydrogen was carried out, according to the procedure
described below (Section 2.3), with consortia 1, 2, and 3. Four conditions for the production
of H2 were tested with MCRB 3. In the first treatment (3-a), the nutrients were mixed—with
the exception of the ruminal fluid—and sterilized at 121 ◦C. Then, the ruminal fluid was
subjected to UV light for 30 min and then added to the rest of the nutrients. Treatment 3-b
consisted firstly of the separation of all the nutrients and their sterilization at 121 ◦C, and
afterwards, they were mixed. In treatment 3-c, all the nutrients were mixed, including the
ruminal fluid, and then sterilized at 121 ◦C. In procedure 3d, all the nutrients were mixed
and sterilized at 121 ◦C, while the ruminal fluid was eliminated. Once the nutrients cooled
down, the culture media were inoculated with MCRB3.

2.2.3. Headspace

Two cultures (MCRB 7 and 20) and two volumes of culture (40 and 80 mL) were tested
to determine the production of hydrogen. Since culture vials have equal total volume, the
volume of the gaseous phase (headspace) was higher with 40 mL culture volume (80 mL
gaseous phase or headspace). These experiments were carried out in the conditions selected
in previous stages.
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Table 1. Description of components of MB and Rhodospirillaceae culture medium.

Compound
Culture medium

MB Rhodospirillaceae
Concentration

(g/L)
Glucose 1.0
Starch 1.0
Xylose 1.0

Yeast extract 0.5 0.3
NaCl 0.90 0.4

KH2PO4 0.45 0.5
NH4 0.90 ((NH4)2SO4) 0.4 (NH4Cl)

K2HPO4 0.45
Ferric (III) citrate 0.5

(µM) g/L
NH4-acetate 0.5

Na2-succinate 1
Acetic acid 3.60

Ac. propionic 0.99
Ac. butyric 0.53

Ac. n-valeric 0.11
Ac. isovaleric 0.11

(mg/L)
CaCl2·2H2O 30 50
MgCl2·6H2O 20 400
MnCl2·4H2O 10 0.03
CoCl2·6H2O 10 0.2
ZnSO4·7H2O 0.1
CuCl2·2H2O 0.01
NiCl2·6H2O 0.02

Na2MoO4·2H2O 0.03
H3BO3 0.3

Pyridoxine hydrochloride 2.0
Riboflavin 2.0

Thiamine hydrochloride 2.0
Ac. pantothenic 2.0

Ac. P-aminobenzoic 0.1
B-12 vitamin 25 0.4

Ac. Folic 500
Biotin 500

Clarified rumen fluid 200 mL/L

2.2.4. Heat Treatment

Before transferring the ruminal consortia to the culture medium to prepare the inocu-
lum, MCRB 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 were subjected to heat treatment at 105 ◦C in an
oven (Heraterm, Thermo Scientific, Waltham, MA, USA) for 20 min, 4, or 24 h, and without
thermal treatment. The inoculum was prepared as explained before and then hydrogen
was produced in the conditions determined in previous stages to obtain a high H2 volume
(incubation time, culture medium, preparation of culture medium, and volume of the
culture medium) selected in Sections 2.2.1–2.2.3. Sampling was performed periodically
over 48 h to determine the production of hydrogen.

2.2.5. Production and Productivity of Hydrogen

A total of 32 ruminal consortia were evaluated to determine the production of hy-
drogen (Sections 2.3 and 2.4) and productivity. These experiments were carried out in the
conditions selected in previous stages. Hydrogen productivities (rH2) were obtained by
taking the slope of the curve obtained by plotting the accumulated hydrogen versus time.
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2.2.6. Cell Growth

Culture conditions to evaluate microbial growth were MB medium (both for inoculum
and hydrogen production), 24 h incubation time at 39 ◦C. Biomass or cell growth for
consortia 1 and 2 was determined both by dry weight and by optical density (660 nm,
Genesys 10S UV-Vis, Thermo Scientific). For biomass quantification by dry weight, 4 mL
of samples was centrifuged at 10,000 rpm (Centrifuge Eppendorf 5810 R) for 15 min, the
precipitates washed twice with deionized H2O, and dried at 80 ◦C for 24 h.

