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Abstract: The shift from fossil fuels to renewable energy sources is crucial in addressing environ-
mental challenges. Vegetable oils have been focused on as the main potential source for biodiesel
and biolubricant production. However, due to their fatty acid (FA) composition they are charac-
terized by low stability to oxidation and variable viscosity. Single-cell oils (SCOs) from oleaginous
microorganisms are a possible alternative to vegetable oils: their composition is more suitable, and it
can further be improved by controlling the fermentation’s physiological conditions. In the present
study, the production of SCOs with targeted technological properties from Lipomyces starkeyi in
fermentation under controlled temperatures was assessed. A dairy effluent (scotta) was used as
the fermentation substrate to improve the economic sustainability of the process. Batch aerobic
fermentations were carried out in a fermenter at two different temperatures (25 ◦C and 30 ◦C). The
fermentation yields and SCO FA profiles were analyzed. The highest yields of biomass (9.76 g L−1)
and microbial oil (1.83 g L−1) were obtained from fermentations carried out at 30 ◦C. Furthermore, a
significantly lower content (46% vs. 55%) of unsaturated FAs and higher content (11% vs. 1.5%) of
shorter-chain saturated FAs, with myristic acid almost matching stearic acid, were detected at 30 ◦C
in comparison to 25 ◦C. Very low peroxide values were also found (0.14 meq O2 kg−1 at 30 ◦C and
0 meq O2 kg−1 at 25 ◦C). These results indicate that these SCOs were highly oxidation-resistant, and
that a higher fermentation temperature improves their oxidative stability and tribophysical features.
The biodiesels’ technological properties, calculated from the FA composition, were within the limits
of both U.S. standards and E.U. regulations. Then, SCOs produced from L. starkeyi by fermentation of
dairy effluents carried out under controlled temperature can be considered a suitable alternative to
vegetable oils to produce biodiesel and biolubricants.

Keywords: Lipomyces starkeyi; scotta; single-cell oil; oleaginous yeasts; biorefineries; circular economy

1. Introduction

Replacing fossil fuels with renewable sources to limit the environmental concerns
associated with the use of non-renewable energy sources [1] is a complex challenge, and
bio-based products, biofuels, and oleochemicals have become an important alternative in
recent years [2]. The global supply of biodiesel in 2021 was 0.8 million barrels per day
(mb/d), and a further increase is expected in the upcoming years, reaching 1.8 mb/d by
2045 [3]. Indonesia is the world’s largest biodiesel producer: in 2022, Indonesia had a
reported output of 13.65 billion liters, more than the combined amount produced by Brazil
and the United States, which are the second- and third-largest producers, respectively [4].
Edible feedstocks such as wheat, rice, potatoes, sugar cane, barley, and vegetable oil are
used to produce first-generation biofuels, and vegetable oils are the main renewable sources
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used for biodiesel and biolubricant production [5]; however, a shift towards the use of
non-edible biomasses is ongoing, in order to avoid the competition with food production
and to reduce the extensive land consumption under a worldwide rising demand for
biodiesel [2,6]. Recently, some reports documented the use of bioenergy crops for co-
production of oils and sugars for biodiesel and bioethanol production [7]. Also, microbial
oils, called “single-cell oils” (SCOs), are emerging as a promising alternative to vegetable
oils for the production of biofuels, biodiesel, oleochemicals, biolubricants, soap, plastics,
and other bio-products [8–15]. SCOs can be produced in fermentation plants, without land
consumption and without dependence on weather seasonality, and wastes and effluents
can be used as substrates for fermentation, with a significant role in a circular economy
approach. SCOs can also compete with vegetable oils from a qualitative point of view;
indeed, vegetable oils have several significant drawbacks for technological features when
compared to fossil fuels, such as poor stability to hydrolytic, thermal, oxidative and
biological degradation, and poor atomization due to high viscosity [6,16,17]. Vegetable oils’
low oxidative stability is due to a high content of unsaturated fatty acids, that, following a
radical attack, give rise to insoluble deposits and increase the viscosity. The production
cost of SCOs is higher than that of vegetable oils, even if the SCOs produced from yeast
biomasses can be considered economically suitable for specific uses [18,19]. However, a
rising trend in the costs of vegetable oils has been observed over recent years due to the
rising demand for biodiesel production; moreover, the economic sustainability of the SCO
processes can be strongly improved when negative-cost raw materials, such as wastes or
effluents, are used as fermentation media, and a further cost reduction can be reached by
the direct transesterification of the biomass, thus avoiding the oil extraction step, which is
one of the most costly steps of the SCO production procedure [19–21].

