Characteristics of Isolated Lactic Acid Bacteria and Their Application in High-Moisture Broccoli Waste Silage
Abstract
:1. Introduction
2. Materials and Methods
2.1. LAB Strains
2.2. Substrate Fermentation Test of LAB Strains
2.3. Growth Curve and Acid Production Performance of LAB Strains
2.4. Physiological and Biochemical Characterization of LAB Strains
2.5. Genomic DNA Extraction and Species Identification of LAB Strains
2.6. High-Moisture Broccoli Waste Silage Making
2.7. Parameter Analyses
2.8. Data Statistics and Analysis
3. Results
3.1. Analyses of Growth Curve and Acid Production Performance of LAB Strains
3.2. Analyses of Physiological and Biochemical Characterization of LAB Strains
3.3. Species Identification Analysis of LAB Strains
3.4. Characteristic of Broccoli Waste before Ensiling
3.5. Effects of LAB Strains on the Fermentation Quality of Broccoli Waste Silage
3.6. Effects of LAB Strains on the Nutritional Value of Broccoli Waste Silage
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, G.; Zhang, G.; Shi, J.; Zhang, J.; Ma, Z.; Liu, X.; Yuan, C.; Li, X.; Zhang, B. Keystone Taxa Lactiplantibacillus and Lacticaseibacillus Directly Improve the Ensiling Performance and Microflora Profile in Co-Ensiling Cabbage Byproduct and Rice Straw. Microorganisms 2021, 9, 1099. [Google Scholar] [CrossRef]
- FAO. FAOSTAT Statistics Database. Available online: http://www.fao.org/faostat/en/#data/QC/visualize (accessed on 8 March 2022).
- Zhao, X.; Liu, J.; Liu, J.; Yang, F.; Zhu, W.; Yuan, X.; Hu, Y.; Cui, Z.; Wang, X. Effect of ensiling and silage additives on biogas production and microbial community dynamics during anaerobic digestion of switchgrass. Bioresour. Technol. 2017, 241, 349–359. [Google Scholar] [CrossRef]
- Ren, H.; Feng, Y.; Pei, J.; Li, J.; Wang, Z.; Fu, S.; Zheng, Y.; Li, Z.; Peng, Z. Effects of Lactobacillus plantarum additive and temperature on the ensiling quality and microbial community dynamics of cauliflower leaf silages. Bioresour. Technol. 2020, 307, 123238. [Google Scholar] [CrossRef]
- McDonald, P.; Henderson, A.R.; Heron, S.J.E. The Biochemistry of Silage, 2nd ed.; Chalcombe Publications: Marlow, UK, 1991. [Google Scholar]
- Guimaraes, A.; Santiago, A.; Teixeira, J.A.; Venancio, A.; Abrunhosa, L. Antiaflatoxigenic effect of organic acids produced by Lactobacillus plantarum. Int. J. Food Microbiol. 2018, 264, 31–38. [Google Scholar] [CrossRef]
- Li, F.; Ding, Z.; Ke, W.; Xu, D.; Zhang, P.; Bai, J.; Mudassar, S.; Muhammad, I.; Guo, X. Ferulic acid esterase-producing lactic acid bacteria and cellulase pretreatments of corn stalk silage at two different temperatures: Ensiling characteristics, carbohydrates composition and enzymatic saccharification. Bioresour. Technol. 2019, 282, 211–221. [Google Scholar] [CrossRef]
- He, L.; Wang, C.; Xing, Y.; Zhou, W.; Pian, R.; Chen, X.; Zhang, Q. Ensiling characteristics, proteolysis and bacterial community of high-moisture corn stalk and stylo silage prepared with Bauhinia variegate flower. Bioresour. Technol. 2020, 296, 122336. [Google Scholar] [CrossRef]
- Zhao, J.; Yin, X.-J.; Li, J.-F.; Wang, S.-R.; Dong, Z.-H.; Shao, T. Effects of developmental stage and store time on the microbial community and fermentation quality of sweet sorghum silage. Ital. J. Anim. Sci. 2022, 21, 1543–1557. [Google Scholar] [CrossRef]
