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Abstract: A substantial body of research indicates that the gut microbiota exerts a profound influence
on host health. The purpose of this work was to characterize selected, most promising, well-known
next-generation probiotics (NGPs) and review the potential applications of the bacteria in food
technology. The isolation of gut bacteria with significant health benefits has led to the emergence
of NGPs. In contrast to traditional probiotics, these originate directly from the gut microbiota,
thereby ensuring their optimal adaptation to the intestinal ecosystem. NGPs exert their effects on the
host organism through a variety of mechanisms, including the synthesis of bioactive compounds,
modulation of the gut microbiota, and metabolism of substances provided by the host. Several
bacterial species have been identified as potential candidates for NGPs, including Akkermansia
muciniphila, Faecalibacterium prausnitzii, Bacteroides thetaiotaomicron, Christensenella minuta, and many
others. These bacteria have demonstrated the capacity to exert beneficial effects, including the
reduction of obesity, type 2 diabetes, metabolic disorders, and even cancers. The greatest limitation
to their commercialization is their lack of oxygen tolerance, which presents challenges not only
for research but also for their potential application in food. The most optimal approach for their
application in food appears to be microencapsulation. Further research is required to establish the
safety of NGP supplementation and to protect them from environmental conditions.

Keywords: human health; functional food; new generation probiotics; Akkermansia muciniphila;
Faecalibacterium prausnitzii; Bacteroides thetaiotaomicron; Christensenella minuta

1. Introduction

Food plays a crucial role in the prevention of non-communicable diseases, including
lifestyle-related diseases [1]. In recent years, there has been a noticeable increase in interest
in healthy lifestyles, known as the well-being trend, which is defined as a healthy lifestyle
that focuses on improving physical, mental, and social well-being [2]. It is typically
motivated by the desire to improve quality of life, increase energy levels, improve mental
health, or reduce the risk of developing chronic diseases [3,4].

The growing awareness of health and nutrition is also reflected in the significant
development of the functional food market. Functional foods are those that, in addition to
their basic nutritional functions, provide additional health benefits through the addition
of bioactive substances or components [5]. Examples include the fortification of foods
with vitamins, minerals, prebiotics, or probiotics, with probiotic foods accounting for
approximately 60–70% of the total functional food market [5–7].

The functional food market is experiencing dynamic growth due to the increasing
demand for healthier food products. It is estimated that the global functional and natural
health food market was valued at USD 23.5 billion and is projected to increase to USD
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38.5 billion by 2033 [8]. This growth is being driven by innovation in new food products,
their increased availability, and rising consumer nutritional awareness. Dairy products
have the largest market share due to their high bioactive content and consumer trust.
The functional food market is expanding, particularly in developed countries, driven by
widespread access to health information and increased total awareness [9,10].

Probiotic foods currently available on the market contain live cultures of bacteria
belonging mostly to the Bifidobacterium and previous Lactobacillus genera, which have
been shown to have beneficial effects on the body’s systemic functions. In 2020, scientists
reclassified the genus Lactobacillus into 25 genera, including the emended genus Lactobacillus
and 23 novel genera [11]. The vast majority of probiotic bacteria currently available belong
to these genera because they are easy to cultivate under laboratory conditions, allowing their
probiotic properties to be studied in detail [12,13]. Consumers are increasingly choosing
fermented products, such as dairy-based fermented foods, but also fermented vegetables
and fruits. Although supplementation with probiotic bacteria in pharmaceutical forms is
also popular, probiotic foods often attract more interest because of their naturalness [14–16].

Fermentation using probiotic bacteria, as opposed to wild fermentation, plays a crucial
role in the controlled production of functional foods. During the fermentation process,
these bacteria are capable of synthesizing a wide range of bioactive compounds, such
as organic acids, short-chain fatty acids (SCFAs), B and K vitamins, bioactive peptides,
exopolysaccharides, as well as bacteriocins, which have synergistic antimicrobial activity
against pathogenic bacteria, thereby extending the shelf life of these products. In addition,
the metabolome of probiotic bacteria also includes gamma-aminobutyric acid (GABA), a
neurotransmitter that can act through the gut–brain axis and, therefore, influence human
well-being [15,17].

An exceptionally new direction in research into the effects of biotics on the human body
is the study of postbiotics, which are defined as a preparation of inanimate microorganisms
and/or their components that confer a health benefit on the host [18]. Due to their lack
of fermentative ability and, consequently, no interference with the sensory properties of
products, together with their confirmed health benefits for the human body, postbiotics
represent a promising direction for application in food technology and the development of
functional foods [19,20].