Microbial lipids are synthesized in cells with different functions, such as membrane
components, storage lipids, or for regulatory functions [22]. Several oleaginous microor-
ganisms, storing high amounts of lipids (>20% w/w) in their cells, can be used to pro-
duce SCOs [23]. Oleaginous yeasts, such as Rhodotorula glutinis, Rhodotorula graminis,
Rhodosporidium toruloides, Lipomyces starkeyi, Yarrowia lipolytica, Cryptococcus albidus, and Cu-
taneotrichosporon oleaginosus, can convert carbon sources into storage-neutral lipids, mainly
triacylglycerols, reaching lipid contents of more than 65% of their dry cell weight [24–26].
The amount of lipids stored in yeast cells is influenced by several factors such as cultivation
method (batch, fed-batch, or continuous), growth medium composition, C/N ratio, carbon
source provided, temperature, and air availability [25,27,28]. Their fatty acid profile is very
similar to that of vegetable oils, which they can replace for several uses [25,29,30], but in
general the unsaturated fatty acid content is lower, and thus, their oxidative stability is
higher. The most abundant fatty acids produced by oleaginous yeasts are C16:0 (palmitic
acid), C16:1 (palmitoleic acid), C18:0 (stearic acid), C18:1 (oleic acid) and C18:2 (linoleic
acid), whereas the fatty acids such as C14:0 (myristic acid) and C18:3 (linolenic acid) are less
abundant [23]. Many studies have shown that yeast SCOs are suitable to produce biodiesel
and biolubricants, and that their tribo-chemical properties, such as lubricity, viscosity index,
emissions production, biodegradability, and no dermatological problems for humans, are
better than vegetable oils [11,27,31,32].

Different yeast species and strains can grow on different carbon sources (glucose,
xylose, arabinose, mannose, glycerol, lactose, galactose) and on agricultural and industrial
residues; therefore, yeasts are suitable for SCO production as low-cost carbon sources can
be easily used [23,27,33]. Several industrial by-products or wastes have been tested as
substrates, such as molasses, dairy effluents, pulp and paper mill effluent, sewage sludge,
and hydrolysate from different biomasses, such as wheat straw, corn stover, rice straw,
sugarcane bagasse, coniferous and deciduous woods, and grasses [34–36]. Among them,
effluents from the dairy industry play a major role. The processing of 10 kg of milk produces
approximately 1–2 kg of dairy products and 8–9 kg of effluents [37]; 187–206 million tonnes
of dairy effluents are estimated to be produced yearly around the world, with 40 million
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tonnes produced within the E.U. alone [38]; their pollution load is significant, due to the
high COD and BOD [39].

Dairy effluents include cheese whey and scotta [40]. Over the years, research has
focused mainly on the recycling of cheese whey, while less attention has been paid to
the recovery of scotta, also known as ricotta cheese exhausted whey (RCEW); the latter
is the liquid remaining after the production of ricotta cheese, which is obtained from
cheese whey by coagulating proteins through the combined action of high temperature and
acidity [41]. Scotta is mainly produced in Italy and other Mediterranean countries. Italian
production is estimated to be around 1.0 million tonnes per year, leading to significant
environmental concerns regarding its disposal [42]. Scotta’s main component is lactose
(3.7–5.0%), followed by salts (1–1.13%), proteins (0.15–0.22%), and fats (0.1–0.3%). Its
BOD (biochemical oxygen demand) and COD (chemical oxygen demand) values are high,
50 g L−1 and 80 g L−1, respectively [43]; therefore, it requires appropriate treatment to
avoid environmental concerns.

Dairy effluents can find use in microbial biotechnological processes as growth media
for fermentations due to their high sugar content. In particular, scotta can be considered
suitable as a growth medium for SCO production due to its high C/N ratio; moreover,
several yeasts strains can use lactose as a carbon and energy source.

In this work, the oleaginous yeast Lipomyces starkeyi was used to produce SCOs using
scotta as the substrate. The main aim was to create SCOs with compositions suitable for the
production of biodiesel and biolubricants by controlling the physiological conditions during
fermentation; indeed, different growth temperatures allow for modification of the lipids
composition in yeast, varying the balance between saturated and unsaturated fatty acids
and between medium-chain and long-chain saturated fatty acids [25]. By adjusting the
fatty acid profile, it is possible to improve the technological properties of the oil, in order to
obtain a suitable fluidity together with a better oxidative stability, reached by reducing the
unsaturation degree. So, batch fermentations were carried out under controlled conditions
at two different growth temperatures, consistent with yeast viability and biomass yield,
but also potentially effective for reaching different cell lipid compositions: 25 ◦C and
30 ◦C. A temperature of 28 ◦C is considered the best temperature to combine biomass
and lipid yields in Lipomyces starkeyi, but several fermentations carried out at 30 ◦C and
at 25–26 ◦C have also been reported [28]; our aim was to evaluate if the fatty acid profile
reached at 25 ◦C could be more suitable for biodiesel and biolubricants production in
comparison to that obtained at 30 ◦C. Temperatures lower than 25 ◦C were excluded due to
the known significant prevalence of polyunsaturated fatty acids [44]. The oils’ fatty acid
profiles were analyzed, and fermentation yields were checked as valuable data for possible
industrial process suitability. Technological properties were detected based on the fatty
acid composition, and oxidative stability was analyzed. The residual sugars at the end of
the fermentations were also examined to evaluate the beneficial effect of fermentation in
reducing the polluting load of scotta.

2. Materials and Methods
2.1. Microorganisms and Culture Conditions

Lipomyces starkeyi DSMZ 70,295 strain was used as inoculum. Stock cultures were
maintained on YEPD agar plates (10 g L−1 yeast extract (Biolife, Milan, Italy), 20 g L−1

peptone (Biolife, Milan, Italy), and 20 g L−1 glucose (Sigma Aldrich, Milan, Italy) at 4 ◦C.
Precultures were grown in aerated flasks in YEPD at 28 ◦C for three days.

