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Abstract: This study aimed to assess how the bacterial-enzyme co-fermentation of corn straw
affects fermentation quality, the digestion rate in Hu sheep, and rumen microorganisms. Orthogonal
experiments were utilized to establish the optimal fermentation conditions, which were subsequently
applied in bacterial-enzyme fermentation trials involving four groups: group A (control), group B
(enzyme added), group C (bacteria added), and group D (bacteria + enzyme). The results show that
the optimal fermentation conditions were the addition of 2% corn flour, 2% cottonseed meal, and
60% moisture. In comparison with group A, group D demonstrated the most favorable outcomes,
notably reducing the pH and cellulose content while enhancing the lactic acid content. The relative
abundances of Pantoea and Weissella reduced, whereas those of Lactiplantibacillus and Limosilactobacillus
increased, in the fermented corn straw. In the animal experiments, group D exhibited significantly
higher digestibility of NDF and ADF; total VFA, acetic acid, and NH3-N contents; and enzyme activity
compared with groups A and B. Additionally, the relative abundances of Prevotella, NK4A214-group,
Entodinium, and Polyplastron increased, while those of Dasytricha and Enoploplastron decreased, in
group D compared with group A. It can be concluded that Lactobacillus plantarum and cellulase
treatments enhance the nutritional value of corn straw by improving ruminal fermentation and
regulating the sheep rumen microbiota.

Keywords: Hu sheep; corn straw; microbial fermentation; enzyme hydrolysis; nutrient digestibility;
rumen microbiota

1. Introduction

In China, the total annual output of rice, wheat, and corn straw is about 800 million
tons [1]. Corn stalks make up 41.92% of all crop residues, making them the most abundant
agricultural byproduct [2,3]. Straw utilization is one of the important components of the
“double carbon” strategy, and national and local policies have also been introduced to
accelerate the process of straw utilization. The use of corn straw as animal feed is an
effective way to improve the utilization of corn straw resources as well as alleviate the
problem of feed shortage. Corn straw contains high levels of carbohydrates, specifically,
cellulose and hemicellulose, serving as valuable energy sources for ruminants. Nonetheless,
its digestibility and nutritional value for ruminants are limited by the presence of lignin,
a resilient polymer that encases cellulose and hemicelluloses, thereby impeding their
utilization by rumen microbes [3,4]. At present, the commonly used methods for treating
straw include silage, alkalization, ammonification, and saccharification. Straw silage is
commonly used for the preservation of seasonally harvested energy crops. Alkalization
and ammonization have been shown to enhance lignocellulose’s digestibility, although
they may also lead to environmental contamination. Preserving straw saccharification
poses challenges. In contrast, microbial fermentation and enzyme hydrolysis of straw
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offer benefits, such as prolonged storage, freedom from seasonal limitations, and minimal
environmental impacts, making them favorable options for farmers.

Fermented corn straw involves the treatment of corn straw using microorganisms,
enzymes, or a combination of both. Commonly utilized microorganisms include lactic acid
bacteria and fungi, while the primary enzyme employed is cellulase. Lactobacillus plantarum
is a homofermentative lactic acid bacterium that can completely convert lactose into lactic
acid [5], which serves to soften lignin and enhance feed odor. Softening lignin facilitates
the susceptibility of cellulose to cellulase activity, resulting in the production of additional
small-molecule carbohydrates. Furthermore, these small-molecule carbohydrates can serve
as an energy source for L. plantarum, thereby promoting its growth. It was reported that
Lactobacillus plantarum and cellulase have a synergistic effect [6].

The stability of the rumen microflora is essential for preserving the host’s health and
productivity, as the rumen microbiota is a complex system that is influenced by diet [7].
Fermented corn straw contains beneficial bacteria that can enhance animal health by mod-
ulating the gut microflora [8]. Research has demonstrated that Lactobacillus can have a
beneficial impact on the host’s intestinal microbiota [9]. Yanti et al. indicated that the
introduction of lactic acid bacteria during straw fermentation can alter rumen fermentation
and metabolic products in Hu sheep by influencing the gut bacterial community, which
is beneficial to the health of ruminants [10]. Liu et al. studied the co-fermentation of
total mixed rations (TMRs), including rape straw, by Lactobacillus plantarum and found
that the fermentation quality, nutritional characteristics, and digestibility in vitro were
improved [11]. Cellulases can degrade cellulose into oligosaccharides, which have demon-
strated probiotic properties in animal feed, and cellulosic biomass can be degraded by
cellulases into glucose, which can provide energy for microorganisms [12].

Therefore, it was hypothesized that cellulase can decompose cellulose to produce
glucose, providing energy for lactic acid bacteria. Both exhibit a synergistic effect that can
improve the fermentation quality of corn straw, increase feed digestibility, and enhance the
gut microbiota of animals. To test this hypothesis, Lactobacillus plantarum and cellulase corn
straw co-fermentation and a Hu sheep feeding experiment were conducted to evaluate the
digestibility, rumen fermentation, and microbial community, thereby assessing the value
enhancement of corn straw through microbial-enzyme synergistic fermentation.

