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Abstract: This work aimed to study the effect of Camellia sinensis extract (CSExt) as a particular
growth promoter of Lactiplantibacillus plantarum (LP) in batch and continuous production processes.
Growth conditions were 1% (v/v) inoculum, pHC = 6.5, 1% of dissolved oxygen (D.O.), 37 ◦C, and
150 rpm in a 0.2 L bioreactor using a commercial MRS broth (de Man, Rogosa, and Sharpe) and 1%
(v/v) or 10% (v/v) CSExt according to the experimental design. In batch experiments, the maximum
specific growth rate and the affinity constant increased with the increase in CSExt. In continuous
culture, biomass production increased significantly with the addition of 1% (w/v) CSExt at 0.15 (1/h).
Kinetic parameters adjusted were similar to those reported in the literature. Substrate affinity and the
specific growth rate increased significantly in the presence of CSExt in batch and continuous cultures.
Based on the results, prebiotics from plant extracts may function as growth promoters in specific
physiological stages. This is the first report showing the change in kinetic parameters of a probiotic
strain growing in crude plant extracts.

Keywords: bioprocesses; Camellia sinensis; continuous culture; fermentation kinetics; Lactiplantibacillus
plantarum; prebiotics

1. Introduction

Lactiplantibacillus plantarum (LP) is a homofermentative and facultative microaerophilic
bacteria frequently isolated from fermented milk and animal bowels [1]. LP is a lactic
acid-producing bacteria capable of fermenting simple carbohydrates, such as glucose
and galactose [2]. LP is of interest to the food industry since it may act as a probiotic
and food additive [3]. There is sufficient evidence that lactic acid bacteria play a crucial
role in regulating the metabolic processes of the intestinal microbiota [4]. However, the
alteration of microbiota diversity and pathogen population can lead to the development of
chronic diseases in the host, such as gastrointestinal disorders and infections, inflammatory
diseases, and cancer [5,6]. Food products supplemented with live microorganisms have
demonstrated the ability to maintain and improve the intestinal microbial balance by
mediating an antagonistic effect of pathogenic microorganisms or stimulating the immune
system [7]. Recent developments in the field of metabolomics and microbiomics have led
to a renewed interest in probiotic production, which includes strains from Bifidobacteria
(B. animalis and B. infantis), Lactobacillus (L. acidophilus, L. plantarum, L. rhamnosus, L. casei),
and Saccharomyces (Saccharomyces boulardii) families [3,5,8–11]. On an industrial scale, the
economic viability of this bioprocess requires the use of potential and low-cost inputs that
specifically help preserve the viability and activity of probiotics [12,13].

Prebiotics are generally non-digestible carbohydrates that act as growth-promoting
substances through the fermentation pathways of probiotic bacteria [14]. The term prebiotic
is related to a beneficial effect of both the host and selective probiotic bacteria [15]. Plant
extracts contain high concentrations of bioactive compounds derived from secondary
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metabolism. These compounds directly affect human physiologic variables as well as cell
metabolism. The substances with reported beneficial effects include terpenoids, phenolics,
and diverse alkaloids. Phenolics are considered the main group with special attention in
cancer research [16].

Further studies have shown that species such as Camellia sinensis (CS), also known as
green tea, contain an important amount of flavonols, catechins, and theaflavins [17]. Green
tea extract (CSExt) is an essential source of antioxidants with the capability of scavenging re-
active oxygen and nitrogen species, generating a positive effect on human metabolism [18]
as well as stimulating microbiome metabolism and interaction [19], since recent studies
consider them an excellent source of prebiotics [20–22]. Because of these properties and
their low cost, green tea leaves represent an attractive input in probiotic cultures, increasing
cell viability and biomass concentration. The development of economically viable processes
is desirable for microorganism production at an industrial scale whether in batch or contin-
uous production processes. Natural resources and viable processes based on sustainability
could be achieved in coupled and simultaneous processes. The mixture and synergy of a
probiotic and prebiotic are called “symbiotic”, and this enhances the physiological effects
of each component in the human body [23]. For this reason, the study of probiotic growth
in culture media enriched with prebiotic sources to increase cell biomass yield and cell
viability is of interest.

