Starter Cultures for the Production of Fermented Table Olives: Current Status and Future Perspectives
Abstract
:1. Introduction
2. The Microbiota of Spontaneous Fermentation
3. Starter Cultures in Driven Fermentations
3.1. Effect of Starter Cultures on the Features of Fermented Table Olives
3.2. Effect of Starter Cultures on the Microbiota of Fermented Table Olives
Olive cultivar | Type of Process and Fermentative Conditions | Species and Strains Used as Starter Cultures | Effect on Metabolite Production and Phenolic Compounds | Analytical Method † | Ref. |
---|---|---|---|---|---|
Starter cultures: Lactic Acid Bacteria (*) | |||||
Tonda di Cagliari (Sardinia, Italy) | Natural process: Greek-style. Brine: 7% (w/v) NaCl. Fermentation time and T °C: 156 days at 27 °C, up to pH stead-state, and then 24 °C. | LAB starter SSL: Lpb. plantarum S1T10A; SIE: undefined autochthonous mixed starter of Lpb. pentosus. NF: natural fermentation, control. Inoculum level: 6.82 (SSL) and 7.25 (SIE) log cfu/mL | Final-stage fermentation (156 days, olives)—NF: lowest levels of hydroxytyrosol and highest levels of oleuropein. SIE and SSL: higher concentration of hydroxytyrosol. SSL, SIE: completely debittering after 156 days; NF needed 12 months. NF sample had higher cohesiveness, springiness. SIE: more elasticity and cohesiveness than SSL samples. | HPLC | [63] |
Kalamon (Peloponnese, Greece) | Natural process: Greek-style. Brine: 5% (w/v) NaCl. Fermentation time and T °C: 70 days at room T °C (22 °C). | LAB starter B1: spontaneous fermentation. B2: Lpb. pentosus DSM 16366; B3: Leuconostoc mesenteroides subsp. mesenteroides Lm139. Inoculum level: 6 log cfu/mL | Early-stage fermentation (7–10 days, brines)—B2, B3: faster glucose consumption (7 days) compared to B1 (10 days); B2, B3: mannitol consumption was observed. Final-stage fermentation (70 days, brines)—B2, B3: higher amount of lactic, acetic and succinic acids compared to B1. | HPLC | [60] |
Nocellara Etnea (Adrano, Sicily, Italy) | Natural process: Sicilian style. Brine: 8% (w/v) marine salt. Fermentation time and T °C: 120 days at room T °C (20 ± 2 °C) | LAB starter BC1: Lpb. plantarum UT2.1, Lcb. paracasei N24, Lpb. pentosus TH969; BC2: Lpb. plantarum UT2.1; BC3: Lcb. paracasei N24, Lpb. pentosus TH969; BC4: Lpb. plantarum UT2.1, Lpb. pentosus TH969; BC5: Lpb. plantarum UT2.1, Lcb. paracasei N24; BC6: Lpb. pentosus TH969. C: uninoculated samples. Inoculum level: 7 log cfu/mL | Early-stage fermentation (1 day, brines)—C, BC1, BC2: high aldehydes content. Correlation among aldehydes and alcohols (octanal, nonanal, decanal, 1-nonanol, 1-undecanol, 1-dodecanol, and 1-octanol) and presence of Proteobacteria. Middle-stage fermentation (60 days, brines)—All samples: aldehydes content decreased, whereas alcohols, acids, esters and phenols increased. Final-stage fermentation (120 days, brines)—BC3, C: highest VOC content; BC1: lowest VOC content. C: high ethanol content. Correlation among ester products (ethyl-acetate, ethyl-propanoate, ethyl-butanoate, ethyl-lactate, butanoic acid 2-methylester, butanoic-acid 3-methylester, ethyl decanoate, and ethyl-benzoate) and Slb. paracollinoides, Pc. parvulus, and Lgb. acidipiscis (BC1, BC3, BC4, BC6). | SPME/ GC-MS | [64] |
Itrana (Fogliano, Rocca Massima, Latium, Italy) | Natural process: Greek-style. Brine: 6% (w/v) NaCl. Fermentation time and T °C: 30 days at room T °C. | LAB starter A: Fogliano, less irrigation, Lpb. pentosus C8 and C11; B: Fogliano, more irrigation, Lpb. pentosus C8 and C11; C: Rocca Massima, rainfed, Lpb. pentosus C8 and C11; D: Rocca Massima, irrigation, Lpb. pentosus C8 and C11. Ac, Bc, Cc, Dc: related spontaneous fermentation. Inoculum level: 8 log cfu/mL | Final-stage fermentation (120 days, olives pulp)—Inoculated samples provided a strong decrease in oleuropein, dimethyl oleuropein, and 3,4-DHPEA-EDA, and an increase in hydroxytyrosol. | HPLC | [15] |
Nocellara Etnea (Adrano, Sicily, Italy) | Natural process: Sicilian style. Brine: 4, 5, 6, 8% (w/v) NaCl. Fermentation time and T °C: 120 days at room T °C (18 ± 2 °C). | LAB starter Lpb. plantarum UT2.1 and Lcb. paracasei N21 (1:1 ratio). E1–E4: inoculated fermentations with 4, 5, 6, 8% NaCl, respectively. C1–C4: related spontaneous fermentations. Inoculum level: 7 log cfu/mL | Final-stage fermentation (120 days, brines)—E1–E4: high content of hexanoic and propionic acids, low content of acetic acid, ethanol, isoamyl and phenyl-ethyl alcohol. E2: highest content of esters (butanoic-acid-2-methylester), acids, alcohols, phenols, aldehydes. C: high acidity. E1–E4: high acceptability score. | SPME/ GC-MS | [8] |
Picual (whole and cracked olives; Nicosia, Cyprus) | Natural process: Greek-style. Brine: 7% (w/v) or 10% (w/v) NaCl and 3.3% (v/v) citric acid. Fermentation time and T °C: 120 days at room T °C (23 ± 2 °C) | LAB starter S1, S4: spontaneous fermentations in cracked and whole olives, respectively. S2, S5: commercial starter Lpb. plantarum (Vege-Start 600, Chr. Hansen A/S) in 10% NaCl and 3.3% citric acid, cracked and whole olives, respectively; S3, S6: Lpb. plantarum (Vege-Start 600) in 7% NaCl and 3.3% citric acid, cracked and whole olives, respectively. Inoculum level: 5 log cfu/mL | Middle-stage fermentation (60 days, brines)—All inoculated samples: rapid glucose depletion (undetectable after 45 days of fermentation). Final-stage fermentation (120 days, brines)—All inoculated samples: highest lactic acid content, production of succinic acid and a faster degradation of oleuropein, resulting in the production of higher levels of hydroxytyrosol (especially in S3 and S6 samples) compared to the control ones (S1 and S4). | HPLC | [43] |