2. Materials and Methods
2.1. Preparation of the Differently Treated Corn Straw

For the experiment, a three-factor and three-level orthogonal design was used. The
three factors were labeled as A, B, and C. A indicated the corn flour; B represented the
cottonseed meal; and C represented water. Each factor had three levels, denoted as 1,
2, and 3. Table 1 displays the amounts for each level of the influencing factors. Nine
sets of experiments were performed using this orthogonal design, with an additional
control group, as shown in Table 2. Each group had 6 replicates, with each replicate
weighing approximately 500 g. The control group contained only corn straw, with the
moisture content adjusted to 65%. Each experimental group was mixed evenly according
to the orthogonal experimental design, and a certain amount of Lactobacillus plantarum was
added to achieve a live count of 1 x 10° colony-forming units per gram (CFU)/g. After
mixing, the materials were placed into polyethylene vacuum bags, sealed with a vacuum-
packaging machine, and then fermented at room temperature (18-26 °C) for 28 days. After
fermentation, the pH was measured, and the optimal substrate ratio and water content
were determined using the pH as the main index.
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Table 1. Orthogonal experimental design factor table.

Factor
Levels
A B C
1 Al (1%) B1 (1%) C1 (60%)
2 A2 (2%) B2 (2%) C2 (65%)
3 A3 (3%) B3 (3%) C3 (70%)
Table 2. Orthogonal experimental design table.
Groups Factor
A B C
Control 0 0 2
1 Al Bl C1
2 Al B2 C3
3 Al B3 C2
4 A2 Bl C2
5 A2 B2 C1
6 A2 B3 C3
7 A3 Bl C3
8 A3 B2 C2
9 A3 B3 C1

2.2. Composite Fermentation of Corn Straw by Bacteria and Enzymes

Based on the optimal composition of fermentation substrates obtained in Section 2.1,
fermentation was performed with the bacterium—enzyme complex. The following four
groups were established: Group A, naturally fermented corn straw without feed additives;
Group B, fermented corn straw with L. plantarum (1 x 10® CFU/ g biomass); Group C,
fermented corn straw with cellulase (0.1 filter paper unit (FPU)/g biomass); Group D,
fermented corn straw with L. plantarum (1 x 10° CFU/g biomass) and cellulase (0.1 FPU/g
biomass). The China General Microbiological Culture Collection Center (CGMCC) provided
L. plantarum (CGMCC 1.12934). Cellulase (347 FPU/g) was purchased from Xiasheng
Industrial Group Co., Ltd. (Yinchuan, China). Corn straw was packed into vacuum-sealed
polyethylene plastic bags and fermented at room temperature (18-26 °C) for 28 days.
Subsequently, the pH, viable count of Lactobacillus, and cellulose degradation rate were
measured. Microbial sequencing was then conducted to analyze the microbial community.

2.3. Fermentation Parameter Determination

The homogenized microstorage sample (20 g) was extracted with 100 mL of distilled
water at 4 °C for 24 h. Next, the solution was filtered through four layers of gauze and
qualitative filter paper. The pH of the extracted solution was immediately measured using a
digital pH meter. The remaining filtrate was then transferred to a centrifuge tube and stored
at —20 °C for further analysis. The concentration of ammoniacal nitrogen (NH3-N) was
determined using the phenol-sodium hypochlorite colorimetric method [13]. Meanwhile,
the concentrations of lactic acid and volatile fatty acids (VFAs) (acetic acid, propionic acid,
and butyric acid) were determined using a gas chromatograph (GC-2010 Pro; Shimadzu,
Kyoto, Japan), following a previously reported protocol [14]. The filtrate (10 mL) was
appropriately diluted and incubated in De Man, Rogosa, and Sharpe medium at 37 °C
for 48 h. The viable count of lactic acid bacteria was determined using a plate-counting
method. The microbial counts were indicated as the natural logarithm of the numbers of
CFU per gram of the sample.
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2.4. Nutrient Analysis

The feed samples were dried at 65 °C in an oven, pulverized, and passed through a
40-mesh screen to ensure consistency. Neutral detergent fiber (NDF), acid detergent fiber (ADF),
cellulose, and hemicellulose were quantified, following the methods of Van Soest et al. [15].