Although extensive research has been carried out on prebiotics and their interactions
between the host and microbiome [7], to date, there is much less information about the
specific interactions between non-carbohydrate prebiotics and probiotics involving large
bioreactor-scale production [24]. A few efforts have been directed to enhancing probiotic
production through the design of novel culture media [25–28], the optimization of the biore-
actor operation conditions [13], and the modification of the bioreactor operation mode [29].
The production of high amounts of biomass and product are desirable in economic and
industrial processes, since it allows a reduction in the processing time and production
costs [30]. Also, several research groups have been working extensively on improving lactic
acid production from lactic acid bacteria (LAB) [31,32] and probiotic biomass [29,30,33],
leaving aside cell viability. Currently, there are no data on Lactiplantibacillus plantarum
cultures with CSExt as a growth promoter in batch and continuous processes concerning
kinetic parameters and kinetic growth models. Since cell viability is essential for the food
industry and the development of functional foods [34], it is of interest to study and develop
a novel production process based on CSExt as a growth promoter and preserving factor in
batch and continuous cultures. The main aim of this study was to investigate the effect of
CSExt on growth and lactic acid production in batch and continuous cultures under opti-
mal controlled conditions. Understanding the link between CSExt as a non-carbohydrate
prebiotic and the growth of LP in specific physiological states may guide the development
of efficient industrial processes with high yields, low cost, and long cell viability.

2. Materials and Methods
2.1. Microorganisms and Growth Conditions

Lactiplantibacillus plantarum BG112 is a food and pharmaceutical strain from SACCO®,
Tlajomulco, México. LP cells were grown in 250 mL Erlenmeyer flasks with 50 mL of MRS
broth [35] to reactivate lyophilized powder and conduct all experiments. Growth conditions
were 37 ◦C, 150 rpm, pHC = 6.5, 1% of dissolved oxygen, and the pH was controlled (pHC)
to 6.5 with NaOH (10 M). The inoculum propagation platform was 24–12–6 h (10% v/v) to
obtain cells in the middle of the exponential growth phase.

2.2. Camellia Sinensis Extract

A CSExt infusion was prepared from 1% (w/v) Green Tea Alessa tea, (Salutare, S.A de
C.V., Naucalpan, México). To obtain the crude extract, 1 g of the tea leaves was steeped
in 100 mL of distilled water at 90 ◦C for 10 min to ensure optimal extraction of the active
compounds. The resulting infusion was then filtered through successive filtration stages,
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first through a 0.45 µm filter and subsequently through a 0.20 µm filter to remove any
particulate matter and ensure sterility. The sterile extract was stored frozen at −4 ◦C until
needed for batch and continuous culture experiments.

2.3. Batch Experiments

LP cultures grew in a fully instrumented stirred tank bioreactor (Applikon, bio My-
control, GETINGE, Getinge, Sweden) with a working volume of 0.2 L. Culture conditions
remained constant. Batch experiments included two different pulses of CSExt (1% (v/v)
and 10% (v/v) of the working volume). The operation time was 24 h, and at different
times, samples were taken and kept at 4 ◦C until further analysis. The determination of cell
viability was at the sampling moment.

2.4. Continuous Experiments

The CSExt 1% (v/v) experiment included a continuous culture of LP with an operative
volume of 0.15 L and dilution rates from 0.1 to 0.35 (1/h). Two peristaltic pumps synchro-
nized the inflow and outflow to and from the bioreactor system (Masterflex, Metrohm,
Barendrecht, Nederland) to maintain a constant volume. At least seven residence times
passed until the change in dilution rate to consider the steady state. A pulse of CSExt
1% (v/v) was added at the beginning of each dilution rate, and samples were taken and
stored to determine the effect over the cell biomass, glucose consumption, and lactic
acid formation.