2.2. Dairy Effluent and Its Chemical–Physical Characterization

Scotta was obtained from a dairy in Piedmont (Pianezza, Italy) immediately after the
ricotta production, aliquoted, and stored at −25 ◦C. The mean pH was 5.7 ± 0.07, and the
sugar content was 44 ± 4.8 g L−1 lactose, 0.45 ± 0.04 g L−1 galactose, and no glucose. For
each fermentation, scotta was thawed at 4 ◦C and sterilized by Tyndallization (three times
at 95 ◦C for 30 min). The pH was measured by a pH meter (CRISON BASIC 20, Barcelona,
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Spain). Sugar concentrations were analyzed at the start and at the end of each fermentation
by HPLC (Dionex UltiMate 3000, Thermo Fisher Scientific, Waltham, MA, USA) equipped
with a refractive index detector (RID), (RefractorMax 520, ERC, Tokyo, Japan), operating at
55 ◦C, and a Dionex UltiMate 3000 variable-wavelength detector (Thermo Fisher Scientific,
Waltham, MA, USA) set at 210 nm, on a Metab-AAC BF series column (length = 300 mm;
ID = 7.8 mm) (Isera, Düren, Germany); isocratic elution was carried out with 9 mM H2SO4
at a flow rate of 1 mL min−1 in an oven at 60 ◦C.

2.3. Fermentations

Batch fermentations were carried out under controlled conditions in a BIOSTAT A plus
1 L Sartorius bioreactor (Sartorius Stedim Biotech, Göttingen, Germany) at two different
growth temperatures, 25 ◦C for treatments named LS25 and 30 ◦C for treatments named
LS30; each treatment was executed in triplicate. Sterile scotta (800 mL) was used for each
fermentation, added with 1 mL of sterile silicon antifoam solution (2% v/v) (Titolchimica
S.p.A., Pontecchio Polesine, Italy) and 1 × 106 cells mL−1 starter inoculum. Sterile air
was fluxed throughout the whole fermentation at 1 mL min−1 and the medium was
stirred at 150 rpm. Dissolved oxygen and pH were monitored with an OXIFERMTM

O2 sensor (Hamilton, Bonaduz, Switzerland) and a pH electrode (Hamilton, Bonaduz,
Switzerland), respectively. Cell growth was monitored daily by haemocytometer counting
and intracellular lipid droplet accumulation was checked by microscopic analysis with a
Leica DM2000 LED light microscope (Leica, Wetzlar, Germany). Fermentation was stopped
when the stationary phase was reached: after 10 days at 30 ◦C and 7 days at 25 ◦C.

2.4. Lipid Extraction and Fermentation Yields

Cell biomass was collected by centrifugation at 6000 rpm (Centrifuge Eppendorf 5804
R) for 10 min at 20 ◦C, then washed with sterile water. The cells pellet was weighed,
and then, total lipids were extracted according to Egger and Schuwduke [45], modified
according to Belviso et al. [46], as follows: cell biomass was resuspended in 2 mL of boiling
dimethyl sulfoxide (DMSO) and incubated at 100 ◦C for 1 h. Methanol (7.5 mL) and 25 mL
methyl-tert-butyl ether (MTBE) were added and the mixture was shaken by vortex and
incubated on a rotary shaker (VDRL STIRRER 711, ASAL S.r.L., Cernusco sul Naviglio,
Italy) at 75 rpm for 1 h at room temperature, then stored overnight at 4 ◦C. On the second
day, 6.2 mL of sterile water was added and after 10 min of incubation at room temperature
the sample was centrifuged at 6000 rpm for 10 min at 4 ◦C. The upper (organic) phase was
collected, and the lower phase was re-extracted with 10 mL of a MTBE:methanol:water
mixture (100:30:25, v/v/v). The pooled upper phases were dried in a rotary evaporator
(Laborota 4000-efficent, Heidolph Instruments, Schwabach, Germany) at 40 ◦C; vacuum
580 mmHg. The extracted oil was quantified through gravimetric analysis and the total
weight expressed in grams. The oil was stored in 2.5 mL PP amber tubes under nitrogen at
−20.0 ◦C until gas chromatographic analyses.

Fermentation yields were expressed in percentages and calculated as follows:
Yp/s, where p = oil produced (g) and s = sugars consumed (g);
Yp/x, where p = oil produced (g) and x = cell biomass (g);
Yx/s, where x = biomass produced (g) and s = sugars consumed (g).

2.5. Lipids Analysis and Characterization

The SCO’s fatty acid composition was analyzed by gas chromatography. Methyl esters
of fatty acids (FAMEs) were obtained by adding 2 mL heptane to approximately 0.1 g of
SCO in a 5 mL screw-top tube; after shaking, 0.2 mL of 2 M methanol potassium hydroxide
solution were added. The tube was closed thoroughly with a cap fitted with a PTFE joint
and shaken vigorously for 30 s, then left to stand until phase separation. The upper solution
was withdrawn and immediately used for gas chromatographic analysis [47].