- Yang, Z.G. A Study on the Spring Silage Technology of Lolium multiflorum. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2002. [Google Scholar]
- Wang, Y.; He, L.; Xing, Y.; Zhou, W.; Pian, R.; Yang, F.; Chen, X.; Zhang, Q. Bacterial diversity and fermentation quality of Moringa oleifera leaves silage prepared with lactic acid bacteria inoculants and stored at different temperatures. Bioresour. Technol. 2019, 284, 349–358. [Google Scholar] [CrossRef]
- Yan, Y.; Li, X.; Guan, H.; Huang, L.; Ma, X.; Peng, Y.; Li, Z.; Nie, G.; Zhou, J.; Yang, W.; et al. Microbial community and fermentation characteristic of Italian ryegrass silage prepared with corn stover and lactic acid bacteria. Bioresour. Technol. 2019, 279, 166–173. [Google Scholar] [CrossRef]
- Yahaya, M.S.; Goto, M.; Yimiti, W.; Smerjai, B.; Kuwamoto, Y. Evaluation of fermentation quality of a tropical and temperate forage crops ensiled with additives of fermented juice of epiphytic lactic acid bacteria (FJLB). Asian Australas. J. Anim. Sci. 2004, 17, 942–946. [Google Scholar] [CrossRef]
- Bureenok, S.; Namihira, T.; Kawamoto, Y.; Nakada, T. Additive effects of fermented juice of epiphytic lactic acid bacteria on the fermentative quality of guineagrass (Panicum maximum Jacq.) silage. Grassl. Sci. 2005, 51, 243–248. [Google Scholar] [CrossRef]
- Wang, S.; Li, J.; Dong, Z.; Chen, L.; Yuan, X.; Shao, T. The effects of lactic acid bacteria strains isolated from various substrates on the fermentation quality of common vetch (Vicia sativa L.) in Tibet. Grass Forage Sci. 2018, 73, 639–647. [Google Scholar] [CrossRef]
- Cai, Y.; Benno, Y.; Ogawa, M.; Ohmomo, S.; Kumai, S.; Nakase, T. Influence of Lactobacillus spp. from an inoculant and of Weissella and Leuconostoc spp. from forage, crops on silage fermentation. Appl. Environ. Microbiol. 1998, 64, 2982–2987. [Google Scholar] [CrossRef]
- Kozaki, M.; Uchimura, T.; Okada, S. Experimental Manual of Lactic Acid Bacteria; Asakurasyoten: Tokyo, Japan, 1992. [Google Scholar]
- Muck, R.E.; Nadeau, E.M.G.; McAllister, T.A.; Contreras-Govea, F.E.; Santos, M.C.; Kung, L., Jr. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 2018, 101, 3980–4000. [Google Scholar] [CrossRef]
- Krieg, N.R.; Holt, J.G. Bergey’s Manual of Systematic Bacteriology; Williams & Wilkins: Baltimore, MA, USA, 1984. [Google Scholar]
- Assareh, R.; Zahiri, H.S.; Noghabi, K.A.; Aminzadeh, S.; Khaniki, G.B. Characterization of the newly isolated Geobacillus sp. T1, the efficient cellulase-producer on untreated barley and wheat straws. Bioresour. Technol. 2012, 120, 99–105. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, Z.; Shao, T. Effect of adding propionic acid and lactic acid bacteria on fermentation quality of Italian ryegrass silages. Acta Agrestia Sin. 2009, 17, 162–165. [Google Scholar]
