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Abstract

:

The relationship between DM yield/cutting and the fermentable organic matter (FOM) content of tropical grasses was appropriately investigated to re-assess optimal grass maturity to feed dairy cattle. Nine different grass species belonging to the genera Brachiaria spp. (Mulato II, Ruzi), Panicum spp. (Guinea, Hamil, Mombasa, TD58), and Pennisetum spp. (King, Napier, VA06) were chemically analysed and subjected to an in vitro gas production (IVGP) test. For 72 h, gas production (GP) was continuously recorded with fully automated equipment. A triphasic, nonlinear, regression procedure was applied to analyse GP profiles. Across all the grasses, it was found that the neutral detergent fibre (NDF) contents increased with increasing maturity of the grass while the CP contents decreased with increasing NDF contents. In all nine grasses, digestible organic matter (dOM) was significantly affected by the week of cutting but IVGP was similar between the weeks of cutting in Ruzi, Hamil, Mombasa, and Napier grasses. Except for Guinea grass, the lowest dOM values were found when the grasses were cut after ≥5 weeks of regrowth. Harvesting grass one or two weeks earlier than the normal cutting time is a practically relevant intervention in increasing forage quality and productivity of dOM and fermentation potential.
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1. Introduction


Dairy cows in Southeast (SE) Asian countries such as Thailand and Vietnam typically produce 4000–4500 kg of milk per lactation cycle with an average fat content below 4% [1,2,3]. In view of the low level of milk production compared to cows in temperate climates, the observed low milk fat content can be considered unexpected. It is generally accepted that the relatively low milk yield is not caused by genetics, given that the dairy cows are typically crossbreds, predominantly Holstein Friesian (>87.5%) and local breeds [4]. Thus, it is reasonable to infer that environmental factors and management practices, such as nutrition, predominantly influence milk production rather than genetics [2,5]. Acetic acid (Hac) and ß-hydroxybutyric acid (Hbu) are important precursors of fatty acid synthesis in the mammary glands of dairy cows [6]. It can, therefore, be suggested that the supply of Hac and Hbu to the mammary glands of Thai and Vietnamese dairy cows is insufficient. It is well known that the aforementioned precursors of milk fat originate predominantly from organic matter that is fermented in the rumen [7]. It thus would appear that the rations typically fed in Thailand and Vietnam contain insufficient fermentable organic matter (FOM) to yield Hac and Hbu to ensure milk fat synthesis.



Fresh grasses are mainly used to compose dairy rations in SE Asian countries. According to custom, Thai and Vietnamese farmers practice cutting intervals of 6 to 9 weeks, depending on the grass species in question, i.e., typically grasses that belong to the genera Pennisetum, Panicum, and Brachiaria. Cutting intervals of 6 to 9 weeks result in high dry matter (DM) yields per cutting but the harvested grasses are physiologically mature and, therefore, very fibrous and low in crude protein (CP). Furthermore, Huyen et al. [8] recently reported that, across the three aforementioned genera of grasses, in vitro gas production [9,10] was, on average, only ~9% greater compared to that of rice straw, thereby indicating that the FOM content of tropical grasses is relatively low when they are harvested under practical farming conditions. In temperate grasses, such as Lolium perenne, it is well established that a prolonged cutting interval is negatively associated with the FOM content of the grass [11]. In tropical grasses, however, the relationship between DM yield/cutting and FOM content is poorly understood due to a dearth of studies addressing this association. As such, whether the relationship between cutting interval/maturity of fresh grass and rumen digestibility, as found in temperate grasses, holds true for tropical grasses is still unknown. Therefore, the objective of the current research was to provide novel information on the relationship between the cutting intervals of common Southeast Asian grasses and rumen degradation. To achieve this, we conducted an in vitro study using cumulative gas production and organic matter (OM) degradability as primary indicators of the FOM content of tropical grasses. We hypothesized that a shorter regrowth period of tropical grasses commonly used for dairy rations in SE Asia would result in increased fermentability.




2. Materials and Methods


2.1. Grass Collection


Nine different grass species (Mulato II (Brachiaria ruziziensis × Brachiaria decumbens × Brachiaria brizantha); Ruzi (Brachiaria ruziziensis); Guinea (Megathyrsus maximus (Jacq.) B. K. Simon & S. W. L. Jacobs, formerly named Panicum maximum Jacq.); Hamil (Panicum maximum cv. Hamill); Mombasa (Panicum maximum cv. Mombasa); TD58 (Panicum maximum cv.TD58); King (Pennisetum purpureum × Pennisetum glaucum); Napier (Pennisetum purpureum Schumach.); and VA06 (Pennisetum purpureum × Pennisetum americanum)) were harvested at up to nine different weekly regrowth ages from June to August 2018 at the Animal Husbandry Research and Development Centre for Mountainous Zone (ARDC), Song Cong town, Thai Nguyen province, Vietnam. The centre is located at 21°29′14″ N 105°48′47″ E and experiences an annual rainfall of 2168 mm with an average temperature of 23 °C. The plot area used for each grass variety was 400 m2. An initial fertilizer dressing of N:P:K with 160:80:80 kg/ha/yr was applied at sowing, with further annual applications at the same rate. Annually, an amount of 20 tons/ha/yr of cattle manure was applied manually. The cattle manure used was not chemically analysed, but typically manure from Vietnamese dairy cattle contains N:P:K with a ratio of 4.0:1.9:1.6 [12].



Chemical analyses and gas production were carried out on grasses at four cutting time points, excluding Napier and VA06 grasses of Pennisetum spp. and Guinea and TD58 grasses of Panicum spp. The selection of these time points was based on practical harvest times in Vietnam, including two time points before practical cutting, one during practical cutting, and one for late cutting. As it is unknown whether normal practical cutting provides precise nutritive information for determining the suitable cutting age, two grasses from each of the two most commonly used genera, based on the advice of recognized experts in ruminant nutrition, were selected for additional evaluation. These selections ranged from week 1 to 9 for Pennisetum spp. and from week 1 to week 6 for Panicum spp.