The fatty acid composition was determined in accordance with COI/T.20/Doc. No.
33 [48]. A gas chromatography (GC) system (HRGC Mega 2 series 8560; Thermo Fisher
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Scientific, Waltham, MA, USA) was used with a capillary column in fused silica (60 m;
0.32 mm ID; 0.2 µm film thickness) SP–2380 (Supelco, Bellefonte, PA, USA). The column
temperature was programmed for a gradient increase from 70 to 165 ◦C at 20 ◦C per
minute, 23 min at 165 ◦C, increase from 165 to 200 ◦C at 1.5 ◦C per minute, 5 min at
200 ◦C, then increase at 2 ◦C per minute from 200 to 220 ◦C, finally, held for 5 min. The
detector temperature was 230 ◦C and hydrogen was used as the carrier gas at a column
head pressure of 60 kPa. The samples (0.4 µL) were injected on-column. Peak dentification
was tested with a mixture of standards supplied by Supelco (CRM18918 F.A.M.E. Mix,
C8–C24, certified reference material, Supelco, Bellefonte, PA, USA) to provide the percent
fatty acid composition.

The SCO’s oxidative stability was analyzed by detecting the peroxide values spec-
trophotometrically by an automatized system (OxyTester ®, CDR s.r.l. Florence, Italy),
based on the detection at 505 nm of a red complex of Fe3+ ions, produced by oxidation of
Fe2+ from peroxides that form from unsaturated fatty acids in the presence of oxygen at
high temperature [49]. Results are expressed as meq O2 kg−1.

The SCO’s technical parameters were calculated from the FAME composition profile
according to Cianchetta et al. [50]: iodine value (IV), saponification value (SV), degree of
unsaturation (DU), long-chain saturation factor (LCSF), cold filter plugging point (CFPP),
oxidative stability (OS), higher heating value (HHV), density (D), cetane number (CN),
kinematic viscosity (KV), and percentage of linolenic acid (C18:3).

2.6. Statistical Analyses

ANOVA and least significant difference (LSD) analyses were carried out by assuming
a p-value threshold ≤0.05. Data were processed using the Origin software (OriginPro,
version 9.9, 2022).

3. Results
3.1. Yeast Cell Growth and Substrate Consumption

Yeast cell growth (Figures S1 and S2) was checked in order to identify the time needed
to reach the stationary phase; it was 190/240 h at 30 ◦C and 120–168 h at 25 ◦C; therefore,
the fermentations were stopped after 10 days at 30 ◦C, and after 7 days at 25 ◦C. The final
mean cell concentration was 6.21 × 107 CFU mL−1 at 30 ◦C and 5.42 × 107 CFU mL−1 at
25 ◦C.

At the end of the fermentations, the pH of the medium had risen from an initial value
of 5.7 ± 0.07 to 6.8 ± 0.98 in LS30 and to 6.2 ± 0.01 in LS25 (Figures S1 and S2).

The mean sugar content of sterile scotta was 44 ± 4.8 g L−1 lactose, 0.45 ± 0.04 g L−1

galactose, and no glucose. At the end of fermentation, the galactose was absent in LS25 and
present only in traces (5 × 10−3 g L−1) in LS30; residual lactose was higher in LS25 than in
LS30; indeed, sugar consumption was significantly higher in LS30 than in LS25 (p < 0.05)
(Table 1).

Table 1. Residual sugar concentration, percent of consumed sugars, and pH at the end of fermen-
tation. LS30: fermentation carried out at 30 ◦C; LS25: fermentation carried out at 25 ◦C. Data are
expressed as means of triplicate measurements. (*) indicates significant difference between treatments,
(ns) indicates no significant difference following ANOVA (p ≤ 0.05).

Treatments
LS30 LS25

Total residual sugars (g L−1) 17.73 ± 9.39 40.58 ± 1.63 *
Consumed sugars (%) 55.39 ± 24.05 16.86 ± 3.26 *
pH 6.8 ± 0.98 6.2 ± 0.01 ns
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3.2. Fermentation Yields

The total cell biomass and SCOs produced are reported in Figure 1A,B. The experi-
mental data show that higher oil production (1.25 g L−1) was reached at 30 ◦C compared
to 25 ◦C (0.83 g L−1), even if the difference was not statistically significant. Also, the
cell biomass production was higher at 30 ◦C (9.76 g L−1) than at 25 ◦C (7.55 g L−1). So,
fermentations at 30 ◦C seemed to be more efficient for both oil and biomass production,
even if the differences were not statistically significant. Figure 1C–E show the percent
fermentation yields. Yp/s was 7.46% at 30 ◦C and 10.81% at 25 ◦C. Yx/s at 30 ◦C was 44%
and 92% at 25 ◦C. Yp/x was 14.51% in LS30 and 11.28% in LS25. Statistical analysis did not
reveal significant differences except for in Yx/s.
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Figure 1. Fermentation yields. (A) Microbial cell biomass (g L−1); (B) SCO (g L−1). (C) Yp/s (%),
where p = oil produced (g), and s = sugars consumed (g); (D) Yx/s (%), where x = biomass produced
(g), and s = sugars consumed (g); (E) Yp/x (%), where p = oil produced (g), and x = cell biomass (g).
LS30: fermentation carried out at 30 ◦C; LS25: fermentation carried out at 25 ◦C. Data are expressed
as means of the triplicate measurements. Different letters show significant differences following
ANOVA (p ≤ 0.05).