2.5. Animals Trial Design

All animal experimental procedures were approved by the Animal Care and Use
Committee of Henan Agricultural University (Approval number: HENAU-2021-025). Male
Hu sheep (n = 24) aged 3 months with a body weight of 22.05 & 0.77 kg were randomly
classified into three groups (8 sheep/group). Each sheep was raised in an individual cage.
The sheep were fed diets with a forage-to-concentrate ratio of 50:50 (dry matter basis)
comprising the same concentrate and alfalfa and different treatment groups of fermented
corn straw (Table 3). The concentration of different treatment groups of fermented corn
straw in the diet was 40% (dry matter basis). The roughage was evenly mixed with the
concentrate feed before feeding. Diet and water were provided ad libitum. The feeding
experiment duration was 50 days, which included a 10-day adaptation period.

Table 3. Feed composition and nutrient levels of diets (%, dry matter basis).

Items Group A Group B Group D
Corn meal 24.00 24.00 24.00
Wheat bran 10.20 10.20 10.56
Soybean meal 13.00 13.00 13.00
CaHPOy4 1.00 1.00 1.00
Limestone 0.44 0.44 0.44
NaCl 0.36 0.36 0.00
Premix 1.00 1.00 1.00
Alfalfa 10.00 10.00 10.00
Air dry corn straw 40.00 0.00 0.00
Fermented corn straw 0.00 40.00 40.00
Total 100.00 100.00 100.00
Nutrient levels
EE 1.56 1.61 1.77
CP 15.37 15.57 16.33
NDEF 39.79 38.64 39.32
ADF 27.53 28.67 27.12
Ca 0.91 0.94 0.97
P 0.50 0.52 0.54
ME (M]/kg) 9.31 9.31 9.34

Note: The composition of the premix feed (for 1 kg) was as follows: 66 mg Fe (ferrous sulfate), 16 mg Cu (cupric
sulfate pentahydrate), 59 mg Mn (anhydrous manganese sulfate), 0.84 mg Se (sodium selenite), 140 mg Zn
(zinc sulfate), 1.4 mg I (potassium iodide), 0.04 mg Co (cobalt sulfate), 13,400 IU vitamin A, 4200 IU vitamin
D, 40 mg vitamin E, and 5.0 g NaHCOj. The nutrient contents were measured to determine the metabolizable
energy. EE, ether extract; CP, crude protein; Ca, calcium; P, phosphorus; NDEF, neutral detergent fiber; ADF, acid
detergent fiber.

2.6. Sample Collection

At the end of the feeding experiment, the fecal samples were collected for three
consecutive days (days 47-49). Nylon nets with a mesh size of 5 mm X 7 mm were
positioned beneath the cages to facilitate the separation of feces from urine. At the end of
each day, fecal matter from each cage was collected, and cecotrophs were discarded. The
fecal samples were then dried in a draft oven at 60 °C until a constant weight was obtained.
The dried fecal samples were subsequently pooled, and approximately 50 g of the samples
were allocated for further nutrient analyses.

At the end of the feeding experiment, the ruminal fluid was collected using a rumen
catheter with sterile handling in the morning before feeding. The fluid was filtered through
a four-layer gauze. A sample of the ruminal fluid was immediately used to measure pH
with a portable pH meter (PHB-4; Shanghai Leici Co. Ltd., Shanghai, China). Additionally,
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the remaining sample was transferred to centrifuge tubes and stored in a —80 °C refrigerator
to analyze ruminal fermentation parameters and microbial flora.

2.7. Apparent Nutrient Digestibility Measurements

The acid-insoluble ash was used as an indicator to calculate apparent nutritional
digestibility. The nutrient contents in the diets and feces were identified based on the
following Chinese Standards: GB 5009.4-2016 for ash, GB/T 6432-2018 for crude pro-
tein (CP), GB/T 6433-2006 for ether extract (EE), GB/T 6436-2018 for calcium (Ca), and
GB/T 6437-2018 for total phosphorus (P). NDF and ADF were determined as described in
Section 2.4.

2.8. Rumen Fermentation Parameters and Enzyme Activity Determinations

The concentrations of NH3-N and VFAs (acetic acid, propionic acid, isobutyric acid,
and butyric acid) were determined as described in Section 2.3. Cellulase, amylase, and
protease activities were determined following the methods of Elolimy et al. [16].

2.9. Microbial 16S and 18S rRNA Sequencing

Majorbio Bio-Pharm Co. Ltd. (Shanghai, China) performed RNA sequencing. Total
DNA was extracted from each sample as described previously [17]. To determine ruminal
bacterial diversity, the V3-V4 region of 165 rRNA was amplified using specific primers
(338F: 5'-ACTCCTACGGGAGGCAGCAG-3’; 806R: 5'-GGAC-TACHVGGGTWTCTAAT-3').
Ruminal ciliate diversity was determined using 185 rRNA sequencing.  The
V4-V5 hypervariable region of 185 rRNA was amplified with eukaryotic primers (547F:
5'-CCAGCASCYGCGG-TAATTCC); 4R: 5'-ACTTTCGTTCTTGATYRA-3'). Amplicon se-
quencing was performed using the Illumina MiSeq system (Illumina MiSeq, San Diego,
CA, USA). The raw sequencing data were spliced, filtered, and dechimerized to obtain an
optimized sequence. Based on the optimized sequences, operational taxonomic unit (OTU)
abundance tables were generated for further bioinformatics analyses.