Tonda di Cagliari (Sardina, Italy) | Natural process: Greek-style. Brine: 7% (w/v) NaCl. Fermentation time and T °C: 180 days at 25 °C | LAB starter SIE: undefined mixed culture of Lpb. pentosus strains isolated from previous fermentations; Double-strain starter (DSS): Lpb. pentosus D104 and D702 isolated from SIE. NF: spontaneous fermentation. Inoculum level: 6 log cfu/mL | Final-stage fermentation (180 days, olive pulp)—SIE: undetectable level of oleuropein and high content of hydroxytyrosol, followed by verbascoside, tyrosol, luteolin, luteolin 7-glucoside. DSS and NF: comparable level of tyrosol, luteolin, luteolin 7-glucoside. | HPLC | [65] |
Nocellara Etnea (Adrano and Paternò, Sicily, Italy) | Natural process: Sicilian style. Brine: 5% or 8% (w/v) NaCl. Fermentation time and T °C: 80 days at room T °C (18 ± 2 °C) | LAB starter O1: Lpb. plantarum F1.16 and F3.5, in 5% NaCl. O2: Lpb. plantarum C11C8, F1.16, and F3.5, in 5% NaCl. C5 and C8: uninoculated samples with 5% or 8% NaCl, respectively. Inoculum level: 7 log cfu/mL | Middle-stage fermentation (15 days, olives)—O2: highest content of 2-butanone-3-hydroxy (acetoin), ethyl acetate, and lactic acid ethyl ester. Final-stage fermentation (80 days, olives)—O2: highest content of acetic acid, 3-methyl-1-butanol, esters (phenylethyl alcohol, acetic acid 2-methyl ester, 2-heptanal, benzene propanoic acid methyl ester (with pleasant flavours)). C5, C8: higher content of 4-ethyl-phenol, 2-methoxy-phenol, associated with off-flavour. | HS-SPME/ GC-MS | [66] |
Itrana (Latina province, Italy) | Natural process: Greek-style. Brine: 8% (w/v) NaCl (sea salt). Fermentation time and T °C: 240 days at room T °C. | LAB starter A: spontaneous fermentation. B: Lpb. plantarum B1; C: Lpb. plantarum B1, Lpb. plantarum B51, Lpb. plantarum B124 (1:1:1 ratio). Inoculum level: 6 log cfu/mL | Final-stage fermentation (240 days, olives)—B, C: reduced debittering time, faster degradation of secoiridoids and higher production of hydroxytyrosol (especially in C, probably due to the multiple-strain starter). | HPLC | [44] |
Manzanilla (Seville province, Spain) | Treated process: 2.3% NaOH solution for 5.5 h. Brine: 12.0% (w/v) NaCl. Fermentation time and T °C: 7 months; T °C: n.a. (**) | LAB starter M1, M2: spontaneous fermentation. M3, M4: Lpb. pentosus LP99. Inoculum level: 8 log cfu/mL at day 5, 7 log cfu/mL at day 12. | Final-stage fermentation (7 months, olive pulp)—All samples: fermentation significantly increased the number and concentrations of VOCs. M3, M4: highest amounts of 1-heptanol, 6-methyl-5-hepten-2-ol, isoamyl acetate, methyl benzoate and of 4-ethylphenol. The latter compound was associated with off-flavour, but the sensory evaluation indicated that not-significant differences were found among driven and spontaneous fermentations. | HS-SPME/ GC-MS | [67] |
Starter cultures: Lactic Acid Bacteria and Yeasts | |||||
Arbequina (Tarragona, Spain) | Natural process: Greek-style. Brine: 8% NaCl. Fermentation time and T °C: 52 days at room T °C (20 °C). | LAB and Y starter A: Spontaneous fermentation. B: C. diddensiae C6B19; C: Lpb. plantarum V10A2; D: Lpb. pentosus FxMA1; E: Lpb. pentosus 5E3A18; F: Lpb. pentosus 5E3A18, C. diddensiae C6B19; G: Lpb. pentosus 5E3A18, Lpb. plantarum V10A2; H: Lpb. pentosus 5E3A18, Lpb. pentosus FxMA1. Inoculum level: 6 log cfu/mL | Final-stage fermentation (90 days)—Y and LAB/Y starter: higher content of citric acid, lower content of malic acid (B, F). LAB starter: G and H significant increase in lactic acid compared with single LAB starter (C, D, E fermentations). D: high content of acetic acid. | HPLC | [68] |
Bella di Cerignola (Modugno, Apulia, Italy) | Natural process: Greek-style. Brine: 7% (w/v) NaCl. Fermentation time and T °C: 90 days at room T °C (18–25 °C). | LAB and Y starter S: commercial Lpb. plantarum (Sacco Srl company); SY: commercial Lpb. plantarum (Sacco Srl) and autochthon Wickerhamomyces anomalus DiSSPA73; SYL: commercial Lpb. plantarum (Sacco Srl) and autochthons W. anomalus DiSSPA73, Lpb. plantarum DiSSPA1A7, Lpb. pentosus DiSSPA7. Ctrl: spontaneous fermentation. Inoculum level: 7 log cfu/mL | Final-stage fermentation (90 days, brines)—SY: ethanol (↑); S, SY, SYL: acetic acid (↑), ethyl acetate (↑), 1-hexanol (↑), propionic acid (↓). | SPME/GC-MS | [61] |
Cellina di Nardò, Leccino, Kalamàta, Conservolea (Salento, Apulia, Italy) (Salento, Apulia, Italy) | Natural process: Greek-style. Brine: 8% (w/v; for Kalamàta and Conservolea cv) or 12% (w/v; for Cellina di Nardò and Leccino cv) NaCl. Fermentation time and T °C: 90 days at room T °C. | LAB and Y starter (sequential inoculum) Leccino cv: S. cerevisiae LI 180-7 (DSMZ27800) and then Lpb. plantarum L 180-11 (DSMZ27925); Cellina di Nardò cv: P. anomala CL 30-29 and then Lpb. plantarum C180-34; Kalamàta cv: S. cerevisiae KI 30-16 (DSMZ27801) and then Leuc. mesenteroides K T5-1 (DSMZ27926); Conservolea cv: D. hansenii A15-44 and then Lpb. plantarum A135-5. Control spontaneous fermentation. Inoculum level: 6 log cfu/mL | Final-stage fermentation (90 days)—Inoculated samples: complete consumption of glucose (except for Leccino cv); high levels of lactic (Leccino and Conservolea cv) and acetic (Cellina di Nardò and Kalamàta cv) acids. Higher content of hydroxytyrosol and tyrosol. VOCs (mainly alcohols and esters) increased in starter-driven fermentations, especially when Y were used. The use of starter significantly reduced the time of fermentation process from 180 to 90 days. | HPLC SPME/ GC-MS | [39] |
Kalamàta and Conservolea (Arta, Greece) | Natural process: Greek-style. Brine: 8% NaCl. Fermentation time and T °C: 105 days at room T °C (12–21 °C). | LAB and Y starter Sequential inoculum: Kalamàta cv—Leuc. mesenteroides KT5-1, then S. cerevisiae KI30-16 (LY) or viceversa (YL). Conservolea cv: Lpb. plantarum A135-5, then D. hansenii A15-44 (LY) or viceversa (YL). Mixtures (MIX): Kalamàta cv—Leuc. mesenteroides KT5-1 and S. cerevisiae KI30-16. Conservolea cv: Lpb. plantarum A135-5 and D. hansenii A15-44 (LY). Sp: spontaneous fermentation. Inoculum level: 8 log cfu/mL | Final-stage fermentation (105 days)—Conservolea olives: YL and LY: higher level of esters and alcohols; LY: high content of terpenes; MIX and YL: high amount of hydrocarbons. Kalamàta olives: MIX: higher levels of esters, alcohols, hydrocarbons and terpenes. | SPME/ GC-MS | [69] |