- Yoshida, S. Laboratory Manual for Physiological Studies of Rice; IRRI: Los Baios, Philippines, 1976. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Zhao, J.; Dong, Z.; Li, J.; Chen, L.; Bai, Y.; Jia, Y.; Shao, T. Ensiling as pretreatment of rice straw: The effect of hemicellulase and Lactobacillus plantarum on hemicellulose degradation and cellulose conversion. Bioresour. Technol. 2018, 266, 158–165. [Google Scholar] [CrossRef]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Zhao, J.; Yin, X.J.; Wang, S.R.; Li, J.F.; Shao, T. Separating the effects of chemical and microbial factors on fermentation quality and bacterial community of Napier grass silage by using gamma-ray irradiation and epiphytic microbiota transplantation. Anim. Feed. Sci. Technol. 2021, 280, 115082. [Google Scholar] [CrossRef]
- Li, J.; Meng, Q.; Xing, J.; Wang, C.; Song, C.; Ma, D.; Shan, A. Citric acid enhances clean recycling of Chinese cabbage waste by anaerobic fermentation. J. Clean. Prod. 2022, 348, 131366. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Ding, W.H.; Sun, Y.N. Effects of Lactobacillus Plantarum on the Ensiling Quality of Cauliflower Wastes at Different Temperature. J. Basic Sci. Eng. 2023, 31, 635–649. [Google Scholar]
- Todorov, S.D.; Franco, B.G.M. Lactobacillus plantarum: Characterization of species and application in food production. Food Rev. Int. 2010, 26, 205–229. [Google Scholar] [CrossRef]
- Siezen, R.J.; Tzeneva, V.A.; Castioni, A.; Wels, M.; Phan, H.T.K.; Rademaker, J.L.W.; Starrenburg, M.J.C.; Kleerebezem, M.; Molenaar, D.; Van Hylckama Vlieg, J.E.T. Phenotypic and genomic diversity of Lactobacillus plantarum strains isolated from various environmental niches. Environ. Microbiol. 2010, 12, 758–773. [Google Scholar] [CrossRef]
- Brinques, G.B.; Peralba, M.C.; Ayub, M.A.Z. Optimization of probiotic and lactic acid production by Lactobacillus plantarum in submerged bioreactor systems. J. Ind. Microbiol. Biotechnol. 2010, 37, 205–212. [Google Scholar] [CrossRef]
- Saarisalo, E.; Skyttä, E.; Haikara, A.; Jalava, T.; Jaakkola, S. Screening and selection of lactic acid bacteria strains suitable for ensiling grass. J. Appl. Microbiol. 2007, 102, 327–336. [Google Scholar] [CrossRef]
- Li, X.; Xu, W.; Yang, J.; Zhao, H.; Pan, C.; Ding, X.; Zhang, Y. Effects of applying lactic acid bacteria to the fermentation on a mixture of corn steep liquor and air-dried rice straw. Anim. Nutr. 2016, 2, 229–233. [Google Scholar] [CrossRef]
- Mu, L.; Xie, Z.; Chen, G.; Zhang, Z. Cellulase interacts with Lactobacillus plantarum to affect chemical composition, bacterial communities, and aerobic stability in mixed silage of high-moisture amaranth and rice straw Bioresource Technology. Bioresour. Technol. 2020, 315, 123772. [Google Scholar] [CrossRef]
- Gallo, A.; Fancello, F.; Ghilardelli, F.; Zara, S.; Spanghero, M. Effects of several commercial or pure lactic acid bacteria inoculants on fermentation and mycotoxin levels in high-moisture corn silage. Anim. Feed. Sci. Technol. 2022, 286, 115256. [Google Scholar] [CrossRef]
- Benjamim da Silva, E.; Polukis, S.A.; Smith, M.L.; Voshell, R.S.; Leggett, M.J.; Jones, P.B.; Kung, L., Jr. The use of Lentilactobacillus buchneri PJB1 and Lactiplantibacillus plantarum MTD1 on the ensiling of whole-plant corn silage, snaplage, and high-moisture corn. J. Dairy Sci. 2024, 107, 883–901. [Google Scholar] [CrossRef]
- Zhang, J.T. Biodiversity and Application in Silage of Cultured Lactic Acid Bacteria in Vegetable Wastes from Sichuan Province. Master’s Thesis, Sichuan Agricultural University, Chengdu, China, 2020. [Google Scholar]