2.5. Growth and Analyte Determination

Optical density correlated to a dry cell weight curve that quantified cell growth in a
microplate reader at 660 nm (Thermo Fisher Scientific, Joensuu, Finland). Centrifugation of
samples allowed the recovery of cell biomass pellets for optical density determination and
supernatants for determining the concentration of analytes. The determination of soluble
analytes (glucose and lactic acid) was performed using the YSI SELECT 2950 biochemistry
analyzer (YSI, Yellow Springs, OH, USA).

2.6. Mathematical Model

An unstructured kinetic model based on Monod kinetics [36] in combination with a
product inhibition model proposed by Levenspiel [37] described cell growth as follows:

dX
dt

=
µMAX × S

KS + S
·
(

1 − P
PMAX

)n
·X (1)

where X is the dry cell weight (g/L), t is time (h), µMAX is the maximum specific growth rate
(1/h), KS is the substrate affinity (g/L), S is substrate (g/L), P is product (lactic acid) (g/L),
PMAX is the maximum inhibitory concentration of product (g/L), and n is toxic power (n = 1).

Glucose consumption was adjusted to biomass growth of LP as follows:

dS
dt

= − 1
Y X

S

·dX
dt

(2)

where Y X
S

is the biomass/substrate yield (g/g).
The Luedeking–Piret model described lactic acid production [38]. It includes a pro-

duction term associated with growth rate and another term unrelated to growth rate but
related to biomass concentration as follows:

dP
dt

= α·dX
dt

+ β·X (3)

where α is the term associated with growth rate (g/g), and β is the non-growth-associated
term, but it is related to the biomass concentration (g/g·h). Curve fitting with the squared
sum of errors between the experimental data and the data obtained from the model al-
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lowed the acquisition of the kinetic parameters using MATLAB software (R2019a). Fitting
polynomials had a correlation index of R2 > 0.98.

2.7. Improvement Analysis

The relative behavior index [39] helped with the analysis of cell biomass, glucose
consumption, and lactic acid formation to evaluate treatments with CSExt. Positive values
of the index mean an improvement, whereas negative values identify inhibition in a given
treatment compared to that of the control. The relative performance index is represented
as follows:

ξ =

[∫ tf
0 fP(t)dt −

∫ tf
0 fc(t)dt∫ tf

0 fc(t)dt

]
·100 (4)

where ξ represents either the biomass index (BI), residual glucose index (RGI), or the lactate
index (LI), fp(t) is either the time course of biomass production, glucose consumption, or
product formation of a given treatment, fc(t) ibidem for the control, and tf is the end time
of the batch process.

2.8. Statistical Analyses

ANOVA was conducted with SigmaPlot v14 (Grafiti, Palo Alto, CA, USA) to determine
the effect of batch treatments with CSExt compared to the control. All experiments were
performed in triplicate.

3. Results
3.1. Batch Cultures

The growth of LP in Man, Rogosa, and Sharpe culture media in a fully instrumented
stirred tank bioreactor with CSExt (problem) and without CSExt (control experiment)
allowed the acquisition of kinetic parameters, as shown in Table 1. The time course
biomass concentration values of control (0% CSExt), 1% CSExt, and 10% CSExt are shown
(Figure 1). The lag phase of all cultures was barely perceptible at 2.5 h for all cultures due
to the correct inoculum propagation strategy. After the lag phase, all conditions exhibited
the exponential growth phase until 9 h of culture and most of the cell biomass produced
took place in the first 10 h of culture. The maximum specific growth rates obtained were
0.82 ± 0.01, 1.27 ± 0.04, and 1.95 ± 0.03 for the control, 1% CSExt, and 10% CSExt, re-
spectively. The maximum specific growth rate increased 27 and 137% when LP cultures
included CSExt, and as a consequence of the increase in growth rate, the maximum cell
biomass concentration increased from 3.57 ± 0.06 g/L to 4.8 ± 0.00 and 6.10 ± 0.01 g/L for
1% and 10% CSExt, respectively.

Table 1. Kinetic parameters of L. plantarum in batch cultures.