At each grass plot, a 10 m × 10 m area was marked out for sampling, and by walking in a ‘W’ pattern, 20 evenly spaced cores were manually collected using a sickle. The grass was harvested, leaving around 10 cm of stubble above ground level. After harvesting, each selected species and harvesting time grass sample was manually cut to 3 cm and mixed thoroughly before collecting a 5 kg representative sample which was divided equally into two bags (one for analysis and one for reserve) and stored at −20 °C in Vietnam. Subsequently, all the frozen grass samples were transported to Wageningen University & Research (Wageningen, The Netherlands), maintaining −20 °C conditions, for analyses.




2.2. Chemical Analyses


Upon arrival at Wageningen, the frozen fresh grass samples were thawed and dried for 16 h at 70 °C before being ground (1 mm screen) using a cross beater mill (Peppink 100 AN, Deventer, The Netherlands) and analysed in duplicate for DM, crude ash. The OM content was calculated as the difference between DM and ash contents. Ether extract (EE) was determined by the Soxhlet method with petroleum ether as a solvent following AOAC [13] method no. 963.15. Crude protein was calculated from nitrogen (N × 6.25) obtained via the Kjeldahl method [14]. The neutral detergent fibre (NDF; with heat stable α-amylase) content was analysed according to Van Soest et al. [15] while acid detergent fibre (ADF) and acid detergent lignin (ADL) contents were determined according to Van Soest [16].




2.3. In Vitro Gas and CH4 Production


Cumulative in vitro gas (IVGP) and methane (CH4) production over 72 h were measured in a fully automated gas production system [9]. Each ground and dried grass (~0.5 g) was accurately weighed in quadruplicate 250 mL fermentation bottles (Schott, Mainz, Germany). Duplicate bottles were randomly distributed across three runs. Blank bottles (rumen fluid without grass) were used in triplicate for each run. The two non-lactating Holstein-Friesian rumen fluid donor cows were fed grass silage (NEL, 4.37 MJ/kg DM; CP, 99 g/kg DM; NDF, 675 g/kg DM) ad libitum and had free access to water. Approximately 350 mL of rumen fluid was collected from each cow using a tube inserted via the oesophagus before the morning feeding at the research farm of Wageningen University, The Netherlands. Subsequently, the rumen fluid was pooled and filtered through cheesecloth and subsequently mixed (1:2 v/v) with an anaerobic buffer/mineral solution [15] under continuous flushing with CO2. Prior to inoculation, the fermentation bottles were placed in a shaking water bath kept at 39 °C and pre-flushed with CO2. Sixty mL of buffered rumen fluid was added to the bottle before being connected to fully automated gas recording equipment for 72 h. After this time, the bottles were disconnected and placed on ice and 0.6 mL of the solution was pipetted into a 1.5 mL Eppendorf tube, and 0.6 mL of an internal standard solution (isocapronic acid) was added before vigorous mixing. After 5 min of centrifugation at 14,000× g, a 0.75 mL sample of the supernatant was taken and mixed with an equal volume (1:1, v/v) of a stock solution composed of 25 mL of 85% (v/v) ortho-phosphoric acid dissolved in 200 mL Millipore water (Merck KGaA, Darmstadt, Germany) and 300 mL of a 4 g/L 4-methylvaleric acid (internal standard) for volatile fatty acids (VFA) analysis. The mixture was then stored at −20 °C pending analysis. VFA were analysed using a gas chromatograph (Trace GC Ultra, Thermo Scientific, Milan, Italy) equipped with a flame ionization detector and an Agilent HP-FFAP column (Agilent Tech., Santa Clara, CA, USA; 30 m length, 0.53 mm i.d., 1 µm film) using hydrogen as carrier gas (25 kPa, constant pressure). Isocaproic acid was used as an internal standard.



After 72 h of incubation, fermentation fluids from sample bottles were filtered in respective crucibles (P2 standard with pore size 40–100 µm, Foss, Hillerød, Denmark) with a filter plate of sintered glass and 0.5 cm washed and incinerated sea sand (VWR, art. no. 1.07711.5000). Before using the crucibles, they were washed with hot water and dried at 103 °C for 1 h, then ashed at 530 °C for 1 h and finally placed in a desiccator for 1 h to cool down before weighing with an analytical balance of 0.1 mg precision. The crucibles containing fermentation fluids were then vacuum drained and washed with hot distilled water by a cold extraction unit (FT 121 Fibertec™, Foss, Hillerød, Denmark) to remove microbial matter from the undegraded substrates, and then dried at 103 °C for 4 h and ashed at 530 °C for 2 h. The difference between these two values was termed residual OM. The degraded OM (OMd) was calculated as the difference between incubated and residual OM after 72 h of fermentation.



Precisely 10 μL of the headspace gas was collected from each fermentation bottle and directly injected into a gas chromatograph to determine headspace CH4 production at 0, 3, 6, 9, 12, 24, 30, 36, 48, 60, and 72 h, as described by Pellikaan et al. [10,17]. Briefly, measured CH4 production in individual bottles was expressed relative to the maximum production in each bottle and was fitted iteratively with a monophasic model. Methane production at each individual valve opening was then calculated, and cumulative CH4 was determined as the sum of the increase in headspace CH4 production between two successive valve openings, and the amount of CH4 vented from the bottle.