2.3. Inoculum Preparation

Inoculum was prepared for each run as follows: 50 mL of liquid sample (denominated
consortium or MCRB) was taken from the rumen of a slaughtered bovine (identified by
a number, i.e., 1, 2, 3, 4, 5, etc.), and placed in falcon tubes for transport and filtered with
a sterile gauze. An amount of 4 mL from the filtrate was taken and inoculated in 120 mL
serological bottles that contained 36 mL of MB culture medium [20] (Table 1), hermetically
closed with butyl septa and aluminum rings, and then sterilized at 120 ◦C for 15 min at pH
6.5. Sterile nitrogen was bubbled for 3 min in order to evacuate oxygen from the bottles,
which were then incubated for 24 h at 39 ◦C (incubator 3522, Thermo Electron Corporation,
Marietta, OH, USA).

2.4. Production and Quantification of Hydrogen

Hydrogen was produced by placing 8 mL of a culture obtained from a designated
inoculum (Section 2.3) in 72 mL of MB medium at pH 6.5, displacing air by bubbling
nitrogen, and then incubating at 39 ◦C. To evaluate the production of hydrogen and the
composition of the biogas, 500 µL biogas was collected with a syringe through the septa
in each vial, and directly injected into a gas chromatograph (Perkin Elmer Multisystem
XL) equipped with a column (HayeSep D, 100/120, Alltech, Nicholasville, KY, USA) and a
thermal conductivity detector at 100 ◦C; the oven was set at 60 ◦C and the injector at 120 ◦C.
N2 (20 mL/min) was used as the carrier gas. Biogas samples were taken periodically,
and after sampling, the whole headspace was replaced with N2 to avoid inhibition by
the product. All the experiments were carried out in duplicate, and the results show
their average.

2.5. Massive Sequencing

Massive sequencing was carried out in MCRB 7 to identify the predominant genera,
with the Illumina method, using previously extracted, genomic ADN from the microbial
community. Massive sequencing was provided by the INRA Transfert Environnement
(Narbona, France).

2.6. Statistical Analysis

Significant differences in the production of H2 obtained with the different treatments
were evaluated by analysis of variance (ANOVA; Statgraphics Centurion XV.II) using the
Fisher method of the Least Significant Difference (LSD) at a 95% confidence level.

3. Results and Discussion
3.1. Incubation Time

To obtain a high quantity of active cells producing H2, it is necessary to know the time
of higher microbial activity, which corresponds to the phase that precedes the stationary
phase. The optical density of two samples (two consortia from two bovines, 1 and 2) was
measured to know the time required to transfer the inoculum of the bovine rumen to
the production medium. Figure 1 shows that consortium 1 has a lag phase of 5 h and
the stationary phase is achieved at around 10 h. For consortium 2, the lag phase took
less than 5 h; however, the stationary phase was reached at around 30 h. This different
behavior between both consortia is owed to the ruminal diversity between bovines [22].
It is known that the microbial composition of the bovine rumen is sensitive to changes in



Fermentation 2024, 10, 274 6 of 15

diet, age, seasons, geographic location, feeding regime, and in general to the health of the
animal [23,24]. Other factors that impact the microbial activity and the diversity of bovine
rumen include behavioral and physiological processes, such as rumination, salivation,
absorption, passage, and production of volatile gastric acids [17,22,24]; even the ruminal
microbiota of dairy cows and steers can be related to different phenotypic characteristics
such as milk production and composition [22].
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Figure 1. Growth of bovine rumen microorganisms determined by optical density: (▲) MCRB 1 and
(◆) MCRB 2.

Based on the results shown in Figure 1, incubation times at 12, 16, and 24 h were
tested for the production of H2 using MCRB 3, 4, and 7 (Figure 2). Consortium 3 produced
32 mL of hydrogen in 11 h, whereas consortia 4 and 7 produced considerably less hydrogen
(6.5 and 7 mL, respectively) in 8 h. Such a difference can be due to the fact that the microbiota
depends on the nutrition of the different individuals [23,24]. A significant difference in the
amount of hydrogen produced can be seen with consortia 3 and 4. However, the incubation
of samples for 16 or 24 h resulted in no differences in hydrogen production (p-value = 0.1272),
which was the base to select an incubation time of 16 h for subsequent experiments.