XMAX
1

(g/L)
PMAX

2

(g/L)
µMAX
(1/h)

KS
(g/L)

YX/S
(g/g)

α

(g/g)
β

(g/(g·h))

Control 3.57 ± 0.06 10.42 ± 0.32 0.82 ± 0.01 0.68 ± 0.00 0.19 ± 0.00 2.33 ± 0.01 0.05 ± 0.00
1% (v/v) 4.80 ± 0.00 20.98 ± 0.01 1.27 ± 0.04 2.76 ± 0.12 0.22 ± 0.01 4.60 ± 0.03 0.00 ± 0.00

10% (v/v) 6.10 ± 0.01 19.76 ± 0.00 1.95 ± 0.03 9.89 ± 0.21 0.32 ± 0.01 3.11 ± 0.04 0.01 ± 0.00
1 Maximum biomass concentration. 2 Maximum lactate concentration.

There were no significant statistical differences between the control and treatments
(1 and 10% CSExt) regarding the glucose consumption profile. Furthermore, the time
course substrate curves did not differ, since only a slight delay with the 10% CSExt is
shown in Figure 2. The kinetic analysis demonstrated that the substrate affinity con-
stant (KS) changed with the addition of CSExt from 0.68 ± 0.00 g/L to 2.76 ± 0.12 and
9.89 ± 0.21 g/L for 1 and 10% CSExt, respectively. This change provided information about
the possible influence of tea extracts concerning cell growth, since they may enhance the
LP metabolic processes at the induction level and provide an additional substrate source.
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The cell-to-substrate yield also increased with the addition of CSExt from 0.19 ± 0.00 to
0.22 ± 0.01 and 0.32 ± 0.01 for 1% and 10% CSExt, respectively.
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Figure 2. Residual glucose concentration of L. plantarum cultures under control (•), 1% v/v of CSExt
(#), and 10% v/v of CSExt (▼). Glucose consumption curves were adjusted according to Monod with
product inhibition (Section 2.6) for control (-), 1% v/v of CSExt (. . .), and 10% v/v of CSExt (--).
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The kinetic model described the growth of LP as well as product formation. The
time course product formation followed the growth curves, indicating a growth-associated
model production. The term related to growth rate (α) from the Luedeking–Piret model
changed with CSExt concentration [38]. Practically all the lactic acid was obtained during
the growth of LP, since the independent term of the Luedeking–Piret model (β) is negligible.
Furthermore, the addition of CSExt did not alter the primary metabolism characteristic of
microaerophilic lactic acid bacteria [40].

Moreover, a significant increase in lactic acid production was found, as shown in
Figure 3. The maximum lactic acid production increased from 10.42 ± 0.32 g/L to
20.98 ± 0.01 and 19.76 ± 0.00 g/L for 1% and 10% CSExt cultures, representing an in-
crease of at least 100% compared to the control with the same culture media. The lactic
acid production was correlated with biomass formation, since it is the end product of the
microaerophile growth of LP, and an increase in cell biomass generates a proportional
rise in lactic acid concentrations. The maximum lactic acid concentration found in CSExt
cultures indicates the redirection of carbon flow to the primary metabolism. The behavior
index displayed an increase in cell biomass formation, substrate consumption, and lactic
acid production. With the addition of 1% and 10% of CSExt, the cell biomass formation
increased by 33% and 69%, respectively, as shown in Table 2.
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10% v/v of CSExt (▼). D-lactate adjusted curves were obtained according to Monod with product
inhibition (Section 2.6) for control (-), 1% v/v of CSExt (. . .), and 10% v/v of CSExt (--).

Table 2. Behavior index of CSExt in batch cultures, percent of improvement (%).

CSExt Cell Biomass
Formation

Substrate
Consumption

D-Lactate
Production

1% (v/v) vs. control 33.66 ± 1.05 3.93 ± 0.18 111.56 ± 2.53
10% (v/v) vs. control 69.13 ± 2.01 22.85 ± 1.10 89.39 ± 0.68

10% (v/v) vs. 1% (v/v) 26.54 ± 2.54 18.20 ± 0.98 −11.27 ± 0.45
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Concerning substrate consumption and despite the statistical analysis, the behavior
index obtained from the numerical integration of time curves indicates an increase in
substrate consumption with both CSExt doses. Regarding lactic acid production, the most
significant increase was found in the 1% CSExt treatment. The comparison between 1 and
10% showed a negative index, which may indicate a slight metabolism decrease for product
formation with the increase in CSExt.