The high level of consumer interest in probiotic bacteria and/or postbiotics is linked to
numerous reports from both the media and scientists on their wide-ranging effects on hu-
man health, including immune enhancement, mental health improvement, and gut health.
By helping to maintain the homeostasis of the gut microbiota and inhibiting the growth of
pathogenic bacteria, probiotics can not only alleviate symptoms of gastrointestinal disor-
ders but also reduce the risk of cancer and intestinal inflammation and improve metabolic
efficiency [19,21,22]. In addition to improving systemic bodily functions, probiotics also
have a significant impact on mental health through the gut–brain axis and on skin health,
which can be exploited in the beauty industry and in products aimed at individuals seeking
to improve their appearance [23,24].

The purpose of this work was to characterize the selected gut bacteria in the context
of the next-generation probiotics (NGPs) concept and to discuss the potential of their
applications in food technology. The novelty of this review is related to the dynamic
development of the NGP knowledge. Although several reviews have been published
recently [25–27], none of them focused on the challenges associated with the application
of NGPs in food technology. Therefore, in this work, we collected information on the
advantages and disadvantages of adding NGPs to food and also identified the possibilities
and limitations related to their use in food technology.

2. Gut Microbiota

The term “gut microbiota” refers to the collective of all commensal, symbiotic, and
pathogenic microorganisms that inhabit the intestines of the host organism. This encom-
passes not only bacteria, which are the most extensively studied, but also viruses, archaea,
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protozoa, and fungi. The Human Microbiome Project, initiated in 2007, aimed to create a
genomic dataset of microorganisms residing in various human body niches. This research
project marked the beginning of a new era in the study of the significant influence of the
gut microbiota on host functioning and revolutionized our understanding of the microbiota
and its crucial role in shaping health [28].

The gut microbiota is estimated to comprise approximately 1014 microbial cells, which
is comparable to the number of human cells. The microbiota is highly diverse, comprising
over 1000 different bacterial species. The collective genome of these microorganisms (the
microbiome) is approximately 150 times larger than the human genome, indicating an
immense metabolic potential. The sum of the human and microbial genes forms a complex
metabolic system that is unattainable without bacterial genomes [24]. This system is termed
a “superorganism”, resulting from the symbiotic relationship among thousands of species.
As a consequence of the evolutionary development of interactions between the microbiota
and the host organism, these entities influence each other through genetic, metabolic, and
immunological signals. Since the majority of microorganisms that constitute the human
microbiota are strictly anaerobic, microbiologists are only able to culture approximately
20–60% of these bacteria using traditional techniques. Consequently, metagenomics is
employed to conduct precise studies of the microbiota [29,30].

The gut microbiota exerts a direct influence on human health due to its capacity to
synthesize a diverse range of bioactive compounds that affect multiple human body sys-
tems, including the immune, nervous, and digestive systems. Moreover, the gut microbiota
interacts closely with the gut-associated lymphoid tissue (GALT), which is essential for
the impact on the host. On the one hand, the gut microbiota supports the maturation of
immune cells and the production of cytokines and protects against pathogens, thereby
influencing the essential functioning of the immune system. Conversely, the gut microbiota
is linked to the central nervous system (CNS) via the gut–brain axis, which affects mental
health, mood regulation, and cognitive functions [27]. Recently, other microbiota axes have
also been discovered, such as the microbiota–bone axis, the microbiota–liver axis, and the
microbiota–lung axis [31]. Dysbiosis, or the disruption of gut microbiota homeostasis, is
associated with the development of numerous diseases, including obesity, type II diabetes,
inflammatory bowel diseases, neurodegenerative diseases, osteoporosis, hepatic diseases,
respiratory diseases such as asthma, chronic obstructive pulmonary disease, and certain
cancers [23,32,33].

2.1. The Role of Food in Modulating the Gut Microbiota

The dietary choices of humans have a profound impact on the diversity and composi-
tion of their gut microbiota. An imbalanced diet has a detrimental effect on the changes
occurring within the gut microbiota, while the provision of appropriate substances, in-
cluding probiotics, has a wide-ranging impact on health modulation [26]. A diet rich in
dietary fiber, prebiotics, probiotics, and fermented products may beneficially modulate
the composition of the gut microbiota by increasing the abundance of health-promoting
bacteria and limiting potential pathogens. Research indicates that a Western-type diet,
characterized by high sugar and saturated fat intake, disrupts the homeostasis of the gut
microbiota. In contrast, a Mediterranean diet contributes to increased microbial diversity
within the microbiota and significant improvements in health [32,34,35].