2.4. Curve Fitting and Calculations


Gas and CH4 production from all samples were corrected for the corresponding production by blank bottles at each time point [9,10]. Before curve fitting, the cumulative gas production curves of quadruplicate bottles per sample were visually inspected and coefficients of variation (CV) were determined for values at 8, 12, 24, 48, and 72 h. If the CV > 10%, the gas production curves were evaluated for outlier replicate bottles. The non-linear least squares regression procedure was used [18] and the data were fitted according to the following equation, as outlined by Groot et al. [19]:


  G P =   ∑  i   n        A   i       1 + (     C   i     t   )     B   i          








where GP (mL/g OM) is the cumulative produced gas or CH4; n = total number of phases; i = number of phases; Ai (mL/g OM) is estimated asymptotic gas or CH4 production in phase i; Bi is a constant determining the switching characteristic of the curve in phase i; Ci (h) is the time at which half of the asymptotic gas or CH4 production was reached in phase i; and t (h) is the time of incubation.



A tri-phasic model (n = 3) was fitted to the cumulative gas production following the procedure as described by Groot et al. [19], where phases 1 and 2 are assumed to relate to the fermentation of the soluble and non-soluble fraction, respectively, and phase 3 is assumed to be related to microbial turnover. The time windows related to the asymptotes of GP for phases 1, 2, and 3 (A1, A2, and A3, respectively) were pre-set from 0 to 3, 3 to 20, and 20 to 72 h after the start of incubation of the substrate, respectively, to enable the estimation of the various parameters (Bi and Ci, respectively). The aforementioned time points were empirically determined by Van Gelder et al. [20] based on the work of Cone et al. [21]. Data on CH4 production were also fitted according to the above-mentioned model where n = 1.




2.5. Calculations and Statistical Analyses


The total VFA in fermentation fluid at 72 h was calculated as the sum of Hac, propionic acid (Hpr), butyric acid (Hbu), valeric acid (Hva), isobutyric acid (iso-Hbu), and isovaleric acid (iso-Hva). The branched-chain volatile fatty acids (BCVFA) in fermentation fluid were calculated as the sum of iso-Hbu and iso-Hva. The non-glucogenic to glucogenic ratio (NGR) was calculated as described by Ørskov [22]:


[acetate + 2 × (Hbu + isoHbu) + Hva + iso-Hva]/[Hpr + Hva + iso-Hva].











The most commonly used grass in Vietnam for each genus (Mombasa, Mulato II, and King grass) was selected to calculate the estimated yield of FOM indicators as an example. Normal practical cutting was considered as 100% of in vitro digestible OM (dOM) and fermentation potential (GP, A1 + A2) yield, whereafter the percentage of other cutting yields was calculated. For Mombasa and Mulato II grass, biomass yield equations (kg DM/ha/yr) were derived from data reported by Hare et al. [23,24], respectively, after the conversion of biomass yields per year:


YMo = 0.1120x2 + 52.080x (0 ≤ x ≤ 90; R2 = 0.95)










YMu = 0.7423x2 + 34.672x (0 ≤ x ≤ 90; R2 = 0.99)











For King grass, biomass yield (kg dry matter/ha/yr) was determined using the equation provided by Sales et al. [25]:


YKi = −1.2426x2 + 282.64x (0 ≤ x ≤ 120)








where YMo, YMu, and YKi are the estimated yield of Mombasa, Mulato II, and King grass, respectively; x is cutting time in days after regrowth.



Pearson’s correlation coefficients between predicted (i.e., GP, TVFA, etc.) and predicting (i.e., cutting ages, chemical components, etc.) variables were determined if data were normally distributed as tested using Kolmogorov–Smirnov. If data were not normally distributed, Spearman’s correlation coefficients were used. Effects of regrowth age within each grass were subjected to analysis of variance (ANOVA) using the PROC MIXED procedure [18] using the following model:


Yij = μ + Hi + Rj + eij








where Yij = response variable (i.e., GP-72, CH4-72 production, fermentation kinetics parameters), μ is the overall mean, Hi is the effect of harvest time (i = 1 to 9 regrowth week), Rj is the random effect of run j (j = 1 to 3), and eij is the residual error term. Differences among harvest times within each grass were determined using the least square means procedure and Tukey’s multiple comparisons. Studentized residuals were checked for normal distribution. Residuals were checked per grass species (n = 9) with Kolmogorov–Smirnov. All response variables for all grasses were found to be normally distributed except for the BCVFA of Mombasa grass. Therefore, the data of BCVFA were transformed and normality was achieved by applying a square transformation. Throughout, the level of statistical significance was pre-set at p < 0.05 while a trend was declared at 0.05 ≤ p < 0.10.





3. Results and Discussion


3.1. Chemical Composition of Tropical Grasses at Different Regrowth Ages


The OM content of the grasses and advanced cutting age (Table 1) showed a moderate correlation (r = 0.56, p < 0.001, n = 49). Those belonging to the Pennisetum genus (especially King and VA06) generally showed a stronger correlation of OM content with cutting age (r = 0.83, p < 0.001, n = 21). This trend is consistent with the findings of Mutimura et al. [26] who reported that the OM content of Napier grass increased until 90 d after planting and then declined. The increase in OM might be attributed to the fact that grass is still in the development stage, during which OM accumulates relative to the inorganic matter.



The values related to cell wall constituents (NDF, ADF, and ADL) increased with the advancement of grass maturity (r = 0.56, 0.60, 0.61, and p < 0.001, respectively). The current data were found to be in line with other previous reports [27,28]. Tropical grasses develop thick-walled cells with increased cell wall fractions, including cellulose, hemicellulose, and lignin, as a structural adaptation to minimize photorespiration, enhancing overall resilience to tropical environmental conditions, that helps contribute to the plant’s robustness owing to both the thickness and composition of cell walls [29]. Consequently, the NDF content of tropical grasses is higher than temperate grasses (60–75 vs. 35–67% DM) [30,31,32].