Middle-stage fermentation (14 and 63 days, brines)—Conservolea brines: MIX and LY: presence of oleoside after 14 and 63 days of fermentation, respectively. Final-stage fermentation (105 days, brines)—Conservolea brines, YL: higher content of tyrosol and hydroxytyrosol. Kalamàta brines: YL: caffeic and coumaric acid were not detected; MIX: high oleuropein content; LY: higher content of decarboxymethyl elenolic acid linked to hydroxytyrosol. | LC-MS/MS | ||||
Manzanilla (Seville region, Spain) | Treated process: Spanish-style; treatment with 3.2% (w/v) NaOH solution containing 2.2% (w/v) NaCl and 0.89% (w/v) CaCl2 for 7 h. Brine: 12.0% (w/v) NaCl, 0.13% (w/v) CaCl2, and 0.08% (v/v) HCl. Fermentation time and T °C: 65 days, at uncontrolled T °C (ranging from 29 °C to 16 °C). | LAB and Y starter T1: Lpb. pentosus LPG1; T2: Lpb. pentosus Lp13; T3: Lpb. plantarum Lpl15; T4: W. anomalus Y12; sequential starter T5: W. anomalus Y12 followed by a combination of Lpb. pentosus LPG1, Lp13, Lpb. plantarum Lpl15. T6: spontaneous fermentation. Inoculum level: 7 log cfu/mL for single strains (T1, T2, T3, T4; after 8th days of brining); 5 log cfu/mL for W. anomalus Y12 (1st day of brining) and 7 log cfu/mL for LAB mixture (after 8th days of brining) in T5 fermentation. | Final-stage fermentation (65 days, brines)—T1: reduced methanol, β-damascenone, but increased 2-phenylethyl acetate, 2-butanol, 1-butanol, 3-methyl-3-buten-1-ol, 2-methyl-3-hexanol; T2: high 1-butanol content; T3: presence of methanol, isoxylaldehyde and 4-ethylphenol, and reduced content of coumarin, 5-tert-butylpyrogalol and vanillin; T4: presence of 1-butanol, ethanol, methyl acetate, ethyl acetate, 2-phenylethyl acetate, or 2-methyl-1-butanol production, and lower levels of methanol, coumarin, and vanillin; T5: high total VOC content (except for ethanol, 1–heptanol, or cis-5-octen-1-ol). | SPME/ GC-MS | [70] |
Starter cultures: Yeasts | |||||
Kalamàta, Picual and Manzanilla (Marsa Matrouh, Egypt) | Natural process: Greek-style. Brine: 11% (w/v) NaCl. Fermentation time and T °C: 40 days at room T °C (19–27 °C). | Yeasts starter M1, P1, K1: Manzanilla, Picual, Kalamàta spontaneous fermentation with 1% v/v) vinegar in brines at the start of fermentation. M2, P2: Manzanilla, Picual olives with S. cerevisiae LI-180-7 (DSMZ27800); K2: Kalamàta olives with S. cerevisiae KI30-16 (DSMZ27801); M3, P3, K3: Manzanilla, Picual, Kalamàta olives with commercial S. cerevisiae baker’s yeast. Inoculum level: 7 log cfu/mL | Final-stage fermentation (40 days; olives)—All inoculated samples: oleuropein degradation and increased hydroxytyrosol content. Compared to spontaneous fermentation, inoculated samples had a more complex profile in esters (e.g., isoamyl acetate, ethyl lactate, ethyl hexanoate, ethyl octanoate, phenyl acetate), alcohols (e.g., 2,3-methyl-1-butanol, phenylethanol, hexanol, cis 3-hexen-1-ol, 1-heptanol., associated with positive flavour (e.g., fruity-green notes). | HPLC HS-SPME/ GC-MS | [71] |
Kalamàta (Northern Greece) | Natural process: Greek-style. Brine: 7% (w/v) NaCl acidified with 0.5% (v/v) vinegar (ca. 6.0%, v/v, acetic acid). Fermentation time and T °C: 150 days at room T °C. | Yeasts starter A: C. boidinii Y27; B: C. boidinii Y28; C: C. boidinii Y30; D: C. boidinii Y31; E: S. cerevisiae Y34; F: spontaneous fermentation. Inoculum level: 6 log cfu/mL | Final-stage fermentation (150 days)—Y starter exhibited different behaviour in metabolite production. A: highest amount of lactic and succinic acids; C: highest level of acetic and citric acids; E: highest amount of ethanol. Y27 showed the highest survival rate within olive fermentation; on the contrary, Y34 had the lowest survival. | HPLC | [72] |
Olive cultivar | Type of Process and Fermentative Conditions | Species and Strains Used as Starter Cultures | Effect on the Microbiota | Sequencing Method | Ref. |
---|---|---|---|---|---|
Starter cultures: Lactic Acid Bacteria (*) | |||||
Nocellara Etnea (Adrano, Sicily, Italy) | Natural process: Sicilian style, without lye treatment. Brine: 8% (w/v) marine salt. Fermentation time and T °C: 120 days at room T °C (20 ± 2 °C). | LAB starter BC1: Lpb. plantarum UT2.1, Lcb. paracasei N24, Lpb. pentosus TH969; BC2: Lpb. plantarum UT2.1; BC3: Lcb. paracasei N24, Lpb. pentosus TH969; BC4: Lpb. plantarum UT2.1, Lpb. pentosus TH969; BC5: Lpb. plantarum UT2.1, Lcb. paracasei N24; BC6: Lpb. pentosus TH969. C: uninoculated samples. Inoculum level: 7 log cfu/mL | Early-stage fermentation (1-day, brines)—All samples: Halomonas spp., Achromobacter spp., Marinobacter spp., Serratia spp., Bradyrhizobium spp. were the most abundant genera in C samples; lactobacilli (ex-Lactobacillus genus) dominated all inoculated samples. Middle-stage fermentation (60 days, brines)—BC2, BC3: Salinicola spp. (↑). BC2, BC3, BC6: Enterobacteriaceae (↑). BC3, BC6: Pediococcus parvulus (↑), Secundilactobacillus paracollinoides (↑), Ligilactobacillus acidipiscis (↑), Salinicola spp. (↑). BC6: Lactococcus lactis (↑). BC3, BC6: Lpb. plantarum (↓). Final-stage fermentation (120 days, brines)—BC1, BC3, BC4, BC6: Pediococcus parvulus (↑), Slb. paracollinoides (↑), Lgb. acidipiscis (↑). BC1, BC2, BC3, BC4, BC5: Salinicola spp. (↑). BC2: Marinilactibacillus spp. (↑), Halomonas spp. (↑). BC5: Lcb. casei/paracasei group (↑). BC2, BC5, C: Lpb. plantarum (↑). BC1, BC3, BC4, BC6: Lpb. plantarum (↓, although remained the most abundant group). All inoculated samples: Enterobacteriaceae (↓). | Ion Torrent PGM (V3 region of 16S rRNA gene) | [64] |