The data from this study have been deposited in the National Center for Biotechnology
Information Sequence Read Archive (accession number: PRINA1095653).

2.10. Statistical Analysis

The data are represented as mean + standard deviation. The mean digestibility and
fermentation parameters of nutrients and enzyme activity of the rumen were analyzed
using one-way analysis of variance, followed by Duncan’s multiple comparison test. Statis-
tical analyses were performed using IBM SPSS Statistics 26. Differences were considered
significant at p < 0.05.

A 97% similarity cutoff was used to cluster the OTUs, and chimeras were removed
with the UPARSE software (v 7.1, http:/ /drive5.com/uparse/, accessed on 25 July 2024).
The Bayesian algorithm of the RDP classifier was used to perform the taxonomic analysis of
OTU representative sequences with 97% similarity. Community species composition was
determined for each sample. In the final step, the identified classifications were matched
against the Silva 16S rRNA database (Release138, http:/ /www.arb-silva.de, accessed on
25 July 2024) with a 70% confidence threshold. The correlation between environmental
factors and rumen bacteria or ciliates was analyzed using the Spearman correlation analysis
(Spearman coefficient). All correlation heat maps and hierarchical clusters were prepared
with the CRAN “pheatmap” package of R studio (version 3.3.1, http:/ /www.r-project.org,
accessed on 25 July 2024).

3. Results
3.1. Orthogonal Experimental Analysis Results

The results of an orthogonal experimental analysis performed using pH as the refer-
ence index are presented in Table 4. The order of factors with the primary and secondary
influences on the pH of corn straw microstorage samples was as follows: C > A > B. The
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orthogonal test identified the optimal combination as A2B2C1 (group 5), which exhibited
a significantly lower pH when compared with the other groups (p < 0.05). Consequently,
the optimal composition for dry matter in the corn straw microstorage samples was deter-
mined to be 96% corn straw, 2% cornmeal, 2% cottonseed meal, and 60% moisture content.
Subsequent experiments were conducted using this optimal composition.

Table 4. The orthogonal test results.

Groups Al% B/% C/% pH
Control 0 0 65% 6.50 +0.012
1 1 1 1 488 +0.20°¢
2 1 2 3 5.66 +0.10P
3 1 3 2 5.62 +0.30b
4 2 1 2 557 +052b
5 2 2 1 439+ 0.04°¢
6 2 3 3 542 +0.11b
7 3 1 3 5.59 + 0.04 b
8 3 2 2 545 +0.71b
9 3 3 1 549 +0.13b
K1 5.66 5.31 4.85
K2 5.26 5.27 5.12 AyB,Cq
K3 5.27 5.62 6.21 Rc >R >Rp
R 0.40 0.35 1.36

Note: The K value in the table denotes the mean value of each factor at the same level, while the R value signifies
the range, which is defined as the difference between the maximum and minimum values of each factor among
K1, K2, and K3. Within the same column, values annotated with different lowercase superscript letters indicate
significant differences (p < 0.05), while those sharing the same superscript or lacking a superscript indicate
non-significant differences (p > 0.05).

3.2. Effect of Bacterium—Enzyme Compound Fermentation on the Quality of Corn Straw

Table 5 shows the pH values, the number of lactic acid bacteria, and the levels of
cellulose, hemicellulose, NDF, and ADEF. After 28 days of fermentation, the pH values of
fermented corn straw in group D were lower than those in groups A, B, and C. Additionally,
group D exhibited the highest concentration of viable bacteria. Furthermore, the levels
of cellulose, hemicellulose, NDF, and ADF in groups C and D were markedly lower than
those in groups A and B. The cellulose, hemicellulose, NDF, and ADF levels were not
significantly different between groups C and D (p > 0.05).

Table 5. Effect of bacteria—enzyme compound fermentation on the quality of corn straw.

Items Group A Group B Group C Group D
pH 5.63 +0.052 473 £0.07°¢ 5.19 + 0.04® 3.88 £0.014
Lactic acid bacterium counts 8.56 +0.03 ¢ 8.86 + 0.07 2 8.67 +0.18 bc 8.92 +0.08 2
Cellulose (%) 3532 +1.022 34124+071% 2817 +156P 29.52 +0.50°
Hemicellulose (%) 25004+ 0152  2494+0512  23.04 +046° 22.70 + 0.89 °
NDF (%) 672941212  6756+1772 5778 £2.74P 60.59 + 0.73 P
ADF (%) 422941352 4263 +1562 3474 +280° 37.89 +0.71°

Note: In the same row, values annotated with different lowercase superscript letters indicate significant differences
(p < 0.05), while those sharing the same superscript or lacking a superscript indicate non-significant differences
(p > 0.05). NDF, neutral detergent fiber; ADF, acid detergent fiber.