Among the nutrients provided in the diet, carbohydrates appear to be of particular
significance, serving as a nutritional substrate for gut microorganisms. Soluble fiber serves
as a source of nourishment for microorganisms in the colon, resulting in the synthesis of
a range of compounds, including SCFAs. A diet deficient in prebiotic substances, which
are part of soluble carbohydrates, has been shown to result in a reduction in the growth of
Bacteroides thetaiotaomicron bacteria, which degrade mucin glycans. This, in turn, affects the
thinning of the intestinal barrier [36,37].

In addition to carbohydrates, other components present in the diet also exhibit sig-
nificant effects. In vitro studies have demonstrated that the fermentation of plant proteins
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increases the abundance of Lactobacillus and Bifidobacterium bacteria and stimulates the
synthesis of SCFA while contributing to a decrease in the abundance of harmful bacteria
such as Bacteroides fragilis and Clostridium perfringens [36]. It has been postulated that a
high consumption of fat, particularly saturated fatty acids (SFAs), may result in gut dys-
biosis. A high intake of SFA-rich diets has been demonstrated to stimulate the growth of
sulfate-reducing bacteria, which have been shown to negatively impact the intestinal mucus
layer, leading to intestinal inflammation, intestinal diseases, and colitis [36,38]. Omega-3
fatty acids may exert a beneficial influence on gut microbiota alterations by increasing the
synthesis of anti-inflammatory compounds and SCFA acetate. The ratio of omega-3 to
omega-6 fatty acids in the diet should be 1:1 [39].

A lack of homeostatic regulation contributes to an increased permeability of the gut
and the development of metabolic endotoxemia. A diet high in sugar has been shown to
cause similar gut microbiota modulation to that induced by a diet high in saturated fatty
acids [36,40]. Moreover, scientists indicate that artificial sweeteners such as aspartame, saccha-
rin, and acesulfame K affect the modulation of the gut microbiota by reducing the quantity
of Clostridiales, Lactobacillales, and Bifidobacterium bacteria while increasing the abundance of
Enterobacteriaceae. These changes result in elevated fasting glucose levels and impaired insulin
response, which, in turn, leads to decreased glucose tolerance [36,41]. In vitro studies have
demonstrated that emulsifiers, including lecithins, mono- and diglycerides of fatty acids,
and carboxymethylcellulose, can increase bacterial translocation across the intestinal epithe-
lium, thereby promoting systemic inflammation by altering the location and composition
of the microbiota. A reduction in the levels of SCFAs in feces and free amino acids has
been documented. These alterations result in gut dysbiosis, which, in turn, promotes the
development of colitis and metabolic disorders [36].

The principal agents involved in the modulation of gut microbiota encompass pre-
biotics, probiotics, polyphenols, and fermented products [14,35]. Prebiotics are dietary
substrates that selectively promote the proliferation or activity of beneficial bacteria in-
digenous to the colon. Prebiotic substances, such as inulin and fructooligosaccharides, are
essential for selectively stimulating the growth of beneficial bacteria like Bifidobacterium
and Lactobacillus. Fermented products, including yogurt, kefir, sauerkraut, and miso, are
natural sources of potentially probiotic bacteria. These may influence gut microbiota by
introducing beneficial bacteria and enhancing its diversity [14,35].

Probiotics are defined as live microorganisms that, when administered in adequate
amounts, confer health benefits to the host. They have been designated as generally recog-
nized as safe (GRAS) at the strain level by the United States Food and Drug Administration
(FDA) or as qualified presumption of safety (QPS) at the species level by the European
Food Safety Authority (EFSA) [42,43]. Probiotic supplementation may result in short-term
alterations to the composition of the gut microbiota. Supplementation may increase the
abundance of beneficial bacteria, which may be helpful in the treatment of gastrointestinal
disorders or other diseases. Nevertheless, the long-term visibility of these alterations is
contingent upon the continuous administration of probiotics and the availability of suitable
nutritional substrates [44,45].

Probiotics are capable of modulating gut microbiota through a range of mechanisms.
These include competition for nutrients and adhesion sites, production of antimicrobial
substances (bacteriocins), and modulation of the host’s immune system. Dietary fiber can
be fermented by the microbiota into SCFAs, which have a wide range of health benefits.
These include the regulation of glucose and lipid metabolism, as well as the modulation of
the immune response [46,47].