In the present study, an increase in the cell wall constituents of tropical grasses (for instance, NDF) was associated with a decrease in CP content with advancing cutting ages, and this decrease was even more pronounced at later stages (r = −0.75, p < 0.001), which is consistent with observations of others in temperate grasses [33,34,35]. A notable example is the CP content of VA06, which significantly decreased from approximately 30 to 7.4% in the DM between the first and eighth week. Despite the decline in CP content with advancing grass maturity, the final CP content still exceeded the minimum CP level (7%) required for rumen function [36], although the CP content in rations recommended by the NRC [37] for lactating cows ranges from 14 to 18% DM.



The lipid content (EE) of the selected grasses ranged from 1.9 to 3.2% DM, which is comparable to the values reported by Melesse et al. [38] for tropical grasses (1.1–3.1% DM). The EE of the Brachiaria genus in the current study correlated well with increasing maturity age (r = −0.77, p = 0.02, n = 8). The other grasses showed a trend of an increase in EE content from the early to the middle stage and then a decline from the middle to the late stage of maturity.



In general, the reduction in cell contents, in particular CP content, was countered by the accumulation of structural carbohydrates as the grass matured.




3.2. In Vitro Gas and CH4 Production Parameters of Grasses Belonging to the Brachiaria Genus


As shown in Table 2, the in vitro dOM, cumulative CH4 production measured after 72 h of incubation, and branched-chain volatile fatty acids (BCVFA) of Mulato II grass were significantly influenced by harvesting time. The highest numerical values of this grass were found at week 4 in all parameters (except for BCVFA), which is earlier than the commonly used cutting time (week 6) under practical farming conditions in Vietnam. Nevertheless, the highest quantity of cumulative CH4 production measured after 72 h of incubation (CH4-72) observed at week 4 may raise environmental concerns, whereas the CH4 percentage (CH4:GP-72) was not different between cutting weeks. This is unexpected due to the low content of fibre at week 4 compared to the other weeks. These findings contrast with Neto et al. [39] and Ruggieri et al. [40] who reported that forages rich in structural carbohydrates tend to yield greater amounts of CH4 and a decreased digestibility compared to forages higher in non-structural carbohydrates. It is well known that high levels of non-fibre carbohydrates in the diet stimulate rumen Hpr production, which subsequently reduces CH4 synthesis by the methanogens [41,42]. In Ruzi grass, total volatile fatty acid (TVFA) was highest when cut at week 4, whilst other parameters were not affected by grass maturity. Cutting grass at a later stage (i.e., after week 6) should not be beneficial in terms of fermentable organic matter (FOM) content.



Overall, due to the high fermentation potential values (i.e., dOM, A1 + A2 and TVFA) and high values of volatile fatty acids used for milk fat synthesis (i.e., BCVFA), the recommended harvest age for grasses belonging to the Brachiaria genus appears to be at week 4 after the previous cut.




3.3. In Vitro Gas and CH4 Production Parameters of Grasses Belonging to the Panicum Genus


The variation in in vitro gas and CH4 production parameters of grasses belonging to the Panicum genus was found to be large (Table 3). In Guinea grass, cutting at the first three weeks of regrowth had more advantages (except for CH4 production) than late cuttings. Normal practical cutting (week 5) resulted in higher values of in vitro dOM, GP-72, and A1 + A2 production compared to cutting one week earlier. Week 4 had the lowest values over almost all parameters. These discrepancies are not easy to explain but it can be speculated that the variation in those parameters does not properly reflect the FOM content. Cumulative CH4-72, expressed in both terms (g/kg OM and proportion) was not systematically affected by harvest time, with week 4 having the least amount of CH4 being different to the other weeks. This is due to the lowest value of fibre content at week 4 compared to other weeks. The relationship between structural carbohydrates and CH4 production was mentioned in the previous section.



For Hamil grass, dOM gradually declined (p < 0.001) with grass maturity whilst GP and A1 + A2 did not differ among weeks, although a numerical decrease was observed. A1 + A2 values were different between weeks 2 and 6 with no difference in CH4-72 or CH4:GP-72 values. Cutting at the normal practical cutting time (week 5) did not differ from the other weeks, except for dOM and BCVFA. Under the assumption that NGR and A:P are the indicators related to milk fat synthesis, cutting at any given week between 2 and 6 produced similar results. Week 2 had the highest dOM, TVFA, and BCVFA values, making it the most suitable harvest time for Hamil grass without concerns about increased CH4 production.



For Mombasa grass, except for BCVFA, expressed as a percentage of TVFA, which had high values at either week 2 or week 4, all other parameters did not vary with cutting age.



For TD58 grass, significant effects of cutting time were observed for dOM, CH4-72, BCVFA, NGR, and A:P. The lowest values were observed in either week 2 or 3 for dOM, BCVFA, NGR, and A:P corresponding to the high NDF content at these two weeks. GP, A1 + A2, CH4 proportion, and TVFA were similar throughout the harvesting ages. The NGR and A:P ratio had the highest value at week 1 but were similar from weeks 2 to 6. It should be noted that cutting every week would produce the biomass with the highest FOM.



In the present study, the NDF content of these four grasses was found to be negatively correlated with dOM and BCVFA concentrations (r = −0.66, −0.89; p = 0.003, <0.001, respectively). In general, it appears that harvesting grasses belonging to the Panicum genus before two weeks of regrowth provides the highest concentration of FOM biomass and, therefore, can be expected to yield the greatest milk fat content by dairy cows in Vietnam.




3.4. In Vitro Gas and CH4 Production Parameters of Grasses Belonging to the Pennisetum Genus


As seen in Table 4, grasses belonging to the Pennisetum genus generally displayed a wide variation in their in vitro GP and CH4 emission potentials.



King grass exhibited a gradual decrease (p < 0.001) in dOM with advancing grass maturity similar to the other grasses. This decrease is due to plant growth and development, where over time grasses contain more fibrous materials such as cellulose and lignin, which are more challenging to digest and require more fermentation for breakdown. It is worth noting that frequent cuttings at 5 weeks of regrowth are the most suitable in view of King grass’s chemical composition. Both normal practical and late cutting resulted in a reduction in NGR and A:P compared to very early cutting (week 3) which had relatively low GP and A1 + A2 values. Generally, forages rich in structural carbohydrates tend to result in greater CH4 emissions; however, the result of King grass exhibited the opposite trend.