3.3. Effect of Bacterium—Enzyme Complex-Mediated Fermentation on Fermentation Parameters
and Bacterial Composition of Corn Straw

The results presented in Section 3.2 demonstrated that the cellulose and hemicellulose
levels in group C were lower than those in group B. However, group C exhibited a signifi-
cantly high pH value, which is not ideal for storing fermented straw. Thus, groups A, B,
and D were selected for further analyses.

Table 6 shows the fermentation parameters. The NH;3-N concentration in group D
was markedly lower than that in groups A and B. The lactic acid levels in group D were
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significantly higher than those in groups A and B (p < 0.05), but were not significantly
different between groups A and B (p > 0.05).

Table 6. Effect of bacteria—enzyme compound fermentation on fermentation parameters of corn straw.

Items Group A Group B Group D
NH;3-N (mg/dL) 43840392 3.7440.17° 3.07 +£0.17°¢
Lactic acid (mg/mL) 9.81 +£0.17b 1021 + 0.48P 13.03 + 0.85 2
Acetic acid (mg/mL) 318 +0.10° 4.05+0.112 3.64 4 0.40
Propionic acid (mg/mL) - - -
Butyric acid (mg/mL) - - -

Note: In the same row, values annotated with different lowercase superscript letters indicate significant differences
(p < 0.05), while those sharing the same superscript or lacking a superscript indicate non-significant differences
(p > 0.05).

Figure 1 shows the abundances of the top 10 bacterial genera in the fermented corn
straw. The dominant genera were Pantoea, Lactiplantibacillus, unclassified_o__Enterobacterales,
Levilactobacillus, Weissella, and Limosilactobacillus. Compared with those in groups A and B,
the relative abundances of Lactiplantibacillus and Limosilactobacillus were markedly higher,
and the abundances of Pantoea and Weissella were lower in group D.

100+

W Pantoea

W Lactiplantibacillus

M unclassified o__Enterobacterales

M Levilactobacillus

60 Weissella

W Limosilactobacillus
Kilebsiella

40 M Gluconobacter

M Lentilactobacillus
Asaia

W others

80+

Percent of community abundance on Genus level (%)

0.0-
Group A Group B Group D

Figure 1. Genus-level bacterial compositions and abundances in the fermented corn straw.

3.4. Effect of Fermented Corn Straw on Apparent Digestibility of Hu Sheep

As shown in Table 7, the apparent digestibility of EE in group D was significantly
higher than that in group A (p < 0.05). Additionally, the apparent digestibility of P, NDEF,
and ADF in group D was markedly higher than that in groups A and B (p < 0.05), but was
not significantly different between groups A and B. Furthermore, the apparent digestibility
of CP and Ca was not significantly different between groups A, B, and D (p > 0.05).

Table 7. Effects of fermented corn straw on apparent digestibility of Hu Sheep.

Items Group A Group B Group D
EE 78.23 + 8.14" 84.90 + 6.92 2b 88.55 + 4.812
CP 70.32 + 0.87 71.63 + 4.45 75.70 + 4.81
Ca 23.03 + 1.80 23.35 + 0.52 2395 +1.15

P 21.19 + 0.86 ° 21.20 + 0.53P 23.62 +1.362

NDF 67.01 +£3.84b 66.37 £ 5.62P 82.93 +7.332

ADF 55.72 + 353" 54.01 +1.70P 61.69 £ 5.36 2

Note: In the same row, values annotated with different lowercase superscript letters indicate significant differences
(p < 0.05), while those sharing the same superscript or lacking a superscript indicate non-significant differences
(p > 0.05). EE, ether extract; CP, crude protein; Ca, calcium; P, phosphorus; NDF, neutral detergent fiber; ADF, acid
detergent fiber.
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3.5. Effects of Fermented Corn Straw on Rumen Fermentation Parameters of Hu Sheep

As shown in Table 8, the ruminal pH value in group D was significantly lower than
that in group A (p < 0.05). The ruminal NH3-N, total VFA, and acetic acid contents in
group D were significantly higher than those in groups A and B (p < 0.05). The levels of
ruminal propionic acid, isobutyric acid, and butyric acid were not significantly different
between groups A, B, and D (p > 0.05). The protease activity in group D was significantly
higher than that in groups A and B (p < 0.05) and was not significantly different between
groups A and B. Amylase activity in group D was significantly higher than that in group A
(p < 0.05) and was similar to that in group B.

Table 8. Effects of fermented corn straw on rumen fermentation parameters and enzyme activities of
Hu Sheep.