3.2. Culture Media to Produce Hydrogen
3.2.1. Composition of Culture Medium

The composition of the culture medium is crucial for the production of hydrogen. To
select an appropriate culture medium for the production of H2 with microorganisms from
bovine rumen, a comparison of the culture media Rhodospirillaceae and MB was carried
out (Table 1). Rhodospirillaceae medium [21] has been formulated for the conservation of
bacteria of the genre Rhodospirillaceae and a high production of hydrogen has been observed
with purple non-sulfur bacteria [25]. MB medium, on the other hand, has been developed
to enumerate and isolate ruminal bacteria with fibrolytic potential [20]. Three microbial
consortiums (1, 2, and 3) were selected to produce hydrogen (Figure 3a) and used to carry
out fermentations using both media. It can be observed that the production of H2 in MB was
between 36 and 44% higher for the three consortiums. ANOVA shows significant statistical
differences between treatments (p-value < 0.05), which can be attributed to the fact that
the MB medium has a greater amount and higher concentration of nutrients as compared
to the Rhodospirillaceae medium (Table 1), i.e., seven additional vitamins, five different
organic acids, and different sources of sugars (glucose, xylose, and starch), yeast extract,
and ruminal fluid. Given the higher production of H2, the MB medium was selected.
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Figure 2. H2 production with inocula obtained at different incubation times: (•) 12 h, (▲) 16 h, and
(■) 24 h on MCRB (a) 3, (b) 4, and (c) 7.
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(•) MCRB 3-c, and (■) MCRB 3-d on H2 production by MCRB 3.
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3.2.2. Culture Medium Preparation Conditions

Composition and preparation of the culture medium may influence the production
of H2. MB is a culture medium rich in nutrients (Table 1) that under sterilization with
heat and pressure may trigger chemical reactions between the components of the culture
medium or even degradation of some components, which might be reflected either in the
increased or decreased hydrogen production. Also, it is desirable to eliminate the ruminal
liquid from the culture because variations in the composition of the ruminal content may
affect the industrial production of hydrogen by generating either a higher or lower amount
of hydrogen in each run, which results in a variable or uncontrollable process. Moreover,
it would be impractical to obtain high amounts of ruminal fluid in order to add it in each
production batch. For these reasons, different conditions were evaluated for the preparation
of the culture medium.

Figure 3b show the production profile of H2 for each treatment. It is observed that
the highest production of H2 was achieved when all nutrients were mixed and sterilized
together (treatment MCRB 3-c). Interestingly, no significant statistical difference was
found when the nutrients were sterilized separately (treatment MCRB 3-b) as compared to
treatment MCRB 3-c (p-value < 0.05), which suggests that the physical–chemical changes
undergone in the culture medium (chemical reactions, precipitation, etc.) had no net effect
on the production of hydrogen.

On the other hand, the sterilization of the bovine ruminal fluid with UV light signifi-
cantly reduced the production of H2, probably because the UV light degraded some of its
components. It has been reported that the amounts of water- and fat-soluble vitamins in
milk are affected by UV treatment. Specifically, vitamins C and E are more sensitive to UV
light. Ultraviolet light sensitivities for cow and goat milk samples were in the following
order: vitamin C > vitamin E > vitamin A > vitamin B2 [26].

It is worth mentioning that when the ruminal fluid of the culture medium was elim-
inated (treatment MCRB 3-d), the production of H2 was reduced to half as compared to
the medium that contained the ruminal fluid. Bovine ruminal fluid is a metabolically di-
verse biofluid, with representative metabolites. Specifically, the composition of the bovine
ruminal liquid is dominated by phospholipids, inorganic ions and gases (CO2, CH4, N2,
and H2), amino acids, dicarboxylic acids, short-chain fatty acids (SCFAs), vitamins, fat,
protein, fiber, and carbohydrates [27]. In the absence of such nutrients of the rumen, the
microorganisms produced a smaller amount of H2. Finally, it was determined to prepare the
culture medium mixing all the components (including bovine ruminal fluid) and sterilize
them in the autoclave altogether. Future studies may include the change in ruminal fluid
for the addition of the nutrients present in the rumen in order to improve the amount of
hydrogen produced.