2.2. The New Generation of Probiotics and Postbiotics

The analysis of the impact of bacteria on human health has been ongoing for at least
a decade, with a primary focus on the microbiota present in food. The advancement of
technology has facilitated the advancement of scientific progress through the utilization
of more precise methodological tools. Modern studies focusing on the analysis of the
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impact of specific microbiota components on the host organism allow the identification
of health-promoting bacteria that significantly influence bodily functions. Following the
advancement of scientific knowledge, NGPs have been defined as live microorganisms
identified based on comparative analyses of the microbiota. When administered in ap-
propriate amounts, these NGPs confer health benefits to the host [43,48]. The distinction
between probiotic and NGP definitions is primarily methodological, with NGPs identi-
fied within the human natural microbiota, for which significant health impacts have been
demonstrated. NGPs have been recently isolated using novel, sophisticated techniques for
isolating, identifying, and even modifying these commensal bacteria. They have been iden-
tified primarily through comparative analyses of microbiota composition in both healthy
and unhealthy individuals, and they belong to various genera [43,49].

The principal concerns regarding NGPs relate to their efficacy, safety, and technological
robustness. The majority of gut bacteria that have been identified as potential NGPs are
nutritionally fastidious and highly sensitive to oxygen. This makes them challenging to
produce and maintain in large quantities on an industrial scale, as well as to process and
formulate into products [50]. The administration of traditional probiotics is not intended
to combat specific diseases. In light of these considerations, the urgent need for the
identification and characterization of new, disease-specific NGPs has become apparent.
Concerning NGPs, there is a growing recognition of their potential utility as postbiotics,
which are non-viable bacterial products or metabolic byproducts of NGP microorganisms
that exhibit biological activity in the host [43,48,51].

It is of paramount importance to maintain the health of the intestinal microbiota to
preserve homeostasis. This is achieved through the maintenance of microbial abundance
and diversity. The right number of diverse microbiota ensures the existence of multiple
metabolic pathways, thereby enhancing the host organism’s capacity to adapt to various
environmental challenges and dietary changes [28,37]. In light of the available scientific
data, it can be claimed that among the important, health-promoting bacteria present in a
healthy gut microbiota, there are a number of potential candidates for NGPs, like Akker-
mansia muciniphila, Faecalibacterium prausnitzii, Bacteroides thetaiotaomicron, Christensenella
minuta, and a few others.

2.2.1. Akkermansia muciniphila

Akkermansia muciniphila is a non-spore-forming, Gram-negative bacterium. Although
originally classified as an obligate anaerobe, studies have shown that it tolerates low oxygen
levels similar to Bacteroides fragilis and Bifidobacterium adolescentis, which can survive for
24 h when exposed to ambient air. Discovered in 2004, it was the first bacterium from the
phylum Verrucomicrobia to be identified in the human gut [52]. A. muciniphila is abundant
in the intestinal mucus layer, where mucin serves as its primary source of carbon and
nitrogen [53]. It is one of the most important gut symbionts, colonizing the gut within the
first year of life and persisting throughout life, constituting approximately 1–4% of the
total gut microbiota, making it one of the twenty most abundant species. Under laboratory
conditions, it can be cultured on synthetic media where glucosamine-6-phosphate, found
in mucin, is essential. Research has shown that A. muciniphila cultured on synthetic media
is safe for use in human nutritional supplementation [52,54,55].

Following the discovery of A. muciniphila and the recognition of its significant abun-
dance in the core gut microbiota, numerous studies have been conducted to elucidate its
impact on human health. These studies have involved both laboratory animals and, in later
stages, human participants. Research has demonstrated the critical role of A. muciniphila
in obesity-related parameters in animal models, including reduced body weight, fat mass,
hip circumference, and caloric intake [56]. The administration of A. muciniphila to mice re-
sulted in enhanced insulin sensitivity, accompanied by elevated levels of anti-inflammatory
cytokines, which collectively contributed to a reduction in inflammation. Studies have
demonstrated the efficacy of A. muciniphila supplementation in the treatment of obesity,
type 2 and type 1 diabetes, fatty liver disease, inflammatory bowel disease (particularly
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ulcerative colitis), and various cancers, including colon cancer, by modulating the immune
system in mice [57,58]. Furthermore, mouse studies have demonstrated the protective
effect of A. muciniphila against egg albumin allergy, attributed to reduced jejunal damage
and modulation of the immune system [59]. These findings indicate that these bacteria play
an important role in modulating metabolic processes. However, further human studies are
necessary to fully elucidate the effects and mechanisms of these bacteria on human health.
Furthermore, research has investigated the influence of A. muciniphila on the development
of neurodegenerative, neurodevelopmental, and autoimmune diseases [60]. However,
the results have been inconsistent, and a causal relationship has not been established.
A. muciniphila has been described as having beneficial effects on health, particularly by re-
ducing mucosal permeability and the expression of pro-inflammatory cytokines. Moreover,
a study conducted by Parrish et al. (2023) indicates that the impact of this bacterium is
context-dependent and may be harmful in cases of food allergies when the microbiota is
deprived of dietary fiber [61].