3.3. Fatty Acid Profiles

The SCOs’ FA profiles are shown in Table 2. The major FAs were oleic acid (C18:1)
and palmitic acid (C16:0), with minor amounts of stearic (C18:0), myristic (C14:0), linoleic
(C18:2), palmitoleic (C16:1), lauric (C12:0), capric (C10:0), and caprylic (C8:0) acids. Several
odd-chain FAs were also detected. Statistical analysis revealed significant differences in the
fatty acid profiles due to fermentation temperature. Among the medium-chain saturated
FAs, significant differences were found for caprylic, capric, undecanoic, and lauric acids,
which were twenty to forty times higher in LS30 than in LS25. A significant difference
was also found for myristic acid, which almost matched stearic acid at 30 ◦C. The most
abundant unsaturated FA, oleic acid, was significantly lower in LS30; also, palmitoleic acid
and linolenic acid were significantly lower in LS30, with linolenic acid in LS25 more than
double that in LS30.

The total unsaturated FA content was significantly higher at 25 ◦C than at 30 ◦C
(p ≤ 0.05); the total saturated FAs were higher at 30 ◦C than at 25 ◦C even if the difference
was not statistically significant, and the saturated/unsaturated FA ratio was significantly
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higher at 30 ◦C than at 25 ◦C (Table 3). Among the saturated FAs, long-chain FAs were
similar in LS30 and LS25, while medium-chain FAs were significantly higher at 30 ◦C.

Table 2. SCOs’ fatty acid profiles. Each fatty acid is expressed as percent of total fatty acids. LS30:
fermentation carried out at 30 ◦C; LS25: fermentation carried out at 25 ◦C. Data are expressed as means
of triplicate measurements. (*) indicates significant difference between treatments, (ns) indicates no
significant difference following ANOVA (p ≤ 0.05).

Treatments

Fatty Acid LS30 (%) LS25 (%)

Caprylic acid (C8:0) 0.4750 ± 0.15 0.0133 ± 0.02 *
Pelargonic acid (C9:0) 0.0316 ± 0.01 0.0266 ± 0.02 ns
Capric acid (C10:0) 1.2816 ± 0.61 0.0616 ± 0.03 *
Undecanoic acid (C11:0) 0.0983 ± 0.03 0.0216 ± 0.01 *
Lauric acid (C12:0) 1.7450 ± 0.99 0.0483 ± 0.04 *
Tridecanoic acid (C13:0) 0.6250 ± 0.85 0.3183 ± 0.33 ns
Myristic acid (C14:0) 6.7566 ± 4.01 0.9816 ± 0.35 *
Myristoleic acid (C14:1) 1.0766 ± 0.78 0.0616 ± 0.02 ns
Pentadecanoic acid (C15:0) 0.820 ± 0.45 0.2283 ± 0.01 ns
Palmitic acid (C16:0) 34.025 ± 1.31 36.1483 ± 1.42 ns
Palmitoleic acid (C16:1) 2.7316 ± 0.16 3.9366 ± 0.26 *
Heptadecanoic acid (C17:0) 0.3333 ± 0.11 0.1416 ± 0.03 *
Heptadecenoic acid (C17:1) 0.2783 ± 0.01 0.2933 ± 0.03 ns
Stearic acid (C18:0) 7.7616 ± 0.89 6.480 ± 0.90 ns
Oleic acid (C18:1) 36.566 ± 8.11 44.5033 ± 1.43 *
Linoleic acid (C18:2) 4.4316 ± 1.11 5.5383 ± 0.20 ns
Arachidic acid (C20:0) 0.250 ± 0.10 0.290 ± 0.06 ns
Linolenic acid (C18:3) 0.2283 ± 0.09 0.540 ± 0.04 *
Eicosenoic acid (C20:1) 0.1866 ± 0.07 0.0916 ± 0.02 ns
Behenic acid (C22:0) 0.1733 ± 0.15 0.2633 ± 0.09 ns
Erucic acid (C22:1) 0.080 ± 0.04 0 *
Lignoceric acid (C24:0) 0.0450 ± 0.067 0.0116 ± 0.02 ns

Table 3. Total saturated and unsaturated FA composition (%) and total saturated/unsaturated FA
ratio. LS30: fermentation carried out at 30 ◦C; LS25: fermentation carried out at 25 ◦C. Data are
expressed as means of triplicate measurements. (*) indicates significant difference between treatments,
(ns) indicates no significant difference following ANOVA (p ≤ 0.05).

Treatments
Fatty Acids (%) LS30 LS25

Total saturated FAs 54.42 ± 8.35 45.03 ± 1.49 ns
-Medium-chain saturated FAs 11.01 ± 6.61 1.47 ± 0.61 *
-Long-chain saturated FAs 43.19 ± 2.27 43.28 ± 1.91 ns

Total unsaturated FAs 45.58 ± 8.35 54.96 ± 1.49 *
-Medium-chain unsaturated FAs 1.07 ± 0.78 0.06 ± 0.02 ns
-Long-chain unsaturated FAs 44.42 ± 9.18 54.90 ± 1.46 *

Monounsaturated FAs 40.92 ± 7.37 48.88 ± 1.57 ns
Polyunsaturated FAs 4.66 ± 1.02 6.08 ± 0.24 ns
Saturated/unsaturated FA ratio 1.25 ± 0.46 0.82 ± 0.05 *

Long-chain unsaturated FAs were significantly higher in LS25 compared to LS30;
medium-chain unsaturated FAs were higher in LS30, although the difference was not
statistically significant. Monounsaturated FAs were much higher than polyunsaturated
FAs in both LS25 and LS30, and both mono- and polyunsaturated FAs were higher in LS25
than in LS30, although the difference was not statistically significant.
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3.4. SCO Technical Properties

The biodiesel and biolubricant technical parameters estimated from the FAME profiles
according to Cianchetta et al. [50] are shown in Table 4, where the limits of the U.S. biodiesel
standard ASTM D6751 [51] and the E.U. standard EN 14214 [52] are also reported.