Items Group A Group B Group D
pH 7.50 £0.182 7.41 4 0.14 2 7.27 +£0.12b
NH;3-N (mg/dL) 19.18 +1.94 ¢ 20.52 + 0.63 b° 23.76 £1.822
Total volatile fatty acids (mg/mL) 2.67 +£0.24° 244 +0.18° 35140212
Acetic acid (mg/mL) 1.20 £ 0.06 P 1.50 £ 0.18 P 297 +£0.512
Propionic acid (mg/mL) 0.62 4+ 0.10 0.66 4 0.08 0.59 +0.11
Isobutyric acid (mg/mL) 0.11 £ 0.09 0.07 £ 0.07 0.13 £ 0.06
Butyric acid (mg/mL) 0.47 +£0.29 0.29 £0.11 043 +£0.16
Protease activity (U/mL) 459 +0.32P 5.18 + 0.36 ° 6.36 +0.212
Amylase activity (U/mL) 1.46 £ 0.06 P 1.86 = 0.222 2.06 +0.152
Cellulase activity (U/mL) 3.81 £ 0.25 3.79 £0.37 427 +£0.41

Note: In the same row, values annotated with different lowercase superscript letters indicate significant differences
(p < 0.05), while those sharing the same superscript or lacking a superscript indicate non-significant differences
(p > 0.05).

3.6. Effects of Fermented Corn Straw on Ruminal Bacterial Community of Hu Sheep

Figure 2A shows the ruminal abundances of the top 15 bacterial phyla in Hu sheep.
The predominant phyla were Firmicutes and Bacteroidetes, followed by Actinobacteriota and
Proteobacteria. The abundances of Proteobacteria in group B were higher than those in groups
A and D. Compared with those in groups A and B, the abundances of Bacteroidetes and
Actinobacteriota were significantly higher in group D.

Figure 2B shows the ruminal abundances of the top 15 bacterial genera in Hu sheep.
The predominant genera were Rikenellaceae_RC9_gut_group, Lachnospiraceae_NK3A20_group,
Prevotella, and Succiniclasticum. The abundances of Prevotella and NK4A214_group in group
D were significantly higher than those in groups A and B. Compared with those in groups A
and C, the abundances of Rikenellaceae_RC9_gut_group were significantly higher in group B.

3.7. Correlation of Rumen Bacterial Abundance with Nutrient Digestibility, Rumen Fermentation
Parameters, and Enzyme Activity

Figure 3 shows the correlation of ruminal bacterial abundances with environmental
factors, such as nutrient digestibility, rumen fermentation parameters, and enzyme activity.
The ruminal NH3-N content was significantly and positively correlated with the abun-
dances of Lachnospiraceae_NK3A20_group and Ruminococcus. Meanwhile, the abundances of
NK4A214_group were positively correlated with ruminal proteinase activity. Furthermore,
the abundances of Norank_f F082 and NK4A214_group were positively correlated with
EE digestibility.
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Figure 2. Rumen bacterial composition and abundances at the phylum and genus levels in Hu sheep.
(A) the top 15 ruminal bacterial phyla and their relative abundance; (B) the top 15 ruminal bacterial
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3.8. Effects of Fermented Corn Straw on Ruminal Ciliate Community in Hu Sheep

As shown in Figure 4, nine genera of ciliates were identified. The top five major
ciliate genera were Dasytricha, Epidinium, Entodinium, Polyplastron, and Enoploplastron. The
abundance of Dasytricha in group A was significantly higher than that in groups B and D.
Compared with that in groups A and B, the abundance of Entodinium was significantly
higher in group D. The abundance of Polyplastron in group D was markedly higher than
that in group A. Compared with that in groups A and D, the abundance of Enoploplastron
was significantly higher in group B.

100+ - - —
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Figure 4. Abundances of ruminal ciliate genera in Hu sheep. The ordinate represents the percentage
of relative bacterial abundances at the genus level (%).

3.9. Correlation of Ruminal Ciliate Abundances with Nutrient Digestibility, Rumen Fermentation
Parameters, and Enzyme Activity

Figure 5 shows the correlation of ruminal ciliate abundances with environmental
factors, such as nutrient digestibility, rumen fermentation parameters, and enzyme activity.
The ruminal NH3-N concentration was significantly and positively correlated with Eno-
ploplastron abundance (p < 0.05). Polyplastron abundance was positively correlated with
ruminal amylase activity (p < 0.05).
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Figure 5. Correlation of ruminal ciliate abundances with environmental factors. Correlations in red
and blue suggest positive and negative correlations, respectively. * p < 0.05. NH3-N, ammoniacal
nitrogen; CP, crude protein; EE, ether extract; NDF, neutral detergent fiber; ADF, acid detergent fiber;
AA, acetic acid; PA, propionic acid; Ca, calcium; P, phosphorus.
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4. Discussion