A promising discovery was the demonstration of an enhanced health-promoting effect
of A. muciniphila following prior pasteurization (30 min at 70 ◦C) in relation to diet-induced
metabolic disorders in mice. Pasteurized A. muciniphila also significantly improved glucose
tolerance and hepatic insulin sensitivity and completely blocked diet-induced metabolic
endotoxemia. It has been demonstrated that the health-promoting effect is attributed to
proteins located on the outer membrane of the bacterium, with one of the most abundant
being the Amuc_1100 protein [57,62]. The increased efficacy and safety of pasteurized
A. muciniphila cells demonstrated in studies involving mice and humans led to the approval
of the use of such a preparation in human dietary supplementation. EFSA has determined
that daily supplementation of 3.4 × 1010 pasteurized cells is considered safe, provided that
the number of viable cells is less than 10 colony-forming units per gram (CFU/g). This
opinion has enabled the use of pasteurized A. muciniphila cells in food technology, allowing
the creation of functional foods with their addition [60].

2.2.2. Faecalibacterium prausnitzii

Faecalibacterium prausnitzii is a strictly anaerobic, Gram-positive bacterium belonging
to the family Ruminococcaceae. In laboratory conditions, it is challenging to culture, even
under anaerobic conditions. It is one of the most prevalent species in the gut microbiota,
accounting for 1–6% of the total bacterial population. F. prausnitzii is one of the most
important producers of butyric and salicylic acid in the gut, earning it the colloquial name
“gut guardian” [63].

These metabolites exhibit crucial immunomodulatory effects, thereby protecting the
colon from inflammation and the development of colorectal cancer. Butyrate serves as the
primary energy source for colonocytes. Studies have demonstrated that the concentration of
salicylic acid present in the colon can reduce the level of the pro-inflammatory cytokine IL-8
in vitro. The reduction of IL-8 by salicylic acid and butyrate is due to the inhibition of NF-κB
activation. Furthermore, the inhibition of cytokines IL-6, IL-12, IFN-γ, and TNF-α has been
demonstrated to occur through the induction of IL-10 production. In a mouse study, the
use of F. prausnitzii bacteria cells or cell-free supernatant was found to significantly reduce
the severity of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis. A significant
decrease in the abundance of F. prausnitzii has been observed in patients with obesity,
type 2 diabetes, and inflammatory bowel diseases, including ulcerative colitis, Crohn’s
disease (CD), colorectal cancer, and psoriasis. These findings indicate that F. prausnitzii
deficiency is associated with reduced anti-inflammatory activity and the development of
inflammation. Studies involving pregnant women have demonstrated that the quantity of
F. prausnitzii increases during the first trimester, while in the third trimester, the quantity
decreases. Some authors suggested that the abundance of F. prausnitzii, which is attributed
to the production of butyrate and other anti-inflammatory substances, could contribute to
successful pregnancy outcomes; however, further studies are needed to prove this concept.
Additionally, F. prausnitzii has been shown to regulate gut barrier function by potentially
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increasing the levels of tight junction proteins occludin and E-cadherin. This reduces colon
permeability and protects the host from potential harm [64–67].

The unavailability of an active pharmaceutical preparation containing F. prausnitzii
bacteria currently precludes the possibility of modulating its abundance through the admin-
istration of pharmaceuticals. Instead, dietary interventions based on prebiotic substances
and lifestyle modifications represent the most viable avenues for achieving this goal. How-
ever, the high nutritional requirements and strict anaerobic nature of F. prausnitzii present a
challenge for its commercialization [63,64]. Nevertheless, it has been demonstrated that
antioxidants commonly found in the gut, such as cysteine and riboflavin, facilitate the sur-
vival of these bacteria upon exposure to air, allowing the highly oxygen-sensitive bacteria
to remain viable for up to 24 h with air contact. This finding paves the way for further
research and the future commercialization of the bacterium [68].

2.2.3. Bacteroides thetaiotaomicron

Bacteroides thetaiotaomicron is a Gram-negative, anaerobic, non-spore-forming rod-
shaped bacterium. It is among the most prevalent bacteria in the gut microbiota, comprising
approximately 6% of the total population, thereby underscoring its significant role in the
core microbiota common to all humans. A genome analysis conducted in 2003 revealed
the extensive metabolic capabilities of this bacterium and its potential to encode antibiotic
resistance, including resistance to erythromycin and tetracycline. Such resistances can be
transferred to other bacteria within the gut microbiota [69]. Due to its numerous health
benefits, it has been identified as a potential NGP candidate [70].