Table 4. Biodiesel technical properties calculated according to Cianchetta et al. [50]. IV = iodine
value; SV = saponification value; DU = degree of unsaturation; LCSF = long-chain saturation factor;
CFPP = cold filter plugging point; OS = oxidative stability; HHV = higher heating value; D = den-
sity; CN = cetane number; KV = kinematic viscosity; C18:3 = linolenic acid. ASTM D6751 and
EN 14214 [51,52] are the biodiesel fuel (B 100) standards for U.S. and E.U. Peroxide values were
measured. LS30: fermentation carried out at 30 ◦C; LS25: fermentation carried out at 25 ◦C. Data are
expressed as means of triplicate measurements. (*) indicates significant difference between treatments,
(ns) indicates no significant differences following ANOVA (p ≤ 0.05).

Treatments Standards

Parameters LS30 LS25 ASTM D6751 EN 14214

IV (gI2/100 g) 43.75 ± 7.8 53.22 ± 1.2 ns <120
SV (mg KOH/g) 200 ± 4.4 197 ± 0.3 ns 370
DU (%) 50.24 ± 9.3 61.04 ± 1.4 ns
LCSF (%) 7.9 ± 0.1 7.56 ± 0.7 ns
CFPP (◦C) 10.46 ± 0.4 9.37 ± 2.5 ns
OS (h) 28.81 ± 6.3 22.01 ± 0.8 ns >3 >8
HHV (MJ/kg) 39.58 ± 0.1 39.75 ± 0 ns 44
D (g/cm3) 0.87 ± 0 0.87 ± 0 ns 0.86–0.9
CN 66.21 ± 0.3 65.98 ± 0.4 ns >47 >51
KV (mm2/s) 4.25 ± 0.1 4.45 ± 0 ns 1.9–6.0 3.5–5.0
C18:3 (%) 0.23 ± 0.1 0.54 ± 0 * <12
Peroxide (meq O2/kg) 0.15 ± 0.1 0 ns

In general, the SCOs obtained at both temperatures complied with the limits for IV,
SV, OS, HHV, D, KV, CN, and C18:3. A significant difference induced by the fermentation
temperature was found only for the C18:3 content. Values of IV, DU, LCSF, OS, and CN
were higher at 30 ◦C than at 25 ◦C. The peroxide value, indicating the degree of primary
oxidation of the oil, was very low in both LS25 and LS30: 0.15 ± 0.1 meq O2/kg at 30 ◦C
and 0 meq O2/kg at 25 ◦C.

4. Discussion

SCOs are a valuable alternative to vegetable oils to produce biodiesel and biolubri-
cants [53,54]; however, their economic sustainability is still a limiting factor, and low-cost
raw materials are necessary to boost it. Selected oleaginous yeast strains able to grow on
economic substrates giving high yields are a helpful tool to reach this goal; moreover, they
allow targeted products to be obtained by controlling the growth physiological conditions
to direct their metabolism. Scotta is an unmarked dairy effluent suitable as a growth
medium for yeasts that can use lactose as an energy and carbon source, and the high C/N
ratio makes it particularly interesting for SCO production, as it is conducive to yeast lipid
accumulation [23,28,55]. Nevertheless, a high C/N ratio can hinder the achievement of the
high cell density that is required to reach a high lipid production rate [56].

In our assay, the pH rose during fermentation; this suggests that L. starkeyi DSMZ
70,295 strain can assimilate the scotta organic acids, such as lactic acid, for growth. The
optimum pH for L. starkeyi growth is in the range between 5 and 6.5, but growth is
also possible at more acidic pHs [28]. Angerbauer et al. [57] reported L. starkeyi growth
in sewage sludge accumulating lipids in a pH range of 5.5 to 6.5; however, at pH 7.0
lipid accumulation decreased dramatically. Therefore, L. starkeyi can potentially grow in
several wastes, such as scotta, without the need for pH control, thus avoiding the costs
for pH adjustment. In our assays, the pH ranged from an initial value of 5.7 to a final
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value of 6.8 in LS30 and 6.2 in LS25, so it always remained within the optimal range for
growth (Figure S1). However, pH rising can hinder sugar membrane transporters and ATP
expenditure in oleaginous yeasts [58]; moreover, scotta’s low protein content can thwart
lactose assimilation by limiting the synthesis of new membrane transporters [59]. This
can explain the high residual lactose and the low biomass produced; and at the end of
fermentations, indeed, cell biomass yield was lower than usually found under standard
fermentations [60,61], and high residual lactose indicated the lack of its assimilation by
yeast cells.