3.3. Effect of Culture Gas Volume

It has been reported that the partial pressure of the hydrogen (pH2) produced in the
reactor’s headspace is autoinhibitory of growth and H2 production [3]. As the gaseous space of
microbial cultures is increased, the partial pressure of hydrogen decreases. In order to evaluate
the effect of the volume of the ruminal culture gaseous phase, two headspaces (40 and 80 mL)
were compared on the production of hydrogen using MCRB 7 and 20 (Figure 4).

In a head space of 40 mL, MCRB 20 produced 171 mL/L medium, which was 19-fold
more hydrogen as compared to MCRB 7 (8.7 mL/L medium). However, hydrogen production
was increased by three times when the head space of the cultures was 80 mL with both
consortiums (475 mL/L medium for MCRB 20 and 20 mL/L medium for MCRB 7). ANOVA
showed that there are significant statistical differences between treatments (p-value < 0.05).
Such behavior can be explained in terms of the partial pressure exerted by the produced
hydrogen. Several studies indicate that a high pH2 results in hydrogen dissolution in the
medium that modifies the thermodynamic control of the metabolic pathways associated
with the production of hydrogen, redirecting the flux to the production of lactate, ethanol,
acetone, butanol, and the appearance of homoacetogenic pathways, all of which decrease
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the production of hydrogen [28,29]. Therefore, further experiments were carried out in
120 mL serological bottles with a headspace of 80 mL.
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3.4. Thermal Treatment

H2-producing and H2-consuming organisms (methanogens) frequently coexist in
microbial consortia. To suppress the bacterial activity of methanogenic microorganisms
while preserving the activity of the H2-producing bacteria [30], consortia are subjected
to stress by different treatments such as acidic, alkaline, or thermal, as well as aeration,
freezing–thawing, and chloroform [11].

In this study, 10 MCRB from 10 different cows were evaluated to produce H2 at 105 ◦C
for 20 min, 4 h, and 24 h, and without heat treatment (Figure 5).

The highest production of H2 (495 mL) was obtained with 20 min thermal treatment
(MCRB 3), followed by the thermal treatment of 4 h (MCRB 4, 387 mL H2/L medium). It
should be noted that most of the samples without thermal treatment produced a greater
amount of H2 as compared to the heat-treated samples. Thermal treatment is commonly
used to eliminate methanogenic microorganisms or other bacteria that interfere with the
production of H2 [30]. This procedure is based upon the fact that H2-producing anaerobic
bacteria form endospores when unfavorable environmental conditions are encountered;
once favorable conditions return, the spores end up as vegetative cells [31]. It has been
reported that the heat treatment of MCRB at 105 ◦C for 24 h before the preparation of
inoculum is best to produce H2 [32,33]. In contrast, in the present study, it was observed
that most of the MCRB produced a lower amount of H2 when the microbial consortia were
subjected to 105 ◦C for 24 h as compared with other times of exposure to thermal treatment.
ANOVA indicates significant statistical differences between treatments (p-value < 0.05);
also, the LSD test indicates that the thermal treatments at different times belong to the same
group, while the samples without treatment belong to another group.

Interestingly, the highest H2 production was obtained without heat treatment. These
results may be owed to the fact that the MCRB without heat treatment were inoculated in a
culture medium rich in vitamins and minerals that favored the production of H2. Culture
media rich in nutrients eliminate the syntrophy that initially exists between bacteria and
archaea, suppressing methanogen microorganisms that results in a greater production
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of H2 [34]. Also, it is probable that during heat treatment, not only methanogens are
eliminated, but also some H2-producing organisms.
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Figure 5. Hydrogen production with 10 microbial MCRB (3, 4, 5, 6, 7, 8, 9, 10, 11, and 12) from bovine
rumen with different thermal treatment time (ST: without treatment; 20 min, 4 h, 24 h).