For Napier grass, it is noteworthy that no significant differences were found in fermentation potential values (i.e., dOM, GP-72, A1 + A2, and TVFA) across cutting weeks. Increased grass maturity led to a decline in BCVFA, NGR, and A:P ratios. Cutting Napier grass before 6 weeks of regrowth appears optimal in terms of fermentability and generation of precursors for milk fat synthesis.



Cutting VA06 grass at a very early stage (i.e., in the first week) resulted in the lowest values of GP, A1 + A2 and TVFA, and produced the highest values of BCVFA, NGR, and A:P ratios. The highest values for degradable organic matter and fermentability were observed for normal practical cutting of this grass (week 5), but precursors for milk fat synthesis were less favourable. Overall, considering all parameters, week 4 appears to be the most suitable cutting time for VA06.



Meanwhile, the CP content of those grasses belonging to the Pennisetum genus was found to be positively correlated with BCVFA (r = 0.81 and p < 0.001). This finding aligns with the studies by Bowen et al. [43] and Musco et al. [44], who reported that grasses with lower protein levels (compared to other feedstuffs) led to lower ammonia-N and branched-chain fatty acid concentrations because these acids are derived from the degradation of some amino acids (i.e., valine, proline, isoleucine, and leucine).



Overall, the data of grasses belonging to the Pennisetum genus indicate that they are best harvested at either week 4 or 5 in terms of digestibility and fermentability.




3.5. Relative Yield (%) of FOM Indices of Three Grasses


To affect milk fat content, the FOM content of the grasses is important but cutting earlier or later than the common practice will affect biomass yield and, as a result, the total amount of FOM produced. Data on biomass yield in relation to the cutting time of Mombasa [23], Mulato II [24], and King grass [25] were used to calculate the relative yields of DM, dOM, GP, and A1 + A2, and the results were compared with those calculated for the current practical cutting time. As can be seen in Table 5, the yield of DM biomass of Mombasa increased with cutting age, while the total amount of dOM was lower for both early and late cutting compared to the normal cutting time at week 5. However, cutting at 4 weeks of regrowth produced on average 20% additional relative yield of fermentation potential (GP and A1 + A2) than week 5. The relative biomass yields of Mulato II gradually increased with increasing maturity across all parameters. Mulato II cut at 8-week intervals compared to the normal cutting interval of 6 weeks showed an average increase of ~13.3% in relative yields of in vitro dOM and fermentation potential (GP and A1 + A2). The decrease in the DM biomass of King grass when cutting age advances might be attributed to the fact that this grass is still in the developmental stage, during which OM accumulates relative to the inorganic matter (Table 1). The effect of King grass maturity on all parameters was more pronounced in week 5 than in week 7 with, on average, around a 9% increase. The total biomass yield of dOM of King grass showed a gradual decline with delayed harvesting times. However, cutting grass at week 3 might not be a good harvesting strategy due to lower values of relative yields of GP and A1 + A2 compared with cutting at week 5.



Overall, the implementation of a well-timed grass-cutting strategy depends on selecting the appropriate parameter to enhance milk fat content while also balancing the demand for a large quantity of low-quality feed against the need for smaller amounts of higher-quality feed.





4. Conclusions


Harvesting tropical grasses one or two weeks earlier than normally practised is a practically relevant intervention for increasing forage quality and productivity of dOM and fermentation potential, thereby proving our hypothesis. The methane proportion was not significantly affected by grass maturity (except for Ruzi and Guinea). Even within the same genus, grasses still exhibit different patterns of in vitro gas and CH4 production. These results provide important insights into the potential use of fermentable organic matter indicators of tropical grasses in combination with improvements in nutritive value to meet dairy nutrition requirements.
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Table 1. Chemical composition (g/kg dry matter) of nine common Southeast Asian grasses at different stages of maturity.
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Grass