The greatest reduction in total sugars at the end of fermentation was reached in LS30,
with a significant difference in comparison to LS25. The final biomass and SCO yields were
higher in LS30 as well, even if the difference was not statistically significant. Yp/x and
Yp/s were similar in LS25 and LS30, while Yx/s was significantly higher at 25 ◦C; this
highlights that temperature did not significantly affect the cell lipid accumulation, but it
affected sugar assimilation and cell growth. Anyway, the final SCO yield was lower than
that reported for other substrates [1,19,28,44,57,60–63], but the low yields are counteracted
by the lack of any additional costs for growth medium adjustments. Moreover, the worse
carbon balance detected at 30 ◦C can be considered an additional benefit for scotta pollution
load reduction, considering the high BOD and COD of this effluent [43], but mostly, the
main outcome was that an SCO fatty acid profile targeted for biodiesel and biolubricants
production was obtained.

The lipid profile is a key instrument to evidence the suitability of an SCO for biodiesel
and biolubricant production. A high unsaturated fatty acid content affects the oxidative
stability and quality of biofuels during extended storage as unsaturated molecules promote
auto-oxidation; this is one main limit of vegetable oils for biodiesel production, due to their
very high unsaturated fatty acid content [31]. In our assays, the peroxide values were very
low, much lower than in vegetable oils [64–67], and the predicted oxidative stability values
largely met the required U.S. and European standards. High-oleic oils provide oxidative
stability and good cold flow properties for application as biofuel and biolubricants [68];
moreover, a very low content of linolenic acid and high content of stearic and palmitic
acid are suitable for biodiesel [69]. So, the SCO composition reached in our assays can be
considered highly suitable for this use. The fatty acid profile detected in both LS25 and LS30
was similar to that previously reported for L. starkeyi [11,28,33,44,57,62,70], with oleic acid
(C18:1) and palmitic acid (C16:0) as the main fatty acids, followed by stearic (C18:0), linoleic
(C18:2), and palmitoleic (C16:1) acids; linolenic acid (C18:3), whose role in biofuel quality is
considered highly negative [71], was present in a very small amount and much lower than
in vegetable oils [72–77]. Oils high in MUFAs (monounsaturated fatty acids) are preferred
for biodiesel production because they ensure good cold flow properties, do not have a
significantly negative impact on oxidative stability, and decrease NOx emissions [31]. The
SCOs produced in our assays showed MUFA contents much higher than PUFAs, notably at
30 ◦C. Moreover, the growth temperature triggered significant further positive modification
in the fatty acid profile. In LS30, significantly lower oleic and palmitoleic acid contents than
in LS25 were detected. As expected, a higher temperature induced a significant increase in
saturated fatty acids; however, interestingly, the increase mainly concerned shorter-chain
fatty acids, such as capric, caprylic, and caproic acid, that were nearly twenty to forty times
higher in LS30, and myristic acid, that almost matched stearic acid at 30 ◦C; total saturated
medium-chain fatty acids increased almost tenfold, reaching a value of 11%. Saturated
fatty acids with shorter chains can contribute significantly to maintaining a good lipid
fluidity when the unsaturated fatty acid content is low [25,78,79]; so, scotta fermentation at
high temperature achieved this due to a higher lipid yield, as well as having a better lipid
composition, because an oil maintaining a good fluidity with a lower content of unsaturated
fatty acids is also less exposed to oxidative damage. Low vulnerability to oxidative damage
was confirmed by the very low peroxide values detected, lower than the vegetal or animal
lipids usually used to produce biodiesel and biolubricants [80–85]. The oxidative stability
inferred from the fatty acid composition [50] was very high as well.
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The quality parameters of the SCOs as raw materials for biodiesel production, calcu-
lated according to Cianchetta et al. [50] and compared to the limits set by the U.S. biodiesel
standard (ASTM D6751) [51] and the more stringent E.U. regulation [52] (EN 14214), con-
firmed the high quality of our oils for biodiesel and also for biolubricant production. The
degree of unsaturation (DU) was low in both LS30 and LS25, lower than values usually
reported for vegetable oils [74,76,77,86,87] and also for other SCOs [50,88,89]. This means
that these oils are more stable to oxidation. The iodine value (IV), which increases with
the degree of unsaturation and decreases with chain length [76], was lower than the EN
14214 limit (<120) in both LS30 and LS25, due to the low unsaturation degree and low
long-chain fatty acid content; it was only slightly higher (IV 53.22 g I2/100 g) at 25 ◦C,
where the percentage of unsaturated fatty acids was significantly higher, compared to
30 ◦C (IV 43.75 g I2/100 g), where saturated fatty acids were higher but with lower chain
lengths. These characteristics are notably favorable as they are related to oils with good
oxidative stability, but also good viscosity, one main factor affecting biodiesel performance
in diesel engines [71,76]. The density (D), another key parameter defining fuel performance
properties as it affects the mass of fuel injected into the combustion chamber, in our assays
was 0.870 g cm3, within the range between 0.860 and 0.900 g cm3 required by EN 14214. D is
correlated directly to fatty acid chain unsaturation degree and inversely to fatty acid chain
length [71]. D is also related to the cetane number (CN), determined by the interval between
the fuel injection and the fuel ignition, which affects the engine’s cold start, stability, noise,
and CO emissions: a low cetane number causes diesel knock and incomplete combustion,
increasing gaseous and particulate exhaust emissions [71,90]. The CN is correlated directly
to chain length and inversely to unsaturation degree [69,71]. High CN values were detected
in our assays (about 66) at both temperatures, higher than most vegetable oils [76,77],
slightly higher at 30 degrees due to the increased presence of saturated fatty acids. The
values of linolenic acid (18:3) were much lower than the EN 14214 limits, very low in both
LS30 and LS25, and lower in LS30 than in LS25. The saponification value (SV), that is
inversely related to both fatty acid chain length and molecular weight, was largely below
the ASTM D6751 limit of 370.