Picual (whole and cracked olives; Nicosia, Cyprus) | Natural process: Greek-style. Brine: 7% (w/v) or 10% (w/v) NaCl and 3.3% (v/v) citric acid. Fermentation time and T °C: 120 days at room T °C (23 ± 2 °C). | LAB starter S1, S4: spontaneous fermentations in cracked and whole olives, respectively. S2, S5: commercial starter Lpb. plantarum (Vege-Start 600, Chr. Hansen A/S) in 10% NaCl and 3.3% citric acid, cracked and whole olives, respectively. S3, S6: Lpb. plantarum (Vege-Start 600) in 7% NaCl and 3.3% citric acid, cracked and whole olives, respectively. Inoculum level: 5 log cfu/mL | Early-stage fermentation (1-day, olives)—All samples: Thermogemmatispora onikobensis, Chitinophaga soli (dominant species), Thiomonas thermosulfata, Bradyrhizobium pachyrhizi (co-dominant species), Lewinella lutea, Brevibacterium casei, Lpb. plantarum group (secondary species). Middle- and final-stage fermentation (60 and 120 days, brines)—S2, S5, S3, S6: Lpb. plantarum group (↑), Lcb. manihotivorans (↑). S1: Lcb. brantae (↑), Lentilactobacillus parakefiri (↑); Lcb. plantarum group (↓). S4: high diversity, Lcb. plantarum group was the most abundant species, followed by Lcb. manihotivorans, T. onikobensis, T. thermosulfata, Lcb. brantae, Lnb. parafarraginis, and Lnb. parakefiri. | Illumina MiSeq (V3–V4 region of 16S rRNA gene) | [43] |
Nocellara Etnea (Adrano and Paternò, Sicily, Italy) | Natural process: Sicilian style, without lye treatment. Brine: 5% or 8% (w/v) NaCl. Fermentation time and T °C: 80 days at room T °C (18 ± 2 °C). | LAB starter O1: Lpb. plantarum F1.16 and F3.5, in 5% NaCl. O2: Lpb. plantarum C11C8, F1.16, and F3.5, in 5% NaCl. C5 and C8: uninoculated samples with 5% or 8% NaCl, respectively. Inoculum level: 7 log cfu/mL | Middle- and final-stage fermentation (15 and 80 days, olives)—O1, O2: lactobacilli (ex-Lactobacillus genus; including Lpb. plantarum) dominated all inoculated samples; low occurrence of Enterobacter spp. Middle- and final-stage fermentation (15 and 80 days, olives)—C5: Enterobacter spp. and Weissella spp. (↑) at 15 days; Enterobacter spp. and lactobacilli (ex-Lactobacillus genus) (↑) at 80 days. C8: Weissella spp. was dominant at 15 and 80 days; low abundance of Bacteroides spp., Faecalibacterium spp., Klebsiella spp., Raoultella spp. at 15 days. | Illumina MiSeq (V3 region of 16S rRNA gene) | [66] |
Kalamata (Greece) | Natural process: Greek-style. Brine: 6% (w/v) NaCl. Fermentation time and T °C: 150 days, at 20 °C. | LAB starter A: spontaneous fermentation. B: Lcb. rhamnosus GG ATCC53103; C: Levilactobacillus brevis ATCC8287 starter culture; D: Lpb. plantarum ATCC14917. Inoculum level: n.a. (**) | Final-stage fermentation (150 days, olives)—All samples: starter cultures did not significantly affect the microbiota composition. Lactiplantibacillus (mainly Lpb. plantarum, followed by Lpb. pentosus, Lpb. plajomi, Lpb. paraplantarum) and Leuconostoc (mainly Leuc. mesenteroides, and then Leuc. gelidum) were the most abundant species. | Nanopore MinION™ (near full-length V1–V9 region of 16S rRNA gene) | [74] |
Manzanilla (Seville region, Spain) | Treated process: Spanish-style; treatment with 2.3% (w/v) NaOH solution for 7 h. Brine: 11.0% (w/v) NaCl acidified with 37% HCl. Fermentation time and T °C: 83 days, at room T °C. | LAB starter I: commercial starter containing 3 Lpb. pentosus strains (OleicaStarter Advance, TAFIQS in FOODs, Seville, Spain). U: spontaneous fermentation. F: fruits; B: brines (for coding samples) Inoculum level: 5 log cfu/mL | Early-stage fermentation (0 days, olives and brines)—U: high diversity, Vibrio spp., Salinivibrio spp., Marinilactobacillus spp., Alkalibacterium spp., Halolactibacillus spp., Aerococcus spp.; I: mainly Vibrio spp., Marinilactobacillus spp., Alkalibacterium spp., Halolactibacillus spp. Middle-stage fermentation (24 days, olives and brines)—U samples: high diversity and variability; UF: Vibrio spp., Marinilactobacillus spp., Alkalibacterium spp., Lactiplantibacillus spp. (↑); UB: Lactiplantibacillus spp. was dominant (↑). IF, IB: Lactiplantibacillus spp. was dominant (↑), followed by Vibrio spp. and Marinilactobacillus spp. Final-stage fermentation (83 days, olives and brines)—U samples: high diversity and variability; UF, UB, IF, IB: Lactiplantibacillus spp. was dominant (↑), Vibrio spp. (↓) and Marinilactobacillus spp. (↓). | Illumina MiSeq (V3–V4 region of 16S rRNA gene) | [54] |
Starter cultures: Lactic Acid Bacteria and Yeasts | |||||
Bella di Cerignola (Modugno, Apulia, Italy) | Natural process: Greek-style. Brine: 7% (w/v) NaCl. Fermentation time and T °C: 90 days at room T °C (18–25 °C) | LAB and Y starter S: commercial Lpb. plantarum (Sacco Srl company); SY: commercial Lpb. plantarum (Sacco Srl) and autochthon Wickerhamomyces anomalus DiSSPA73; SYL: commercial Lpb. plantarum (Sacco Srl) and autochthons W. anomalus DiSSPA73, Lpb. plantarum DiSSPA1A7, Lpb. pentosus DiSSPA7. Ctrl: spontaneous fermentation. Inoculum level: 7 log cfu/mL | Un-processed olives: Hafnia spp. and Methylobacterium spp. were dominant. Early-stage fermentation (1 day, brines)—Ctrl: Hafnia spp. (Hafnia alvei) (↑) was dominant. S, SY: co-occurrence of Hafnia spp. and Lpb. plantarum (↑); SYL: Lpb. plantarum/Lpb. pentosus (↑) were dominant. Middle-stage fermentation (75 days, brines)—Ctrl: co-occurrence of Lpb. plantarum (↑) and Lactococcus lactis (↑), presence of other minor genera; Lpb. plantarum (↑) for S, SY or Lpb. plantarum/Lpb. pentosus (↑) for SYL were completely dominant. Final-stage fermentation (90 days, brines)—Ctrl: Lpb. plantarum was the most abundant and metabolically active, together with a low fraction of Clostridium spp.; Lpb. plantarum (↑) for S, SY or Lpb. plantarum/Lpb. pentosus (↑) for SYL were completely dominant and metabolically active. Final-stage fermentation (90 days, olives)—Ctrl: Lpb. plantarum was the most abundant and metabolically active, together with a low fraction of Lc. lactis spp., Clostridium spp. (↓); Lpb. plantarum (↑) for S, SY or Lpb. plantarum/Lpb. pentosus (↑) for SYL were completely dominant and metabolically active, together with a low fraction of Methylobacterium spp. | Bacterial tag-encoded FLX amplicon pyrosequencing (V1–V3 region of 16S rRNA gene—on both DNA and RNA) | [61] |