	
Week

	
OM

	
CP

	
EE

	
NDF

	
ADF

	
ADL

	
Grass

	
Week

	
OM

	
CP

	
EE

	
NDF

	
ADF

	
ADL






	
Mulato II

	
2

	
851

	
226

	
28.8

	
519

	
255

	
20.3

	
TD58

	
4

	
873

	
138

	
24.5

	
644

	
310

	
18.1




	
4

	
846

	
147

	
25.7

	
498

	
234

	
19.3

	
5

	
855

	
148

	
27.5

	
676

	
362

	
21.2




	
6

	
858

	
113

	
19.2

	
607

	
316

	
24.5

	
6

	
863

	
165

	
24.3

	
667

	
350

	
16.9




	
8

	
860

	
118

	
18.1

	
656

	
362

	
30.9

	
King

	
3

	
859

	
181

	
24.8

	
598

	
336

	
17.2




	
Ruzi

	
2

	
889

	
179

	
32.2

	
536

	
268

	
21.5

	
5

	
869

	
136

	
33.4

	
602

	
336

	
19.4




	
4

	
878

	
163

	
25.7

	
505

	
234

	
21.4

	
7

	
896

	
87

	
27.9

	
646

	
377

	
23.6




	
6

	
915

	
116

	
24.5

	
660

	
354

	
26.7

	
9

	
920

	
103

	
23.7

	
659

	
409

	
47.3




	
8

	
888

	
162

	
25.6

	
622

	
328

	
29.8

	
Napier

	
2

	
881

	
161

	
30.9

	
620

	
331

	
21.3




	
Guinea

	
1

	
864

	
226

	
24.4

	
600

	
327

	
21.2

	
3

	
859

	
165

	
26.7

	
581

	
316

	
22.5




	
2

	
882

	
218

	
28.7

	
599

	
313

	
20.2

	
4

	
879

	
184

	
25.9

	
538

	
270

	
20.5




	
3

	
912

	
175

	
26.5

	
657

	
349

	
26.5

	
5

	
871

	
176

	
28.9

	
569

	
310

	
23.6




	
4

	
877

	
180

	
26.3

	
677

	
375

	
31.6

	
6

	
858

	
167

	
29.0

	
594

	
318

	
27.9




	
5

	
870

	
143

	
31.7

	
659

	
366

	
30.6

	
7

	
882

	
140

	
28.0

	
646

	
353

	
28.0




	
6

	
876

	
137

	
28.5

	
675

	
373

	
30.6

	
8

	
890

	
117

	
24.7

	
670

	
362

	
23.6




	
Hamil

	
2

	
844

	
254

	
29.7

	
572

	
293

	
14.9

	
9

	
911

	
132

	
18.7

	
696

	
397

	
33.1




	
4

	
876

	
97

	
23.3

	
732

	
413

	
27.5

	
VA06

	
1

	
824

	
298

	
28.8

	
491

	
276

	
21.4




	
5

	
845

	
96

	
-

	
-

	
410

	
-

	
2

	
811

	
223

	
23.6

	
541

	
287

	
30.0




	
6

	
840

	
85

	
-

	
-

	
409

	
-

	
3

	
867

	
256

	
23.7

	
560

	
304

	
19.4




	
Mombasa

	
2

	
871

	
171

	
25.5

	
641

	
350

	
20.2

	
4

	
851

	
156

	
25.8

	
593

	
324

	
22.5




	
4

	
860

	
124

	
28.6

	
669

	
365

	
20.1

	
5

	
872

	
139

	
26.8

	
646

	
354

	
25.8




	
5

	
876

	
114

	
26.5

	
696

	
375

	
19.0

	
6

	
892

	
102

	
26.8

	
682

	
395

	
32.1




	
6

	
884

	
90

	
23.4

	
730

	
406

	
24.4

	
7

	
913

	
88

	
24.7

	
694

	
395

	
35.5




	
TD58

	
1

	
827

	
226

	
22.3

	
565

	
270

	
19.1

	
8

	
902

	
74

	
20.4

	
717

	
436

	
51.5




	
2

	
857

	
107

	
28.6

	
673

	
364

	
22.2

	
9

	
902

	
89

	
23.6

	
706

	
411

	
44.0




	
3

	
875

	
132

	
28.6

	
688

	
372

	
20.1

	

	

	

	

	

	

	

	








ADF = acid detergent fibre, ADL = acid detergent lignin, CP = crude protein, EE = ether extract, NDF = neutral detergent fibre, OM = organic matter, - = not determined.













 





Table 2. In vitro 72 h organic matter digestibility (dOM), gas (GP-72) and methane production (CH4-72) parameters and volatile fatty acids related values of two grasses (Mulato II and Ruzi) belonging to the Brachiaria genus grown between 2 and 8 weeks.
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Grass

	
Week

	
dOM

	
GP-72

	
A1 + A2

	
CH4-72

	
CH4:GP-72

	
TVFA

	
BCVFA

	
NGR

	
A:P




	
g/kg OM

	
mL/g OM

	
% of GP-72

	
mM

	
% of TVFA

	
mol/mol






	
Mulato II

	
2

	
781 ab

	
259

	
199

	
44.5 b

	
17.2

	
75.4

	
3.15 a

	
3.33

	
2.80




	
Mulato II

	
4

	
791 a

	
275

	
218

	
49.5 a

	
18.1

	
77.7

	
2.86 ab

	
3.50

	
3.04




	
Mulato II

	
6 *

	
724 b

	
246

	
183

	
41.4 c

	
17.0

	
71.4

	
2.58 b

	
3.38

	
2.76




	
Mulato II

	
8

	
726 b

	
234

	
180

	
39.7 d

	
17.1

	
75.9

	
2.60 b

	
3.40

	
2.81




	
Pooled SE

	

	
6.36

	
9.70

	
10.8

	
1.84

	
1.00

	
1.89

	
0.09

	
0.13

	
0.19




	
p value

	

	
0.031

	
0.100

	
0.091

	
<0.001

	
0.510

	
0.065

	
0.035

	
0.811

	
0.150




	
Ruzi

	
2

	
775

	
267

	
222 x

	
46.1

	
17.4

	
79.7 ab

	
3.08

	
3.45

	
3.01




	
Ruzi

	
4

	
794

	
272

	
216 x

	
47.8

	
17.8

	
80.5 a

	
2.68

	
3.60

	
3.01




	
Ruzi

	
6 *

	
710

	
247

	
193 y

	
42.6

	
17.3

	
75.3 ab

	
2.53

	
3.32

	
2.88




	
Ruzi

	
8

	
735

	
249

	
187 y

	
38.4

	
15.6

	
74.4 b

	
2.80

	
3.33

	
2.84




	
Pooled SE

	

	
8.90

	
12.5

	
8.97

	
3.02

	
1.46

	
2.01

	
0.07

	
0.16

	
0.17




	
p value

	

	
0.052

	
0.215

	
0.047

	
0.150

	
0.233

	
0.030

	
0.093

	
0.227

	
0.358








a,b,c,d Values within column and within grass with different superscripts differ (p < 0.05); x,y Values within column and within grass with different superscripts show a trend to be different (0.05 ≤ p < 0.10). * Normal cutting age in Vietnam. A1 + A2 = in vitro fermentation potential of the soluble in insoluble carbohydrates; A:P = acetic to propionic acid ratio; BCVFA = branched-chain volatile fatty acids; NGR = non-glucogenic to glucogenic ratio; OM = organic matter; TVFA = total volatile fatty acid.