With the aim to observe the changes undergone in the microbiota after thermal treat-
ment, MCRB 7 was selected to identify the microbial genera in the cultures employed to
produce hydrogen after thermal treatment (105 ◦C for 24 h) or without thermal treatment
(by culturing MCRB 7 in enriched culture MB medium).
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MCRB 7 without thermal treatment showed at least twice the variety of genera as com-
pared to the sample with heat treatment. The genera found were Streptococcus sp., Lactobacil-
lus, Clostridium sensu, Prevotella, Incertae Sedis (which might contain Clostridia, Lactobacillus,
Thermoanaerobacterales, and Bacillus, all hydrogen producers), Klebsiella, Selenomonas, Entero-
coccus), and Paenibacillus. On the other hand, the consortium that was thermally treated
contained only Enterococcus, Weissella sp., Incertae Sedis, and Rummeliibacillus sp. These
findings support the fact that MCRB 7 without heat treatment had a higher production of
hydrogen since Prevotella, Klebsiella, Selenomonas, and Paenibacillus have been identified as
hydrogen producers [35]

On the other hand, Nissila et al. [12] tested different rumen liquids and found that
the optimum temperature and pH to produce H2 were 62 ◦C and 7.3, respectively; the
maximum amount of H2 reported was 1.2 mL H2/L medium obtained with samples
without heat treatment. Ratti et al. [18] obtained 829 mL H2/L medium with ruminal fluid
pretreated with perchloric acid (HClO4). Botta et al. [19] pretreated the ruminal fluid with
hydrochloric acid (HCl) and reported a yield of 61.7 mL H2/L medium using 0.5 g of office
paper as the substrate.

These results demonstrate that there are less aggressive treatments, which promote a
higher production of H2. To the best of our knowledge, this had not been reported with
bovine rumen microorganisms.

3.5. Kinetics of Hydrogen Production

The amount of hydrogen produced depends on the type of microorganisms present in
the ruminal consortia. However, the rumen contains a great diversity of microbial species
and the synergism and antagonism between the groups of microorganisms and even
between the different genera in the same groups is so diverse and complex that it makes it
difficult to quantify the activity that each particular group of microorganisms carries out
in the rumen [36]. However, our interest lies in the final result of such interactions for the
production of hydrogen and, therefore, the analysis of the kinetics of the H2 production of
microbial communities of bovine rumen was carried out. Thirty-two microbial communities
sampled from thirty-two different bovines were compared to each other. Figure 6a shows
the kinetics of H2 production of 10 out of the 32 samples. It can be observed that the
behavior is completely different between the samples. MCRB 6 reached the maximum
production of H2 at 11 h with a production of 24 mL of H2, while MCRB 7 reached the
maximum around 50 h with a maximum production of almost 700 mL of H2.

The reason for knowing the kinetics of H2 production of these selected samples is the
variation over time in the H2 production. For instance, the vast majority of the samples
produced the largest amount of H2 before 10 h, although some consortia produced larger
amounts after 10 h. The maximum time to reach the highest volume of H2 was 150 h
(sample 32) and the maximum volume produced was 700 mL (sample 7) in 48 h. On
the other hand, it can also be seen (Figure 6) that the amount of H2 kept constant after
a certain time, which indicates that there is no presence of methanogen microorganisms
that consume H2. This corroborates the elimination of methanogen microorganisms by the
medium rich in nutrients.

Figure 6b shows the total production of H2 and the rate of H2 production (productivity)
of the 32 consortia. It can be seen that some consortia (30 and 29) produced very little hydro-
gen at a low rate (88.6 mL/L medium, 1.14 mL/L-h and 76.9 mL/L medium, 2.52 mL/L-h,
respectively). The highest productivity was achieved with consortium 7 (56.7 mL/L-h) and
700 mL H2/L, while the highest production of hydrogen was obtained with consortium 3
(805.4 mL H2/L medium) although with a lower productivity (28.3 mL/L-h) as compared
to consortium 7. These behaviors in H2 production, productivity, and time can be attributed
to the variety of microorganisms present in each sample. Diversity exists due to different
factors, mainly cattle feeding, which directly affects the rumen microbiota since feeding
depends on the purpose (fattening cattle, dairy cattle, disposal of lignocellulosic materials
by region, etc.) [23,24].
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Figure 6. (a) Kinetics of H2 production with microorganisms from bovine rumen without heat
treatment for samples 1, 3, 6, 7, 8, 9, 11, 23, 28, and 32; (b) production and productivity of H2 by
microorganisms from bovine rumen.