B. thetaiotaomicron exhibits the ability to metabolize a highly diverse range of polysac-
charides that would otherwise remain unprocessed, including amylose, amylopectin, and
pullulan. Its repertoire of glycolytic enzymes is among the largest known in prokaryotes,
and it is believed to be capable of hydrolyzing nearly all glycosidic bonds present in polysac-
charides [71–73]. During its metabolic processes, it synthesizes substances such as acetic
acid, propionic acid, and succinic acid, which serve as energy sources for host cells and for
the bacterium F. prausnitzii, thereby participating in the production of intestinal mucus [74].
In addition to SCFAs and hydrogen sulfide (H2S), the presence of B. thetaiotaomicron is
associated with the secretion of outer membrane vesicles (OMVs) [75–77].

A series of studies conducted on mice have demonstrated that B. thetaiotaomicron is
capable of inhibiting the growth of C. difficile in a state of gut dysbiosis caused by the excessive
proliferation of this pathogen [78,79]. This is achieved by restoring gut microbiota homeosta-
sis and improving the bile acid profile. The production of enzymes such as galactanase by
B. thetaiotaomicron enhances the prebiotic activity of galactooligosaccharides and promotes
the growth of probiotic bacteria such as Lactobacillus and Bifidobacterium [80,81]. This phe-
nomenon is referred to as mutual cross-feeding in vivo [82,83]. Furthermore, it has been
demonstrated that B. thetaiotaomicron induces the expression of the proline-rich protein
Sprr2A, which is essential for maintaining desmosomes in the gastrointestinal tract [84].
Furthermore, this bacterium has been demonstrated to enhance goblet cell differentiation,
the expression of mucus-related genes, and the ratio of sialylated to sulfated mucins in rats.
This study indicated a complementary metabolic relationship between B. thetaiotaomicron
and F. prausnitzii, resulting in the modulation of the intestinal barrier [74]. In vivo studies
have demonstrated that B. thetaiotaomicron exerts regulatory influence on the network of
enteroendocrine cells in various regions of the gastrointestinal tract [85]. Furthermore,
B. thetaiotaomicron exhibits immunomodulatory effects by antagonizing NF-κB and reduc-
ing pro-inflammatory cytokines, especially TNF-α, as well as stimulating the expression
of IL-6 and IL-10 [76,86]. This is also attributed to the presence of OMVs. Due to their
pleiotropic effects on the host, these bacteria exhibit anti-inflammatory properties, enhance
resistance to pathogens, and process important dietary nutrients [76,77,87]. A series of
human studies involving 16–18-year-olds with Crohn’s disease have confirmed the safety
of supplementation. However, further research is needed to fully establish its safety [86].
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Dysbiotic disturbances associated with both excess and deficiency of B. thetaiotaomicron
have been linked to a range of serious health consequences. As these bacteria are both
commensal and opportunistic pathogens, they can cause significant health issues, such as
the accumulation of sialic acid, which promotes the growth of pathogenic bacteria such as
C. difficile or E. coli [88]. The excessive proliferation of B. thetaiotaomicron and the subsequent
damage to the intestinal barrier can result in the development of colorectal cancer, as well
as their translocation into the bloodstream, leading to bacteremia [75]. Given the significant
health benefits of B. thetaiotaomicron and the potential risks associated with its use, its
application in supplementation and food technology should be carefully monitored and
used in justified cases, such as personalized nutrition [89].

2.2.4. Christensenella minuta

Christensenella minuta is a strictly anaerobic, non-spore-forming, Gram-negative bacil-
lus. It is the first representative of the family Christensenellaceae within the phylum Fir-
micutes, isolated in 2012. Despite its relatively recent discovery, this species has already
undergone extensive study, which has highlighted its significant health implications, even
though it is a subdominant member of the gut microbiota. Notably, despite its anaerobic
nature, C. minuta is capable of tolerating prolonged exposure to atmospheric oxygen. Its
primary metabolic products from glucose are acetic and butyric acids [90]. To date, research
has elucidated a multifaceted mechanism of action for C. minuta, which includes modu-
lating the gut microbiota, producing SCFAs, influencing lipid metabolism, regulating the
integrity of the intestinal epithelium, and modulating bile acid metabolism [91–93].