- Wang, Z.Y. Isolation, Screening of Effective Lactic Acid Bacteria and Application for Vegetable Residues Silage. Master’s Thesis, Sichuan Agricultural University, Chengdu, China, 2018. [Google Scholar]
Characteristics | Strains | |||
---|---|---|---|---|
CB89 | CB94 | CB112 | CB120 | |
Shape | Rod | Rod | Rod | Rod |
Gram stain | Positive | Positive | Positive | Positive |
Catalase reaction | Negative | Negative | Negative | Negative |
Gas from glucose | Negative | Negative | Negative | Negative |
Fermentation type | Facultative hetero | Facultative hetero | Facultative hetero | Facultative hetero |
Growth pH | ||||
pH 2.5 | — | — | — | — |
pH 3.0 | ++ | ++ | ++ | ++ |
pH 3.5 | +++ | +++ | +++ | +++ |
pH 4.0 | +++ | +++ | +++ | +++ |
pH 4.5 | +++ | +++ | +++ | +++ |
pH 5.0 | +++ | +++ | +++ | +++ |
pH 5.5 | +++ | +++ | +++ | +++ |
pH 6.0 | +++ | +++ | +++ | +++ |
pH 6.5 | +++ | +++ | +++ | +++ |
PH 7.0 | +++ | +++ | +++ | +++ |
Growth in NaCl | ||||
0.00% NaCL | +++ | +++ | +++ | +++ |
3.00% NaCL | +++ | +++ | +++ | +++ |
6.50% NaCL | ++ | ++ | ++ | ++ |
10.0% NaCL | + | + | + | + |
20.0% NaCL | — | — | — | — |
Growth temperature | ||||
5 °C | + | + | + | + |
15 °C | +++ | +++ | +++ | +++ |
25 °C | +++ | +++ | +++ | +++ |
35 °C | +++ | +++ | +++ | +++ |
45 °C | + | + | + | + |
Strain | Accession Number | Similar Strain | Homology |
---|---|---|---|
CB89 | PP814960 | L. plantarum MT613642.1 | 100% |
CB94 | PP814961 | L. plantarum MT645503.1 | 100% |
CB112 | PP814962 | L. plantarum MT538524.1 | 100% |
CB120 | PP814963 | L. plantarum MG754568.1 | 99.8% |
Items | Broccoli Waste |
---|---|
DM (%FW) | 12.1 |
WSC (%DM) | 14.3 |
Starch (%DM) | 4.58 |
CP (%DM) | 17.2 |
NDF (%DM) | 37.6 |
ADF (%DM) | 23.0 |
LAB (log10 CFU g−1 FW) | 4.98 |
Aerobic bacteria (log10 CFU g−1 FW) | 7.97 |
Yeast (log10 CFU g−1 FW) | 5.02 |
Mold (log10 CFU g−1 FW) | 3.45 |
Treatments | Moisture Content | pH | LA (g·kg−1 DM) | AA (g·kg−1 DM) | LA/AA | NH3-N (mmol/kg DM) | LAB (log10 CFU g−1 FW) | Aerobic Bacteria (lg CFU g−1 FW) |
---|---|---|---|---|---|---|---|---|
CK | W0 | 4.50 | 4.67 | 1.47 | 3.23 | 275.81 | 6.20 | 3.34 |
W1 | 4.34 | 3.25 | 0.69 | 4.72 | 250.57 | 7.04 | 3.36 | |
W2 | 4.31 | 3.55 | 0.77 | 4.70 | 187.63 | 6.60 | 2.71 | |
CB89 | W0 | 4.93 | 4.59 | 3.99 | 1.15 | 500.24 | 7.33 | 2.76 |
W1 | 4.32 | 3.08 | 0.66 | 4.76 | 304.00 | 7.78 | 2.97 | |
W2 | 4.21 | 4.55 | 0.81 | 5.61 | 189.15 | 6.67 | 3.09 | |
CB94 | W0 | 5.01 | 3.50 | 2.01 | 1.78 | 453.46 | 7.34 | 2.33 |
W1 | 4.32 | 5.49 | 1.27 | 4.38 | 278.02 | 6.81 | 2.66 | |
W2 | 4.16 | 4.40 | 1.04 | 4.26 | 159.22 | 6.88 | 2.93 | |
CB112 | W0 | 5.14 | 3.29 | 2.55 | 1.31 | 465.43 | 7.50 | 3.36 |
W1 | 4.25 | 4.02 | 0.84 | 4.99 | 220.97 | 6.69 | 2.16 | |
W2 | 4.29 | 4.03 | 0.88 | 4.56 | 220.86 | 6.64 | 2.34 | |
CB120 | W0 | 4.28 | 6.24 | 1.28 | 4.97 | 346.89 | 6.72 | 2.63 |
W1 | 4.28 | 6.46 | 1.49 | 4.32 | 228.65 | 6.58 | 2.22 | |
W2 | 4.12 | 3.72 | 0.84 | 4.47 | 190.22 | 5.99 | 2.74 | |
CK | 4.38 b | 3.82 c | 0.98 d | 4.22 ab | 238.00 d | 6.61 c | 3.14 a | |
CB89 | 4.49 ab | 4.08 bc | 1.82 a | 3.84 bc | 331.13 ab | 7.26 a | 2.94 b | |
CB94 | 4.50 ab | 4.46 b | 1.44 bc | 3.47 c | 296.90 bc | 7.01 b | 2.64 c | |