The nutrients in fermentation media significantly impact microbial growth and fer-
mentation quality [18]. Straw cannot support optimal microbial growth owing to limited
nutrient contents. Therefore, the supplementation of sufficient carbon and nitrogen sources
can promote microbial growth. Corn flour, which contains a high level of soluble car-
bohydrates, is a valuable carbon source for lactic acid bacterial growth when added to
fermentation substrates [19]. This results in increased lactic acid production, reducing the
pH of fermented straw and enhancing the storage stability of corn stalks [20]. Cottonseed
meal is a valuable nutrient for fermentation processes due to its high protein and mineral
content. Moisture content is a crucial abiotic factor influencing microbial growth. Excessive
moisture can cause spoilage during microstorage, whereas insufficient moisture inhibits
microbial growth and straw fermentation [21]. In this study, the supplementation of ap-
propriate amounts of corn meal and cottonseed meal significantly reduced the pH of the
fermentation substrate of corn straw after microstorage. This is because corn meal and
cottonseed meal provide lactic acid bacteria with sufficient carbon and nitrogen sources to
grow and reproduce.

Lactic acid bacteria can affect fermentation, fermenting carbohydrates to produce
lactic acid and enhancing the quality of straw fermentation [22]. Cellulase provides the
fermentation substrates for lactic acid bacteria by degrading cellulose into simple sugars
or oligosaccharides [23,24]. To determine the quality of fermentation, pH is an important
indicator [25]. The production of lactic acid by lactic acid bacteria decreases the pH during
fermentation. In this study, group D exhibited the lowest pH, indicating synergistic effects
of cellulase and lactic acid bacteria. This study demonstrated that the supplementation
of cellulase reduces the contents of NDF, ADF, cellulose, and hemicellulose in corn straw,
which was consistent with the findings of previous studies [24,26].

The NH3-N content in fermented feed indicates the degree of protein degradation
during microstorage. Decreased NH3-N content indicates less decomposition of protein and
amino acids, enhancing fermentation quality [27]. Mu et al. reported that the combination
of cellulase and L. plantarum decreased NH3-N content in high-moisture amaranth and
rice straw by inhibiting protease [28]. In this study, the lactic acid content was correlated
with the pH and the relative abundance of Lactobacillus. Additionally, Lactobacillus can
produce acetic acid during fermentation [29]. The acetic acid content in the Lactobacillus
and bacterial-enzyme groups was markedly higher than that in the control group.

The bacterial genera in 28-day fermented corn straw are shown in Figure 1. Pantoea,
which was the most abundant genus, ferments sugars into acids under anaerobic conditions
and produces acetic acid, propionic acid, and succinate [30]. However, Pantoea is considered
undesirable as it competes with lactic acid bacteria for substrates during the ensiling process.
The downregulation of these genera can be attributed to the rapid acidification induced by
L. plantarum [31]. After fermentation, the abundance of Lactobacillus in group D was higher
than that in groups A and B even though Lactobacillus was the predominant bacterium
in corn straw. Homofermentative Lactiplantibacillus species ferment hexose to produce
lactic acid. Meanwhile, heterofermentative Lactiplantibacillus species ferment hexose and
pentose to produce equal amounts of lactic acid and acetic acid [32]. Compared with
those in group A, the lactic acid and acetic acid levels were higher and the pH was lower
in groups B and D. This can be attributed to the predominance of Lactiplantibacillus and
suggests that enhanced fermentation quality was achieved in this study. Previous studies
have demonstrated the predominance of Lactiplantibacillus in ensiled silages, including
alfalfa [33], guinea grass [34], and corn [35]. Consistently, this study demonstrated that
Lactiplantibacillus was the dominant bacterium in fermented or silage corn straw. After
fermentation, compared with those in groups A and B, the relative abundances of Weissella
were lower in group D. After ensiling, Weissella is reported to be gradually replaced by
Lactobacillus, which becomes the dominant genus [36]. Weissella abundance is negatively
correlated with pH [37]. The increased Limosilactobacillus abundance in group D may be
related to its increased acid resistance and metabolic adaptability [38].
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Nutrient digestibility is a crucial indicator of the extent to which nutrients are digested
and absorbed by animals. High nutrient digestibility indicates efficient nutrient digestion
and absorption. This study demonstrated that the fermentation of corn straw with bacteria
and enzymes significantly improved the apparent digestibility of CP, EE, NDF, and ADF
in Hu sheep. This can be attributed to bacterial fermentation and the cellulase-mediated
hydrolysis of corn straw in vitro. Previous studies have indicated that feeding fermented
paddy straw improved nutrient digestibility in goats [39], which is consistent with the
findings of this study. Additionally, nutrient digestibility is positively correlated with
digestive enzyme activity [40]. The increased nutrient digestibility observed in this study
may also be due to elevated protease and cellulase activities in the rumen. Rumen digestive
enzyme activity can also be influenced by the rumen microbiome [41]. Therefore, nutrient
digestibility is closely related to dietary composition and intestinal enzyme activity.