Moreover, the microbial composition of the bovine rumen is very sensitive to changes
in the diet, although it can also be attributed to age, season of the year, geographical
location, diet, and in general to the health of the animal [23,24,35]. Therefore, in order to
obtain a high production of hydrogen with ruminal microbiota, it is important to select a
consortium able to produce a high amount of hydrogen with a high productivity.

It is worth mentioning that during the experiments carried out in this work, it was
observed that, with many subcultures from consortia, the production of hydrogen gradually
decreased; therefore, future work will be focused on the study of the conservation of
consortia to achieve a constant production of hydrogen through the course of time.
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4. Conclusions

In this study, a great variability in the production of hydrogen was found among
different ruminal microbial communities (among bovines), a fact that to the best of our
knowledge has not been reported before, which suggests that it is necessary to analyze
MCRB to select the consortia that have a higher production of hydrogen.

Despite the variability in the production of hydrogen, which can be attributed to
the composition within the ruminal microbiota and the diversity of different consortia
(different bovines), we were able to find culture conditions that have the same tendency for
the production of hydrogen.

It is possible to obtain a higher amount of hydrogen by eliminating methanogenic
microorganisms employing an enriched culture medium, as compared to the elimination
of methanogenic by thermal treatment at 105 ◦C. These results demonstrate that there are
less aggressive treatments, which promote a higher production of H2. To the best of our
knowledge, this has not been reported with microorganisms from the rumen of bovines.

When the ruminal fluid was removed from the MB culture medium, the production of
H2 was approximately half the maximum obtained, highlighting the role of ruminal fluid
on the production of hydrogen.

This study provides new information to produce hydrogen by microbial consortia
and shows that it is possible to obtain high volumes of H2 using microorganisms from
bovine rumen. Our findings show a different perspective on the treatment of MCRB for
the production of hydrogen and give insights on the impact of the culture conditions on
increasing hydrogen production. From the findings in this contribution, future works will
focus on analyzing the conditions to reduce variations in the production of hydrogen from
ruminal consortia to design culture media with no ruminal fluid to allow keeping a high
hydrogen production and the conservation of consortia to achieve a constant production of
hydrogen through the course of time.
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biomass using dark fermentation. Renew. Sustain. Energy Rev. 2018, 91, 665–694. [CrossRef]
2. Yadav, S.; Singh, V.; Mahata, C.; Das, D. Optimization for simultaneous enhancement of biobutanol and biohydrogen production.

Int. J. Hydrogen Energy. 2021, 46, 3726–3741. [CrossRef]
3. García-Sánchez, R.; Ramos-Ibarra, R.; Guatemala-Morales, G.; Arriola-Guevara, E.; Toriz-González, G.; Corona-González, R.I.

Photofermentation of tequila vinasses by Rhodopseudomonas pseudopalustris to produce hydrogen. Int. J. Hydrogen Energy 2018, 43,
15857–15869. [CrossRef]

4. Teke, G.M.; Anye Cho, B.; Bosman, C.E.; Mapholi, Z.; Zhang, D.; Pott, R.W.M. Towards industrial biological hydrogen production:
A review. World J. Microbiol. Biotechnol. 2024, 40, 37.

https://doi.org/10.1016/j.rser.2018.04.043
https://doi.org/10.1016/j.ijhydene.2020.10.267
https://doi.org/10.1016/j.ijhydene.2018.07.015


Fermentation 2024, 10, 274 14 of 15

5. IEA 50. Hydrogen. Overview. Conference. Last Update on 10 July 2023. Available online: https://www.iea.org/energy-system/
low-emission-fuels/hydrogen (accessed on 6 May 2024).

6. Katebah, M.; Al-Rawashdeh, M.; Linke, P. Analysis of hydrogen production costs in Steam-Methane Reforming considering
integration with electrolysis and CO2 capture. Clean Eng. Technol. 2022, 10, 100552. [CrossRef]
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