The aforementioned mechanisms of C. minuta have been demonstrated to signifi-
cantly reduce the risk of obesity. This is achieved through the regulation of the Firmi-
cutes/Bacteroidetes ratio, the influence of SCFAs on leptin synthesis, and the modulation
of lipid and glucose metabolism precursors [93,94]. Additionally, C. minuta increases
thermogenesis in adipose tissue, enhances the expression of tight junction proteins in the
intestines, and affects the metabolism of bile acids [92,95]. In vitro and in vivo studies have
demonstrated that C. minuta exhibits anti-inflammatory and immunomodulatory effects.
These effects are achieved through the inhibition of the NF-κB signaling pathway and the
suppression of pro-inflammatory cytokines IL-8 and IL-1β [96]. Additionally, C. minuta
stimulates the production of the anti-inflammatory cytokine IL-10. Furthermore, C. minuta
has been demonstrated to facilitate mucosal healing and reduce neutrophil activation due
to inflammation in two distinct animal models of acute colitis and in human intestinal cell
lines. These studies indicate that C. minuta plays a pivotal role in inflammatory bowel
diseases (IBD), where its efficacy is comparable to that of mesalazine, a common treatment
for IBD. Metagenomic analyses have revealed that patients with obesity, IBD, and CD
have significantly lower levels of C. minuta in their gut microbiota. Furthermore, research
has indicated that C. minuta impacts the development of type 2 diabetes by inhibiting
the expression of SGLT1 and GLUT2 in intestinal glucose transport and by promoting
the secretion of GLP-1, which stimulates insulin sensitivity and regulates glucose home-
ostasis [90,91,97–99]. Mouse studies have demonstrated that inoculation with C. minuta is
associated with increased physical activity and reduced feed intake. These findings suggest
a potential role for this bacterium in regulating metabolic processes and influencing the
gut–brain axis [100].

At present, there is no evidence to suggest that C. minuta contributes to the develop-
ment of diseases. Nevertheless, given the paucity of human studies, further research is
required to ascertain its safety.

3. A Perspective on the Potential Use of These Types of Bacteria in Food Technology

The principal concerns regarding NGPs relate to their efficacy, safety, and technological
robustness. The majority of gut bacteria that have been identified as potential NGPs are
nutritionally fastidious and highly sensitive to oxygen. This makes them challenging to
produce and maintain in large quantities on an industrial scale, as well as to process and
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formulate into products. On the other hand, the administration of traditional probiotics
is not intended to combat specific diseases. In light of these considerations, the urgent
need for the identification and characterization of new, disease-specific NGPs has become
apparent [43,48]. The potential for the development of products with such specific charac-
teristic NGPs in traditional food or capsule-based supplement forms could yield substantial
economic benefits, driven by the current trend towards a healthy lifestyle [6,8,19]. The
selection of suitable delivery vehicles for probiotics is an important aspect since it may
positively or negatively affect cell viability and effective target release in the gut. Although
probiotics can be delivered as pharmaceutical formulations or food-based products, it is
considered that consuming probiotics in food may seem a more natural way of receiving
a regular dose. As a result, foods are becoming more widely accepted by consumers as
effective probiotic delivery vehicles [101].

Figure 1 presents the overview of next-generation biotics (NGBs) applications in food
technology. The term NGBs that we propose include next-generation probiotics, defined as
life bacterial cells, as well as their metabolites (postbiotics).
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A number of studies have been conducted with the objective of analyzing the survival
of anaerobic bacteria in yogurt following the addition of oxygen-consuming bacteria, such
as S. thermophilus. However, the results were not as anticipated due to the high acidification
of the product by the adjunct bacteria, which did not protect the anaerobic bacteria present
in the product after opening and consumption [102]. Consequently, the utilization of NGPs
should not be focused on their technological incorporation during production but rather on
enriching food through supplementation in a form that protects them from exposure to air.

One potential solution could be the use of microencapsulation. It is essential that the
microencapsulation process is conducted in an appropriate manner, utilizing innovative
materials and minimizing the impact of oxygen on the bacteria [103–107]. The materials
employed in the microencapsulation process must be safe and well-digested by the human
body. Moreover, the encapsulated bacteria must be able to survive in the presence of
these materials, which may be challenging for bacteria like B. thetaiotaomicron due to their
enzymatic apparatus [70,103]. Additionally, the outer layer of the microcapsule should
be hydrophobic and resistant to pH changes, thus enabling their full utilization in food
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production, such as in fermented dairy products, beverages, and others. This approach
would render their application virtually limitless in food products that are not subjected to
high temperatures. However, it is likely that these products would require refrigeration
temperatures for storage [16]. It is crucial to recognize that the achievement of a health
benefit necessitates not only supplementation but also the continuous maintenance of
gut microbiota homeostasis. Consequently, these products should be based on health-
promoting raw materials that are desirable to probiotic gut bacteria species. The production
of microencapsulated NGPs would facilitate their use in the manufacture of functional
foods, nutraceuticals, and pharmaceuticals with a broad range of health benefits [25,27].