Rumen fermentation parameters (pH, NH3-N, and VFA) are crucial indicators for
evaluating rumen health. Changes in rumen VFA concentrations can reflect alterations in
rumen fermentation patterns. The increased release of readily fermentable carbohydrates
from corn straw after bacteria/enzyme-mediated fermentation promotes the production of
VFAs (especially propionic acid and butyric acid) [42] and reduces rumen pH. Additionally,
providing readily fermentable carbohydrates to sheep increases the transfer of urea into
the rumen, leading to the upregulation of NH3-N content [43]. A high-fiber diet is reported
to increase acetic acid production [44], which is consistent with the findings of this study.

The rumen microbiota composition is correlated with animal feed composition. An-
imal feed determines the composition of functional microbiota [45]. Firmicutes and Bac-
teroidetes were the predominant phyla in this study, which was consistent with the findings
of previous studies [46—48]. Carbohydrate-active enzyme annotation indicated that Fir-
micutes and Bacteroidetes encode a diverse set of cellulose and hemicellulose degradation
enzymes [49]. The main functions of Bacteroidetes are fermenting carbohydrates and de-
grading plant-derived materials to convert them into VFAs, providing energy for animal
metabolic activities [50]. The abundance of Bacteroidetes was significantly high in group
D, suggesting that the fermentation of corn straw with bacteria and enzymes regulates
rumen microbiota and promotes cellulose degradation in corn straw and the digestibility
of NDF and ADEF. Actinobacteriota is involved in the degradation of plant lignin, cellulose,
and pectin in soil [51], as well as in nitrogen transformation [52]. The increased abundance
of Actinobacteriota can enhance nutrient digestibility.

Some studies have reported that the rumen contains a high number of Rikenellaceae_RC9
_gut_group, which promotes carbohydrate transport and metabolism [53] and ferments
structural carbohydrates [54]. Rikenellaceae_RC9_gut_group is also involved in butyrate
production [55,56]. However, the increased abundance of Rikenellaceae_RC9_gut_group
in group B did not lead to increased nutrient digestibility and butyrate production in
this study, which can be due to different diet compositions. Prevotella can promote the
production of short-chain fatty acids, which are beneficial to both hosts and microbes,
by utilizing starch and non-cellulosic polysaccharides [57]. A recent study demonstrated
that NK4A214_group abundance increases with a high dietary concentrate-to-forage ratio,
exhibiting a strong positive correlation with metabolites [58]. The high abundances of
Prevotella and NK4A214_group, along with a high total VFA content in the rumen of group
D, indicated that corn straw treated with L. plantarum and cellulase can increase corn straw
digestibility by regulating the ruminal microbiota of Hu sheep. NH3-N in the rumen is
the sole nitrogen source for Ruminococcus growth [59]. The positive correlation between
ruminal Ruminococcus abundance and NH3-N content observed in this study confirms their
close relationship.

Ciliates play crucial roles in the rumen environment, contributing to nutrient digestion
and absorption efficiency. This study demonstrated that Dasytricha, Epidinium, Entodinium,
Polyplastron, and Enoploplastron were the predominant ciliate genera in all groups, which
was consistent with the findings of previous studies [60,61]. Dasytricha, a saccharolytic
protozoan, exhibits glucosidase and cellobiosidase activities [62]. Entodinium, Epidinium,
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and Polyplastron exhibit fibrolytic activities. Coleman et al. (1983) isolated enzymes from
Entodinium that can degrade cellulose, hemicellulose, and pectin [63]. The increased
abundances of Entodinium and Polyplastron in group D were associated with high nutrient
digestibility, amylase activity, and ruminal fermentation, which was consistent with the
results of previous studies. Ciliates can directly degrade soluble or insoluble proteins in
the rumen and participate in protein metabolism. Proteolysis also affects the metabolism of
nitrogen-containing substances [64]. The significant positive correlation between ruminal
Enoploplastron abundance and NH3-N concentrations indicated the mechanisms involved
in the Enoploplastron-mediated regulation of ruminal NH3-N metabolism.

5. Conclusions

The supplementation of 2% corn flour, 2% cottonseed meal, and 60% moisture content
to corn straw significantly improves the fermentation quality of the corn straw, decreases
the abundances of Pantoea and Weissella, and increases the abundances of Lactiplantibacillus
and Limosilactobacillus. Fermented corn straw enhances nutrient digestibility, ruminal
fermentation, enzyme activity, and total VFA and NH;3-N contents in sheep by increasing
the abundances of Prevotella, NK4A214_group, Entodinium, and Polyplastron in the rumen.
The in vivo treatment of corn straw with Lactobacillus and cellulase is an effective method
to enhance its nutritive value and subsequently improve ruminant production.
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