Manzanilla (Seville region, Spain) | Treated process: Spanish-style; treatment with 3.2% (w/v) NaOH solution containing 2.2% (w/v) NaCl and 0.89% (w/v) CaCl2 for 7 h. Brine: 12.0% (w/v) NaCl, 0.13% (w/v) CaCl2, and 0.08% (v/v) HCl. Fermentation time and T °C: 65 days, at uncontrolled T °C (ranging from 29 °C to 16 °C). | LAB and Y starter T1: Lpb. pentosus LPG1; T2: Lpb. pentosus Lp13; T3: Lpb. plantarum Lpl15; T4: Wickerhamomyces anomalus Y12; sequential starter T5: W. anomalus Y12 followed by a combination of Lpb. pentosus LPG1, Lp13, Lpb. plantarum Lpl15. T6: spontaneous fermentation. Inoculum level: 7 log cfu/mL for single strains (T1, T2, T3, T4; after 8th days of brining); 5 log cfu/mL for W. anomalus Y12 (1st day of brining) and 7 log cfu/mL for LAB mixture (after 8th days of brining) in T5 fermentation. | Final-stage fermentation (65 days, olives)—All samples: Marinilactibacillus spp., Halolactibacillus spp., Lactobacillus spp. (Lpb. plantarum and/or Lpb. pentosus) and Alkalibacterium spp. were the most abundant genera, with a significant prevalence of Marinilactibacillus spp. (approximately from 40% to 60%). The highest %: Marinilactibacillus spp. in T1; Lactobacillus spp. (Lpb. plantarum and Lpb. pentosus) in T5; Halolactibacillus spp. in T2; Alkalibacterium spp. in T3 and T4. Aerococcus spp., Halomonas spp. and Bacillaceae family were also detected in all samples at very low occurrence. | Illumina MiSeq (V3–V4 region of 16S rRNA gene) | [70] |
4. “Omics” Approaches to Investigate the Functions of Table Olive Microbiomes and the Role of Starter Cultures
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- International Olive Oil Council. Available online: https://www.internationaloliveoil.org/ (accessed on 25 May 2024).
- International Olive Oil Council. Trade Standard Applying to Table Olives; International Olive Oil Council: Madrid, Spain, 2004; Available online: https://www.internationaloliveoil.org/wp-content/uploads/2019/11/COI-OT-NC1-2004-Eng.pdf (accessed on 25 May 2024).
- Boskou, D.; Camposeo, S.; Clodoveo, M.L. Table olives as sources of bioactive compounds. In Olive and Olive Oil Bioactive Constituents; Boskou, D., Ed.; AOCS Press: Urbana, IL, USA, 2015; pp. 217–259. ISBN 978-1-630670-41-2. [Google Scholar] [CrossRef]
- Conte, P.; Fadda, C.; Del Caro, A.; Urgeghe, P.P.; Piga, A. Table olives: An overview on effects of processing on nutritional and sensory quality. Foods 2020, 9, 514. [Google Scholar] [CrossRef] [PubMed]
- Portilha-Cunha, M.F.; Macedo, A.C.; Malcata, F.X. A review on adventitious lactic acid bacteria from table olives. Foods 2020, 9, 948. [Google Scholar] [CrossRef] [PubMed]
- Vichi, S.; Romero, A.; Tous, J.; Caixach, J. The activity of healthy olive microbiota during virgin olive oil extraction influences oil chemical composition. J. Agric. Food. Chem. 2011, 59, 4705–4714. [Google Scholar] [CrossRef] [PubMed]
- Bonatsou, S.; Tassou, C.C.; Panagou, E.Z.; Nychas, G.J.E. Table olive fermentation using starter cultures with multifunctional potential. Microorganisms 2017, 5, 30. [Google Scholar] [CrossRef] [PubMed]
- Pino, A.; De Angelis, M.D.; Todaro, A.; Van Hoorde, K.V.; Randazzo, C.L.; Caggia, C. Fermentation of Nocellara Etnea table olives by functional starter cultures at different low salt concentrations. Front. Microbiol. 2018, 9, 1125. [Google Scholar] [CrossRef] [PubMed]
- Pino, A.; Vaccalluzzo, A.; Solieri, L.; Romeo, F.V.; Todaro, A.; Caggia, C.; Arroyo-López, F.N.; Bautista-Gallego, J.; Randazzo, C.L. Effect of sequential inoculum of beta-glucosidase positive and probiotic strains on brine fermentation to obtain low salt Sicilian table olives. Front. Microbiol. 2019, 10, 174. [Google Scholar] [CrossRef] [PubMed]
- Guerrini, S.; Mari, E.; Barbato, D.; Granchi, L. Extra virgin olive oil quality as affected by yeast species occurring in the extraction process. Foods 2019, 8, 457. [Google Scholar] [CrossRef] [PubMed]
- Posada-Izquierdo, G.D.; Valero, A.; Arroyo-López, F.N.; González-Serrano, M.; Ramos-Benítez, A.M.; Benítez-Cabello, A.; Rodríguez-Gómez, F.; Jimenez-Diaz, R.; García-Gimeno, R.M. Behavior of Vibrio spp. in table olives. Front. Microbiol. 2021, 12, 650754. [Google Scholar] [CrossRef] [PubMed]
- Anagnostopoulos, D.A.; Tsaltas, D. Current status, recent advances, and main challenges on table olive fermentation: The present meets the future. Front. Microbiol. 2022, 12, 797295. [Google Scholar] [CrossRef]
- Corsetti, A.; Perpetuini, G.; Schirone, M.; Tofalo, R.; Suzzi, G. Application of starter culture to table olive fermentation: An overview on the experimental studies. Front. Microbiol. 2012, 3, 248. [Google Scholar] [CrossRef]
- Hurtado, A.; Reguant, C.; Bordons, A.; Rozès, N. Lactic acid bacteria from fermented table olives. Food Microbiol. 2012, 31, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Perpetuini, G.; Caruso, G.; Urbani, S.; Schirone, M.; Esposto, S.; Ciarrocchi, A.; Prete, R.; Garcia-Gonzalez, N.; Battistelli, N.; Gucci, R.; et al. Changes in polyphenolic concentrations of table olives (cv. Itrana) produced under different irrigation regimes during spontaneous or inoculated fermentation. Front. Microbiol. 2018, 9, 1287. [Google Scholar] [CrossRef] [PubMed]
- Heperkan, D. Microbiota of table olive fermentations and criteria of selection for their use as starters. Front. Microbiol. 2013, 4, 143. [Google Scholar] [CrossRef] [PubMed]
- Argyri, K.; Doulgeraki, A.I.; Manthou, E.; Grounta, A.; Argyri, A.A.; Nychas, G.J.E.; Tassou, C.C. Microbial diversity of fermented greek table olives of Halkidiki and Konservolia varieties from different regions as revealed by metagenomic analysis. Microorganisms 2020, 8, 1241. [Google Scholar] [CrossRef] [PubMed]
- Lucena-Padrós, H.; Ruiz-Barba, J.L. Microbial biogeography of Spanish-style green olive fermentations in the province of Seville, Spain. Food Microbiol. 2019, 82, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Kazou, M.; Tzamourani, A.; Panagou, E.Z.; Tsakalidou, E. Unraveling the microbiota of natural black cv. Kalamata fermented olives through 16S and ITS metataxonomic analysis. Microorganisms 2020, 8, 672. [Google Scholar] [CrossRef] [PubMed]