 





Table 3. In vitro 72 h organic matter digestibility, gas (GP-72) and methane production (CH4-72) parameters and volatile fatty acids related values of four grasses (Guinea, Hamil, Mombasa, and TD58) belonging to the Panicum genus grown between 1 and 6 weeks.
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Grass

	
Week

	
dOM

	
GP-72

	
A1 + A2

	
CH4-72

	
CH4:GP-72

	
TVFA

	
BCVFA

	
NGR

	
A:P




	
g/kg OM

	
mL/g OM

	
% of GP-72

	
mM

	
% of TVFA

	
mol/mol






	
Guinea

	
1

	
739 ab

	
251 ab

	
182 ab

	
46.1 a

	
18.5

	
74.9

	
3.69 a

	
3.68

	
3.24




	
Guinea

	
2

	
762 a

	
251 a

	
190 a

	
48.0 a

	
19.4

	
78.0

	
3.74 a

	
3.72

	
3.31




	
Guinea

	
3

	
713 c

	
248 a

	
180 ab

	
47.1 a

	
19.2

	
77.6

	
3.44 ab

	
3.77

	
3.34




	
Guinea

	
4

	
625 e

	
189 c

	
116 c

	
27.2 b

	
14.4

	
71.3

	
3.01 c

	
3.68

	
3.20




	
Guinea

	
5 *

	
678 d

	
249 ab

	
182 ab

	
46.4 a

	
18.5

	
73.1

	
3.35 ab

	
3.58

	
3.12




	
Guinea

	
6

	
645 e

	
220 bc

	
167 b

	
43.2 a

	
19.7

	
70.2

	
3.25 ab

	
3.65

	
3.17




	
Pooled SE

	

	
4.28

	
7.59

	
5.58

	
2.83

	
1.74

	
2.25

	
0.11

	
0.14

	
0.18




	
p value

	

	
<0.001

	
0.007

	
<0.001

	
0.002

	
0.070

	
0.079

	
0.023

	
0.323

	
0.264




	
Hamil

	
2

	
768 a

	
254

	
193

	
49.5

	
19.5

	
78.0 a

	
3.86 a

	
3.56

	
3.17




	
Hamil

	
4

	
669 b

	
255

	
183

	
49.7

	
18.3

	
74.4 ab

	
2.93 b

	
3.61

	
3.11




	
Hamil

	
5 *

	
670 b

	
234

	
181

	
47.8

	
19.3

	
73.5 ab

	
2.90 b

	
3.60

	
3.13




	
Hamil

	
6

	
621 b

	
237

	
172

	
42.3

	
18.9

	
70.7 b

	
2.89 b

	
3.53

	
3.07




	
Pooled SE

	

	
7.13

	
15.1

	
12.3

	
4.62

	
1.57

	
2.48

	
0.09

	
0.12

	
0.16




	
p value

	

	
0.011

	
0.500

	
0.299

	
0.560

	
0.384

	
0.016

	
0.008

	
0.777

	
0.320




	
Mombasa

	
2

	
709

	
252

	
187

	
47.5

	
18.9

	
73.9

	
3.25 a

	
3.59

	
3.14




	
Mombasa

	
4

	
726

	
280

	
210

	
52.2

	
18.7

	
76.3

	
3.20 a

	
3.58

	
3.15




	
Mombasa

	
5 *

	
704

	
273

	
211

	
46.9

	
17.1

	
81.7

	
2.95 b

	
3.57

	
3.08




	
Mombasa

	
6

	
672

	
265

	
188

	
45.4

	
17.3

	
74.8

	
2.80 c

	
3.60

	
3.10




	
Pooled SE

	

	
11.1

	
7.36

	
4.26

	
3.41

	
1.73

	
2.08

	
0.03

	
0.10

	
0.16




	
p value

	

	
0.310

	
0.378

	
0.225

	
0.072

	
0.575

	
0.405

	
0.002

	
0.727

	
0.725




	
TD58

	
1

	
797 a

	
286

	
197

	
54.2 ab

	
19.1

	
78.0

	
4.19 a

	
3.92 a

	
3.36 a




	
TD58

	
2

	
774 ab

	
267

	
203

	
51.8 ab

	
19.2

	
76.3

	
3.34 b

	
3.53 b

	
3.07 b




	
TD58

	
3

	
735 bc

	
270

	
201

	
49.3 ab

	
18.2

	
77.4

	
2.94 c

	
3.56 b

	
3.07 b




	
TD58

	
4

	
773 ab

	
293

	
207

	
53.9 a

	
18.5

	
79.2

	
3.19 bc

	
3.73 ab

	
3.16 b




	
TD58

	
5 *

	
728 c

	
271

	
200

	
49.2 ab

	
18.3

	
73.5

	
3.16 bc

	
3.63 b

	
3.14 b




	
TD58

	
6

	
740 bc

	
264

	
195

	
45.1 b

	
17.3

	
75.1

	
3.24 bc

	
3.68 ab

	
3.16 b




	
Pooled SE

	

	
7.08

	
5.43

	
6.97

	
2.61

	
1.02

	
1.7

	
0.08

	
0.12

	
0.15




	
p value

	

	
0.009

	
0.087

	
0.670

	
0.009

	
0.171

	
0.115

	
<0.001

	
0.028

	
0.016








a,b,c,d,e Values within column and within grass with different superscripts differ (p < 0.05). * Normal cutting age in Vietnam. A1 + A2 = in vitro fermentation potential of the soluble in insoluble carbohydrates; A:P = Hac to Hpr ratio; BCVFA = branched-chain volatile fatty acids; NGR = non-glucogenic to glucogenic ratio; TVFA = total volatile fatty acid.