Another potential avenue for the utilization of NGPs is the development of postbiotics
derived from them. Research indicates that bacterial metabolites and cell wall components
exhibit a wide range of health-promoting effects. The use of postbiotics would be signifi-
cantly more straightforward due to the absence of the need to protect bacterial cells from
oxygen exposure. This approach would entail cultivating NGPs under optimal conditions
to obtain health-promoting supernatants, followed by the concentration or isolation of
the desired bioactive substances, and then incorporating these substances into food. The
potential applications of postbiotics in food products also appear to have a wide range of
possibilities, including traditional fermented products, sweets, and meat products [19,20].

In the near future, the bacterium A. muciniphila may be employed. This is related to
the proven enhanced probiotic effects of their pasteurized form and its recognition as safe
by the EFSA. It is likely that its use would also be based on the supplementation of food
to impart probiotic properties. The pasteurized form of the bacteria is not limited to use
exclusively in refrigerated food products [60,108].

4. Limitations and Prospects for the Use of Next-Generation Probiotics in Food
Supplementation and Technology

The application of NGPs in food represents a significant advancement in the field of
functional foods, marking a new chapter in the perception of food. This would entail that
food would not only have a preventative impact on human health but could also act as
a natural next-generation medicine [27]. However, this necessitates the advancement of
knowledge and technology due to significant limitations.

The most significant technological challenge in the development of this sector of food
is the lack of tolerance to the presence of oxygen for the growth and survival of NGPs [109].
This presents a substantial problem that almost entirely prevents the use of these bacteria
for fermentation, such as using B. thetaiotaomicron to partially metabolize carbohydrates
to obtain intermediate products with health-promoting effects. Moreover, their use in
fermentation would likely be highly unacceptable to consumers from a sensory perspective
due to the synthesis of a range of specific aromatic compounds, including phenols, indoles,
sulfur compounds, amines, and BCFA esters [110,111].

The development of technology enabling the application of NGPs in their live or
postbiotic form in food production requires substantial financial investment and the collab-
oration of scientists from various fields, as well as food manufacturers. The optimization
of laboratory cultivation methods is of paramount importance if the mass cultivation and
commercialization of these bacteria are to be facilitated. Furthermore, the development of
technology to minimize oxygen exposure is of great importance, with microencapsulation
appearing to be the most promising process. Once suitable commercialization and protec-
tion methods for the bacteria have been identified, food technologists will be required to
analyze the impact of NGPs on food and its acceptability [5,25,106].

Nevertheless, prior to the implementation of NGPs in food products, further research
is required to ascertain the safety of specific bacterial strains. Without their recognition as
safe, it is impossible to prepare appropriate legal regulations permitting their use in food
production. Therefore, a comprehensive strain characterization is required, including the
whole-genome sequence analysis, as well as virulence and antibiotic resistance genes or
transferrable genetic elements. Safety assessment in animal models of specific diseases and
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human clinical trials should also be assessed [101]. Since today, the oral administration of
live and pasteurized A. muciniphila has been reported to be safe and well-tolerated [112,113].
Also, the safety of F. prausnitzii, B. thetaiotaomicron, and C. minuta has been reported in
animal and human studies [49,86,114].

Another important issue is the registration of NGPs as food additives. It should be
underlined that these bacteria have no history of safe use in the food industry, unlike
traditional probiotics. Therefore, they cannot have generally recognized as safe (GRAS)
status in the USA or qualified presumption of safety (QPS) status of the European Food
Safety Authority (EFSA). NGPs, as well as postbiotics from NGPs, must be treated according
to the novel food EU regulation when applied in food [49,101]. Although the regulations in
Europe and other countries like the US, Canada, and Japan lack harmonization, the path to
the application of NGPs in both food and pharmaceutical supplementation is still long, but
the prospects are very promising.

5. Summary

The advancement of scientific knowledge pertaining to the analysis of the impact of gut
microbiota on human health is transforming the way in which food is perceived to influence
the body. The isolation of bacteria with significant effects on host function, followed by
their precise analysis and commercialization, represents a significant challenge that requires
the involvement of scientists from a range of disciplines. The commercialization of next-
generation probiotics and their application in food production could revolutionize the
market of functional foods, provided that they are safe and acceptable to consumers.
Although the path to the use of NGPs in food production is still long, the prospects for
their use in this context are promising. A multitude of studies are still required to ascertain
the safety of specific NGP strains and to facilitate their commercialization.
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