- Penland, M.; Deutsch, S.M.; Falentin, H.; Pawtowski, A.; Poirier, E.; Visenti, G.; Le Meur, C.; Maillard, M.B.; Thierry, A.; Mounier, J.M.; et al. Deciphering microbial community dynamics and biochemical changes during nyons black olive natural fermentations. Front. Microbiol. 2020, 11, 586614. [Google Scholar] [CrossRef] [PubMed]
- López-García, E.; Benítez-Cabello, A.; Ramiro-García, J.; Romero-Gil, V.; Rodríguez-Gómez, F.; Arroyo-López, F.N. New insights into microbial diversity of the traditional packed table olives Aloreña de Málaga through metataxonomic analysis. Microorganisms 2021, 9, 561. [Google Scholar] [CrossRef]
- Tsoungos, A.; Pemaj, V.; Slavko, A.; Kapolos, J.; Papadelli, M.; Papadimitriou, K. The rising role of omics and meta-omics in table olive research. Foods 2023, 12, 3783. [Google Scholar] [CrossRef]
- Cocolin, L.; Alessandria, V.; Botta, C.; Gorra, R.; De Filippis, F.; Ercolini, D.; Rantsiou, K. NaOH-debittering induces changes in bacterial ecology during table olives fermentation. PLoS ONE 2013, 8, e69074. [Google Scholar] [CrossRef]
- Rodríguez-Gómez, F.; Ruiz-Bellido, M.Á.; Romero-Gil, V.; Benítez-Cabello, A.; Garrido-Fernández, A.; Arroyo-López, F.N. Microbiological and physicochemical changes in natural green heat-shocked Aloreña de Málaga table olives. Front. Microbiol. 2017, 8, 2209. [Google Scholar] [CrossRef] [PubMed]
- Zinno, P.; Guantario, B.; Perozzi, G.; Pastore, G.; Devirgiliis, C. Impact of NaCl reduction on lactic acid bacteria during fermentation of Nocellara del Belice table olives. Food Microbiol. 2017, 63, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Benítez-Cabello, A.; Romero-Gil, V.; Medina-Pradas, E.; Garrido-Fernández, A.; Arroyo-López, F.N. Exploring bacteria diversity in commercialized table olive biofilms by metataxonomic and compositional data analysis. Sci. Rep. 2020, 10, 11381. [Google Scholar] [CrossRef] [PubMed]
- Medina, E.; Brenes, M.; García-García, P.; Romero, C.; de Castro, A. Microbial ecology along the processing of Spanish olives darkened by oxidation. Food Control 2018, 86, 35–41. [Google Scholar] [CrossRef]
- Perpetuini, G.; Prete, R.; Garcia-Gonzalez, N.; Khairul Alam, M.; Corsetti, A. Table olives more than a fermented food. Foods 2020, 9, 178. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Barba, J.L.; Sánchez, A.H.; López-López, A.; Cortés-Delgado, A.; Montaño, A. Microbial community and volatilome changes in brines along the spontaneous fermentation of Spanish-style and natural-style green table olives (Manzanilla cultivar). Food Microbiol. 2023, 113, 104286. [Google Scholar] [CrossRef] [PubMed]
- Timpanaro, N.; Rutigliano, C.A.C.; Benincasa, C.; Foti, P.; Mangiameli, S.; Nicoletti, R.; Muzzalupo, I.; Romeo, F.V. Comparing spanish-style and natural fermentation methods to valorise carolea, nocellara messinese and leccino as table olives. Horticulturae 2023, 9, 496. [Google Scholar] [CrossRef]
- Botta, C.; Cocolin, L. Microbial dynamics and biodiversity in table olive fermentation: Culture-dependent and -independent approaches. Front. Microbiol. 2012, 3, 245. [Google Scholar] [CrossRef] [PubMed]
- Bonatsou, S.; Paramithiotis, S.; Panagou, E.Z. Evolution of yeast consortia during the fermentation of Kalamata natural black olives upon two initial acidification treatments. Front. Microbiol. 2018, 8, 2673. [Google Scholar] [CrossRef]
- Arroyo-López, F.N.; Querol, A.; Bautista-Gallego, J.; Garrido-Fernández, A. Role of yeasts in table olive production. Int. J. Food Microbiol. 2008, 128, 189–196. [Google Scholar] [CrossRef]
- Lanza, B. Abnormal fermentations in table-olive processing: Microbial origin and sensory evaluation. Front. Microbiol. 2013, 4, 91. [Google Scholar] [CrossRef] [PubMed]
- Bleve, G.; Tufariello, M.; Durante, M.; Grieco, F.; Ramires, A.F.; Mita, G. Physicochemical characterization of natural fermentation process of Conservolea and Kalamàta table olives and development of a protocol for the pre-selection of fermentation starters. Food Microbiol. 2015, 46, 368–382. [Google Scholar] [CrossRef] [PubMed]
- Garcia, P.G.; Barranco, C.R.; Quintana, M.C.; Fernandez, A.G. Biogenic amine formation and “zapatera” spoilage of fermented green olives: Effect of storage temperature and debittering process. J. Food Prot. 2004, 67, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Campaniello, D.; Bevilacqua, A.; D’Amato, D.; Corbo, M.R.; Altieri, C.; Sinigaglia, M. Microbial characterization of table olives processed according to Spanish and natural styles. Food Technol. Biotechnol. 2005, 43, 289–294. [Google Scholar]
- Golomb, B.L.; Morales, V.; Jung, A.; Yau, B.; Boundy-Mills, K.L.; Marco, M.L. Effects of pectinolytic yeast on the microbial composition and spoilage of olive fermentations. Food Microbiol. 2013, 33, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Tufariello, M.; Durante, M.; Ramires, F.A.; Grieco, F.; Tommasi, L.; Perbellini, E.; Bleve, G. New process for production of fermented black table olives using selected autochthonous microbial resources. Front. Microbiol. 2015, 6, 1007. [Google Scholar] [CrossRef] [PubMed]
- Medina, E.; Brenes, M.; Romero, C.; Ramírez, E.; de Castro, A. Survival of foodborne pathogenic bacteria in table olive brines. Food Control 2013, 34, 719–724. [Google Scholar] [CrossRef]
- Medina, E.; Romero-Gil, V.; Garrido-Fernández, A.; Arroyo-López, F.N. Survival of foodborne pathogens in natural cracked olive brines. Food Microbiol. 2016, 59, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Posada-Izquierdo, G.D.; Arroyo-López, F.N.; Valero, A.; Benítez-Cabello, A.; Rodríguez-Gómez, F.; Jiménez-Díaz, R.; García-Gimeno, R.M. Assessing Listeria monocytogenes growth during Spanish-style green table olive fermentation. Food Control 2023, 45, 109489. [Google Scholar] [CrossRef]