 





Table 4. In vitro 72 h organic matter digestibility (dOM), gas (GP-72) and methane production (CH4-72) parameters and volatile fatty acids related values of three grasses (King, Napier, and VA06) belonging to the Pennisetum genus grown between 1 and 9 weeks.
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Grass

	
Week

	
dOM

	
GP-72

	
A1 + A2

	
CH4-72

	
CH4:GP-72

	
TVFA

	
BCVFA

	
NGR

	
A:P




	
g/kg OM

	
ml/g OM

	
% of GP-72

	
mM

	
% of TVFA

	
mol/mol






	
King

	
3

	
731 a

	
241 b

	
179 c

	
42.2 b

	
17.6

	
73.7

	
3.27 a

	
3.82

	
3.37 a




	
King

	
5

	
751 a

	
271 a

	
211 a

	
50.9 a

	
18.9

	
77.9

	
3.09 a

	
3.68

	
3.13 b




	
King

	
7 *

	
703 a

	
262 a

	
204 b

	
48.6 a

	
18.6

	
76.7

	
2.62 b

	
3.65

	
3.03 b




	
King

	
9

	
623 b

	
240 b

	
183 c

	
43.0 b

	
17.9

	
71.7

	
2.62 b

	
3.65

	
3.10 b




	
Pooled SE

	

	
8.08

	
9.66

	
9.23

	
2.54

	
1.40

	
1.17

	
0.10

	
0.13

	
0.17




	
p value

	

	
0.009

	
0.006

	
0.002

	
0.003

	
0.051

	
0.149

	
0.043

	
0.091

	
0.026




	
Napier

	
2

	
758

	
269

	
210

	
50.8 ab

	
18.9 ab

	
76.8

	
3.20 ab

	
3.73 a

	
3.33 a




	
Napier

	
3

	
757

	
265

	
195

	
52.7 a

	
20.0 a

	
76.9

	
3.25 a

	
3.78 a

	
3.34 a




	
Napier

	
4

	
762

	
285

	
206

	
53.2 a

	
18.7 ab

	
78.5

	
3.16 ab

	
3.79 a

	
3.24 ab




	
Napier

	
5

	
760

	
284

	
218

	
50.8 ab

	
18.0 ab

	
77.3

	
3.20 ab

	
3.74 a

	
3.23 ab




	
Napier

	
6

	
751

	
285

	
213

	
51.9 a

	
18.3 ab

	
76.3

	
3.20 abc

	
3.76 a

	
3.26 ab




	
Napier

	
7 *

	
770

	
278

	
217

	
52.3 a

	
18.9 ab

	
79.8

	
2.85 abc

	
3.65 a

	
3.15 b




	
Napier

	
8

	
740

	
287

	
211

	
52.2 a

	
18.2 ab

	
77.3

	
2.89 bc

	
3.67 a

	
3.18 b




	
Napier

	
9

	
728

	
271

	
207

	
46.2 b

	
17.1 b

	
77.8

	
2.67 c

	
3.53 b

	
2.98 b




	
Pooled SE

	

	
8.56

	
11.3

	
11.2

	
2.56

	
1.26

	
1.97

	
0.08

	
0.12

	
0.17




	
p value

	

	
0.087

	
0.160

	
0.120

	
0.013

	
0.029

	
0.804

	
0.009

	
0.003

	
0.012




	
VA06

	
1

	
764 a

	
216 c

	
152 b

	
39.6 c

	
18.1

	
69.9 c

	
4.16 a

	
3.77 ab

	
3.41 a




	
VA06

	
2

	
737 ab

	
245 ab

	
184 ab

	
46.0 b

	
18.8

	
73.8 bc

	
3.46 bc

	
3.84 a

	
3.40 a




	
VA06

	
3

	
756 a

	
274 a

	
204 a

	
51.8 a

	
19.0

	
77.1 ab

	
3.49 b

	
3.72 ab

	
3.31 ab




	
VA06

	
4

	
766 a

	
276 a

	
214 a

	
53.7 a

	
19.3

	
77.6 ab

	
3.23 c

	
3.81 ab

	
3.32 ab




	
VA06

	
5

	
758 a

	
289 a

	
217 a

	
54.1 a

	
18.9

	
78.4 a

	
2.91 d

	
3.71 ab

	
3.20 bc




	
VA06

	
6

	
702 b

	
261 ab

	
185 ab

	
50.6 a

	
19.5

	
74.3 abc

	
3.38 bc

	
3.71 ab

	
3.22 bc




	
VA06

	
7 *

	
706 b

	
287 a

	
212 a

	
51.8 a

	
18.1

	
78.5 a

	
2.69 d

	
3.75 ab

	
3.21 bc




	
VA06

	
8

	
627 c

	
253 ab

	
184 ab

	
45.6 b

	
18.1

	
71.0 c

	
2.78 d

	
3.66 b

	
3.09 c




	
VA06

	
9

	
643 bc

	
254 ab

	
187 ab

	
46.7 b

	
18.5

	
75.6 ab

	
2.68 d

	
3.76 ab

	
3.22 bc




	
Pooled SE

	

	
10.2

	
11.6

	
12.3

	
2.73

	
1.25

	
1.77

	
0.11

	
0.12

	
0.18




	
p value

	

	
<0.001

	
0.01

	
0.008

	
<0.001

	
0.442

	
<0.001

	
<0.001

	
0.048

	
<0.001








a,b,c,d Values within column and within grass with different superscripts differ (p < 0.05). * Normal cutting age in Vietnam. A1 + A2 = in vitro fermentation potential of the soluble in insoluble carbohydrates; A:P = Hac to Hpr ratio; BCVFA = branched-chain volatile fatty acids; NGR = non-glucogenic to glucogenic ratio; TVFA = total volatile fatty acid.













 





Table 5. Relative yields (%) of dry matter content, in vitro digestible organic matter (dOM) and in vitro fermentation potential (GP, A1 + A2) of three grasses for early and late cutting 1 compared to practical harvest time (100%) in Vietnam.
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Grass

	
Mombasa

	
Mulato II

	
King




	
Regrowth Week

	