CB112 | 4.56 a | 3.78 c | 1.43 bc | 3.62 c | 302.42 bc | 6.95 b | 2.62 cd | |
CB120 | 4.23 c | 5.47 a | 1.20 cd | 4.59 a | 255.25 cd | 6.43 d | 2.53 d | |
W0 | 4.77 a | 4.46 a | 2.26 a | 2.49 b | 408.37 a | 7.02 a | 2.89 a | |
W1 | 4.30 b | 4.46 a | 0.99 b | 4.64 a | 256.44 b | 6.98 a | 2.63 c | |
W2 | 4.22 b | 4.05 b | 0.87 b | 4.72 a | 189.42 c | 6.56 b | 2.76 b | |
T | ** | ** | ** | ** | ** | ** | ** | |
M | ** | * | ** | ** | ** | ** | ** | |
T × M | ** | ** | ** | ** | * | ** | ** |
Treatments | Moisture Content | DM (%FW) | WSC (%DM) | Starch (%DM) | NSC (%DM) | CP (%DM) | NDF (%DM) | ADF (%DM) |
---|---|---|---|---|---|---|---|---|
CK | W0 | 9.82 | 1.03 | 4.13 | 5.16 | 22.87 | 24.09 | 18.28 |
W1 | 13.75 | 0.97 | 5.02 | 6.00 | 24.58 | 22.31 | 17.74 | |
W2 | 16.20 | 0.98 | 4.76 | 5.75 | 24.10 | 22.01 | 17.31 | |
CB89 | W0 | 10.24 | 0.32 | 8.96 | 9.27 | 21.18 | 31.93 | 23.65 |
W1 | 11.56 | 1.05 | 5.02 | 6.07 | 24.28 | 27.43 | 20.94 | |
W2 | 15.53 | 1.08 | 4.78 | 5.86 | 24.45 | 20.92 | 16.34 | |
CB94 | W0 | 10.36 | 0.82 | 5.75 | 6.58 | 23.07 | 29.43 | 21.64 |
W1 | 12.30 | 0.94 | 4.89 | 5.83 | 25.44 | 28.50 | 20.90 | |
W2 | 16.73 | 1.10 | 4.43 | 5.52 | 26.36 | 18.23 | 14.09 | |
CB112 | W0 | 9.70 | 0.65 | 5.31 | 5.96 | 23.44 | 35.84 | 23.16 |
W1 | 12.23 | 0.71 | 6.74 | 7.45 | 25.88 | 28.44 | 20.32 | |
W2 | 16.01 | 0.59 | 7.35 | 7.95 | 25.74 | 28.44 | 18.71 | |
CB120 | W0 | 9.70 | 0.98 | 5.58 | 6.56 | 24.78 | 30.14 | 22.37 |
W1 | 11.07 | 0.87 | 4.88 | 5.75 | 22.17 | 33.65 | 25.58 | |
W2 | 16.75 | 0.65 | 6.55 | 7.19 | 24.49 | 29.42 | 19.76 | |
CK | 13.26 | 1.00 a | 4.64 c | 5.63 c | 23.85 b | 22.81 c | 17.78 c | |
CB89 | 12.44 | 0.82 b | 6.25 a | 7.07 a | 23.30 c | 26.76 b | 20.31 b | |
CB94 | 13.13 | 0.96 a | 5.02 c | 5.98 c | 24.96 a | 25.39 b | 18.88 c | |
CB112 | 12.65 | 0.65 c | 6.47 a | 7.12 a | 25.02 a | 30.90 a | 20.73 b | |
CB120 | 12.51 | 0.83 b | 5.67 b | 6.50 b | 23.81 b | 31.07 a | 22.57 a | |
W0 | 9.96 c | 0.76 b | 5.95 a | 6.71 a | 23.07 c | 30.29 a | 21.82 a | |
W1 | 12.18 b | 0.91 a | 5.31 b | 6.22 b | 24.47 b | 28.07 b | 21.10 a | |
W2 | 16.25 a | 0.88 a | 5.57 ab | 6.45 ab | 25.03 a | 23.80 c | 17.24 b | |
T | NS | ** | ** | ** | ** | ** | ** | |
M | ** | ** | * | * | ** | ** | ** | |
T × M | NS | ** | ** | ** | ** | ** | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, C.; Yuan, J. Characteristics of Isolated Lactic Acid Bacteria and Their Application in High-Moisture Broccoli Waste Silage. Fermentation 2024, 10, 282. https://doi.org/10.3390/fermentation10060282
Dong C, Yuan J. Characteristics of Isolated Lactic Acid Bacteria and Their Application in High-Moisture Broccoli Waste Silage. Fermentation. 2024; 10(6):282. https://doi.org/10.3390/fermentation10060282
Chicago/Turabian StyleDong, Chenfei, and Jie Yuan. 2024. "Characteristics of Isolated Lactic Acid Bacteria and Their Application in High-Moisture Broccoli Waste Silage" Fermentation 10, no. 6: 282. https://doi.org/10.3390/fermentation10060282
APA StyleDong, C., & Yuan, J. (2024). Characteristics of Isolated Lactic Acid Bacteria and Their Application in High-Moisture Broccoli Waste Silage. Fermentation, 10(6), 282. https://doi.org/10.3390/fermentation10060282