- Anagnostopoulos, D.A.; Kamilari, E.; Tsaltas, D. Evolution of bacterial communities, physicochemical changes and sensorial attributes of natural whole and cracked Picual table olives during spontaneous and inoculated fermentation. Front. Microbiol. 2020, 11, 1128. [Google Scholar] [CrossRef]
- Lanza, B.; Zago, M.; Di Marco, S.; Di Loreto, G.; Cellini, M.; Tidona, F.; Bonvini, B.; Bacceli, M.; Simone, N. Single and multiple inoculum of Lactiplantibacillus plantarum strains in table olive lab-scale fermentations. Fermentation 2020, 6, 126. [Google Scholar] [CrossRef]
- Bevilacqua, A.; Beneduce, L.; Sinigaglia, M.; Corbo, M.R. Selection of yeasts as starter cultures for table olives. J. Food Sci. 2013, 78, 742–751. [Google Scholar] [CrossRef]
- Bleve, G.; Tufariello, M.; Durante, M.; Perbellini, E.; Ramires, F.A.; Grieco, F.; Cappello, M.S.; De Domenico, S.; Mita, G.; Tasioula-Margari, M.; et al. Physico-chemical and microbiological characterization of spontaneous fermentation of Cellina di Nardò and Leccino table olives. Front. Microbiol. 2014, 5, 570. [Google Scholar] [CrossRef]
- Lanza, B.; Di Marco, S.; Bacceli, M.; Di Serio, M.G.; Di Loreto, G.; Cellini, M.; Simone, N. Lactiplantibacillus plantarum used as single, multiple, and mixed starter combined with Candida boidinii for table olive fermentations: Chemical, textural, and sensorial characterization of final products. Fermentation 2021, 7, 239. [Google Scholar] [CrossRef]
- Medina, E.; Ruiz-Bellido, M.A.; Romero-Gil, V.; Rodríguez-Gómez, F.; Montes-Borrego, M.; Landa, B.B.; Arroyo-López, F.N. Assessment of the bacterial community in directly brined Aloreña de Málaga table olive fermentations by metagenetic analysis. Int. J. Food Microbiol. 2016, 236, 47–55. [Google Scholar] [CrossRef]
- Arroyo-López, F.N.; Benítez-Cabello, A.; Romero-Gil, V.; Rodríguez-Gómez, F.; Garrido-Fernández, A. Delving into the bacterial diversity of spoiled green Manzanilla Spanish-style table olive fermentations. Int. J. Food Microbiol. 2021, 359, 109415. [Google Scholar] [CrossRef]
- Tzamourani, A.P.; Kasimati, A.; Karagianni, E.; Manthou, E.; Panagou, E.Z. Exploring microbial communities of Spanish-style green table olives of Conservolea and Halkidiki cultivars during modified atmosphere packaging in multi-layered pouches through culture-dependent techniques and metataxonomic analysis. Food Microbiol. 2022, 107, 104063. [Google Scholar] [CrossRef] [PubMed]
- Kamilari, E.; Anagnostopoulos, D.A.; Tsaltas, D. Fermented table olives from Cyprus: Microbiota profile of three varieties from different regions through metabarcoding sequencing. Front. Microbiol. 2023, 13, 1101515. [Google Scholar] [CrossRef]
- Benítez-Cabello, A.; Romero-Gil, V.; Medina, E.; Sánchez, B.; Calero-Delgado, B.; Bautista-Gallego, J.; Jiménez-Díaz, R.; Arroyo-López, F.N. Metataxonomic analysis of the bacterial diversity in table olive dressing components. Food Control 2019, 105, 190–197. [Google Scholar] [CrossRef]
- Michailidou, S.; Petrovits, G.E.; Kyritsi, M.; Argiriou, A. Amplicon metabarcoding data of prokaryotes and eukaryotes present in ‘Kalamata’ table olives packaged under modified atmosphere. Data Brief 2021, 38, 107314. [Google Scholar] [CrossRef]
- López-García, E.; Benítez-Cabello, A.; Rodríguez-Gómez, F.; Romero-Gil, V.; Garrido-Fernández, A.; Jiménez-Díaz, R.; Arroyo-López, F.N. Bacterial metataxonomic analysis of industrial Spanish-style green table olive fermentations. Food Control 2022, 137, 108969. [Google Scholar] [CrossRef]
- Demirci, H.; Kurt-Gur, G.; Ordu, E. Microbiota profiling and screening of the lipase active halotolerant yeasts of the olive brine. World J. Microbiol. Biotechnol. 2021, 37, 23. [Google Scholar] [CrossRef] [PubMed]
- Benítez-Cabello, A.; Ramiro-García, J.; Romero-Gil, V.; Medina, E.; Arroyo-López, F.N. Fungal biodiversity in commercial table olive packages. Food Microbiol. 2022, 107, 104082. [Google Scholar] [CrossRef] [PubMed]
- Leal-Sánchez, M.V.; Ruiz-Barba, J.L.; Sánchez, A.H.; Rejano, L.; Jiménez-Dıaz, R.; Garrido, A. Fermentation profile and optimization of green olive fermentation using Lactobacillus plantarum LPCO10 as a starter culture. Food Microbiol. 2003, 20, 421–430. [Google Scholar] [CrossRef]
- Marsilio, V.; Seghetti, L.; Iannucci, E.; Russi, F.; Lanza, B.; Felicioni, M. Use of a lactic acid bacteria starter culture during green olive (Olea europaea L. cv Ascolana tenera) processing. J. Sci. Food Agric. 2005, 85, 1084–1090. [Google Scholar] [CrossRef]
- Servili, M.; Settanni, L.; Veneziani, G.; Esposto, S.; Massitti, O.; Taticchi, A.; Urbani, S.; Montedoro, G.F.; Corsetti, A. The use of Lactobacillus pentosus 1MO to shorten the debittering process time of black table olives (Cv. Itrana and Leccino): A pilot-scale application. J. Agric. Food. Chem. 2006, 54, 3869–3875. [Google Scholar] [CrossRef] [PubMed]
- Papadelli, M.; Zoumpopoulou, G.; Georgalaki, M.; Anastasiou, R.; Manolopoulou, E.; Lytra, I.; Papadimitriou, K.; Tsakalidou, E. Evaluation of two lactic acid bacteria starter cultures for the fermentation of natural black table olives (Olea europaea L. cv. Kalamon). Pol. J. Microbiol. 2015, 64, 265–271. [Google Scholar] [CrossRef] [PubMed]
- De Angelis, M.; Campanella, D.; Cosmai, L.; Summo, C.; Rizzello, C.G.; Caponio, F. Microbiota and metabolome of un-started and started Greek-type fermentation of Bella di Cerignola table olives. Food Microbiol. 2015, 52, 18–30. [Google Scholar] [CrossRef]
- Ruiz-Barba, J.L.; Cortés-Delgado, A.; Sánchez, A.H.; López-López, A.; Montaño, A. Impact of selected wild yeasts starters on the volatilome and phenolic contents of Gordal, Manzanilla and Hojiblanca naturally fermented green olives. LWT-Food Sci. Technol. 2024, 195, 115811. [Google Scholar] [CrossRef]
- Campus, M.; Sedda, P.; Cauli, E.; Piras, F.; Comunian, R.; Paba, A.; Daga, E.; Schirru, S.; Angioni, A.; Zurru, R.; et al. Evaluation of a single strain starter culture, a selected inoculum enrichment, and natural microflora in the processing of Tonda di Cagliari natural table olives: Impact on chemical, microbiological, sensory and texture quality. LWT-Food Sci. Technol. 2015, 64, 671–677. [Google Scholar] [CrossRef]