High levels of saturated fatty acids in oils have a negative impact on cold flow prop-
erties. The cold filter plugging point (CFPP), that is the temperature at which crystals in
diesel fuel reach a size and quantity that may clog the fuel line and filters, is inversely
related to DU. Limits are not defined by ASTM D6751 and EN 14214, as different countries
may define different specifications based on national meteorological data; however, low
CFPP values are mandatory in cold countries [31]. The SCOs obtained in both the LS30
and LS25 assays are not suitable for cold countries, as the CFPP values are high when
compared to other vegetable or microbial oils [50,71,77,91], about 10 ◦C, slightly higher
in LS30 due to the higher presence of saturated fatty acids. Furthermore, high levels of
saturated fatty acids are related to the higher heating value (HHV), which defines the
energy content released during combustion and the efficiency of a fuel; therefore, a high
HHV is correlated with lower fuel consumption [90,91]. The HHV reached in both the LS30
and LS25 assays was about 39 MJ/kg, lower than the ASTM D6751 limit of 44 MJ/kg and
comparable to other SCOs [50,77]. The HHV is related to viscosity; low biodiesel viscosity
can cause leakage or wear of fuel injection pumps [31,71], while high viscosity can be a
negative feature of biodiesel because it is not favorable to a fast atomization of the fuel
spray to reduce the ignition delay period. A good biolubricant should also have the optimal
viscosity to guarantee an adequate flow between metal parts [92]. The kinematic viscosity
values, calculated according to Cianchetta et al. [50,93,94], were about 4.25–4.5 mm2 s−1,
within the ASTM D6751 and EN 14214 standards ranges, and only slightly lower in LS30.
Viscosity is correlated directly to chain length and inversely to unsaturation degree; so, the
higher short- and medium-chain saturated fatty acid content was compensated by a lower
unsaturated fatty acid content in the SCO produced at 30 ◦C, and the KV was almost equal
at 25 ◦C and 30 ◦C.
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Therefore, SCOs produced from fermentation of scotta by L. starkeyi DSMZ 70,295
can be considered suitable for biodiesel production, in particular when obtained from
fermentations at 30 ◦C, due to their properties that ensure the optimal operating condition
requirements of the compression–ignition diesel engine and an optimal oxidative stability.
When compared to vegetable oils, particularly palm, coconut, and olive oil, they have
similar properties for IV, CFPP, OS, HHV, CN, KV, and D, but better oxidation stability due
to a lower unsaturation degree [76,91,95,96]. Good properties as biolubricants can also be
inferred from their KV and D parameters. However, their cold flow properties make them
unsuitable for cold climates.

5. Conclusions

Oils from microbial biomasses have several advantages over vegetable oils in the
production of biodiesel and biolubricants, such as no competition for food production,
no consumption of agricultural land, and no dependency on weather and seasonality.
The best oil technical properties were reached in the present work by fermentation of
dairy effluents inoculated with L. starkeyi. Moreover, as yeast lipid biosynthesis can be
shifted towards a targeted fatty acid composition through the control of physiological
conditions, the technical properties were further improved by control of the fermentation
temperature; indeed, a significant decrease in unsaturated fatty acids, meaning a higher
oxidative stability, and an increase in shorter-chain saturated fatty acids, that offset the loss
of fluidity due to the lower unsaturation degree, were detected in fermentations carried
out at 30 ◦C in comparison to 25 ◦C. Notably, a strong increase in myristic acid, that was
seven times higher at 30 ◦C and almost reached the stearic acid content, and a decrease in
linolenic acid, that was more than halved compared to at 30 ◦C, were observed. The very
low peroxide values detected confirmed that these oils were strongly oxidation-resistant. So,
the best oxidative stability and tribophysical properties for high-quality biolubricant and
biodiesel production were reached by temperature control of the fermentation. The highest
yields of biomass (9.76 g L−1) and microbial oil (1.83 g L−1) were also reached at 30 ◦C,
along with a greater consumption of sugars; so, a further process benefit can come from a
reduction in the pollution load of the dairy effluent used as the fermentation substrate.

The use of an effluent as the fermentation substrate without any addition or adjust-
ment can help to reduce the process costs; however, the economic sustainability could be
improved even more by increasing the fermentation yield. Further research could aim for
improvement in the lactose uptake and consumption and increase the accumulation of
storage lipids by L. starkeyi in scotta fermentations; for instance, by adjusting the substrate
composition and by continuous or semi-continuous fermentation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/fermentation10060278/s1, Figures S1 and S2. Figure S1. Cell
growth and pH kinetics throughout the fermentations carried out at 30 ◦C. Data shown are means
of triplicate measurements. LS30: fermentation carried out at 30 ◦C; CFU: colony forming units.
Figure S2. Cell growth and pH kinetics throughout the fermentations carried out at 25 ◦C. Data
shown are means of triplicate measurements. LS25: fermentation carried out at 25 ◦C; CFU: colony
forming units.
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