- Randazzo, C.L.; Todaro, A.; Pino, A.; Pitino, I.; Corona, O.; Caggia, C. Microbiota and metabolome during controlled and spontaneous fermentation of Nocellara Etnea table olives. Food Microbiol. 2017, 65, 136–148. [Google Scholar] [CrossRef]
- Paba, A.; Chessa, L.; Daga, E.; Campus, M.; Bulla, M.; Angioni, A.; Sedda, P.; Comunian, R. Do best-selected strains perform table olive fermentation better than undefined biodiverse starters? A comparative study. Foods 2020, 9, 135. [Google Scholar] [CrossRef] [PubMed]
- Vaccalluzzo, A.; Celano, G.; Pino, A.; Calabrese, F.M.; Foti, P.; Caggia, C.; Randazzo, C. Metagenetic and volatilomic approaches to elucidate the effect of Lactiplantibacillus plantarum starter cultures on Sicilian table olives. Front. Microbiol. 2022, 12, 771636. [Google Scholar] [CrossRef] [PubMed]
- de Castro, A.; Sánchez, A.H.; Cortés-Delgado, A.; López-López, A.; Montaño, A. Effect of Spanish-style processing steps and inoculation with Lactobacillus pentosus starter culture on the volatile composition of cv. Manzanilla green olives. Food Chem. 2019, 271, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Hurtado, A.; Reguant, C.; Bordons, A.; Rozès, N. Evaluation of a single and combined inoculation of a Lactobacillus pentosus starter for processing cv. Arbequina natural green olives. Food Microbiol. 2010, 27, 731–740. [Google Scholar] [CrossRef]
- Chytiri, A.; Tasioula-Margari, M.; Bleve, G.; Kontogianni, V.G.; Kallimanis, A.; Kontominas, M.G. Effect of different inoculation strategies of selected yeast and LAB cultures on Conservolea and Kalamata table olives considering phenol content, texture, and sensory attributes. J. Sci. Food Agric. 2020, 100, 926–935. [Google Scholar] [CrossRef] [PubMed]
- Benítez-Cabello, A.; Calero-Delgado, B.; Rodríguez-Gómez, F.; Bautista-Gallego, J.; Garrido-Fernández, A.; Jiménez-Díaz, R.; Arroyo-López, F.N. The use of multifunctional yeast-lactobacilli starter cultures improves fermentation performance of Spanish-style green table olives. Food Microbiol. 2020, 91, 103497. [Google Scholar] [CrossRef]
- Tufariello, M.; Anglana, C.; Crupi, P.; Virtuosi, I.; Fiume, P.; Di Terlizzi, B.; Moselhy, N.; Attay, H.A.; Pati, S.; Logrieco, A.F.; et al. Efficacy of yeast starters to drive and improve Picual, Manzanilla and Kalamàta table olive fermentation. J. Sci. Food Agric. 2019, 99, 2504–2512. [Google Scholar] [CrossRef]
- Bonatsou, S.; Panagou, E.Z. Fermentation of cv. Kalamata natural black olives with potential multifunctional yeast starters. Foods 2022, 11, 3106. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef]
- Vougiouklaki, D.; Letsiou, S.; Mavrokefalidou, I.; Tsakali, E.; Akkermans, S.; Van Impe, J.F.M.; Houhoula, D. Fermentation of Kalamata natural black olives using selected lactic acid bacteria as starters. Fermentation 2024, 10, 53. [Google Scholar] [CrossRef]
- Chen, G.; Chen, C.; Lei, Z. Meta-omics insights in the microbial community profiling and functional characterization of fermented foods. Trends Food Sci. Technol. 2017, 65, 23–31. [Google Scholar] [CrossRef]
- Walsh, L.H.; Coakley, M.; Walsh, A.M.; O’Toole, P.W.; Cotter, P.D. Bioinformatic approaches for studying the microbiome of fermented food. Crit. Rev. Microbiol. 2022, 49, 693–725. [Google Scholar] [CrossRef] [PubMed]
- Soto-Giron, M.J.; Kim, J.N.; Schott, E.; Tahmin, C.; Ishoey, T.; Mincer, T.J.; DeWalt, J.; Toledo, G. The Edible plant microbiome represents a diverse genetic reservoir with functional potential in the human host. Sci. Rep. 2021, 11, 24017. [Google Scholar] [CrossRef] [PubMed]
- Pessione, A.; Lo Bianco, G.; Mangiapane, E.; Cirrincione, S.; Pessione, E. Characterization of potentially probiotic lactic acid bacteria isolated from olives: Evaluation of short chain fatty acids production and analysis of the extracellular proteome. Food Res. Int. 2015, 67, 247–254. [Google Scholar] [CrossRef]
- Casado Muñoz, M.C.; Benomar, N.; Ennahar, S.; Horvatovich, P.; Lavilla Lerma, L.; Knapp, C.W.; Gálvez, A.; Abriouel, H. Comparative proteomic analysis of a potentially probiotic Lactobacillus pentosus MP-10 for the identification of key proteins involved in antibiotic resistance and biocide tolerance. Int. J. Food. Microbiol. 2016, 222, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Pérez Montoro, B.; Benomar, N.; Caballero Gómez, N.; Ennahar, S.; Horvatovich, P.; Knapp, C.W.; Alonso, E.; Gálvez, A.; Abriouel, H. Proteomic analysis of Lactobacillus pentosus for the identification of potential markers of adhesion and other probiotic features. Food Res. Int. 2018, 11, 58–66. [Google Scholar] [CrossRef] [PubMed]
- López-García, E.; Benítez-Cabello, A.; Tronchoni, J.; Arroyo-López, F.N. Understanding the transcriptomic response of Lactiplantibacillus pentosus LPG1 during Spanish-style green table olive fermentations. Front. Microbiol. 2023, 14, 1264341. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giavalisco, M.; Lavanga, E.; Ricciardi, A.; Zotta, T. Starter Cultures for the Production of Fermented Table Olives: Current Status and Future Perspectives. Fermentation 2024, 10, 351. https://doi.org/10.3390/fermentation10070351
Giavalisco M, Lavanga E, Ricciardi A, Zotta T. Starter Cultures for the Production of Fermented Table Olives: Current Status and Future Perspectives. Fermentation. 2024; 10(7):351. https://doi.org/10.3390/fermentation10070351
Chicago/Turabian StyleGiavalisco, Marilisa, Emanuela Lavanga, Annamaria Ricciardi, and Teresa Zotta. 2024. "Starter Cultures for the Production of Fermented Table Olives: Current Status and Future Perspectives" Fermentation 10, no. 7: 351. https://doi.org/10.3390/fermentation10070351
APA StyleGiavalisco, M., Lavanga, E., Ricciardi, A., & Zotta, T. (2024). Starter Cultures for the Production of Fermented Table Olives: Current Status and Future Perspectives. Fermentation, 10(7), 351. https://doi.org/10.3390/fermentation10070351