3.2. Continuous Cultures

Continuous cultures of Lactiplantibacillus plantarum in MRS culture media as control
growth were conducted. The continuous culture of LP in controlled conditions at several
dilution rates ranging from 0.10 (1/h) to 0.35 (1/h) is shown in Figure 4. At every dilution
rate proposed, we established the metabolic state with a highly selective response to
environmental conditions by means of the inflow rate. Th goal was to match the mechanical
dilution rate with the specific growth rate. Between each dilution rate, at least seven
residence times were allowed before considering that the culture was in a steady state.
From this point, samples were taken, and analytes were determined. The cell biomass
concentration, lactic acid production, and residual glucose obtained in continuous culture
were 3.90 ± 0.34, 9.83 ± 1.60, and 0.05 ± 0.03 g/L, respectively, as shown in Figure 4.
Between 0.10 (1/h) and 0.25 (1/h) dilution rates, biomass and lactate formation exhibited a
steady behavior. It is worth mentioning that under a steady state and among the dilution
rates tested, biomass and lactate concentrations were similar to those observed in batch
cultures under control conditions.
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When the dilution rate reached 0.30 1/h, a decrease in cell biomass followed by
an increase in lactate formation was observed, and no perceptible changes in residual
glucose concentration were detected. This could be due to a specific metabolic state where
biochemical pathways and carbon flux are directed to lactic acid production instead of
biomass formation. Furthermore, the response of the microorganism to a specific change
in a steady-state condition evidenced the effect of such a modification over the variable
affected, such as a perturbance in biomass and lactate formation.

To comprehensively assess the impact of CSExt on the physiological and metabolic
behavior of LP, a series of continuous culture experiments were conducted. The primary
goal was to ascertain whether LP engages with prebiotics at minimal dosages, thereby
establishing specific metabolic states. Throughout various dilution rates, a 1% (v/v) CSExt
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pulse was introduced after the culture reached seven residence times (τ). This concentration
was chosen based on the assumption that it represents the minimum conceivable influence
of CSExt as a carbon source, and based on the batch experiments, the concentration was
sufficient to enhance the formation of both biomass and lactate.

Observations from batch experiments indicated no discernible contribution of CSExt
to the carbon source, as evidenced by the absence of an increase in glucose consumption
profiles. However, it was noted that the addition of 1% CSExt in batch experiments led to
elevated levels of both biomass and lactic acid production. Consequently, the continuous
experiments incorporated the use of 1% CSExt. Upon achieving steady-state conditions
after 7τ, samples were systematically collected at different time points to elucidate the
impact of CSExt addition as a pulse on lactic acid production and cell biomass formation.

Continuous culture experiments involving CSExt were conducted across a range of
mechanical dilution rates (D), from 0.10 1/h to 0.35 1/h, as shown in Figure 5. Across
all dilution rates, except at 0.15 1/h, there was no discernible difference between the
control and the 1% CSExt, after 7τ. However, at the 0.15 1/h dilution rate, a notable
perturbation in biomass concentration and lactate production was observed following the
preset steady-state conditions. To comprehensively analyze this disturbance over time, a
series of multiple samples were systematically collected until 7 h had elapsed from the
CSExt pulse.

Fermentation 2024, 10, x FOR PEER REVIEW 9 of 14 
 

 

steady-state conditions. To comprehensively analyze this disturbance over time, a series 
of multiple samples were systematically collected until 7 h had elapsed from the CSExt 
pulse. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. Continuous culture of L. plantarum pulse CSExt 1% (v/v) at 0 h (steady state): (a) D = 0.10 
1/h, (b) D = 0.20 1/h, (c) D = 0.25 1/h, and (d) D = 0.35 1/h. Cell biomass (●), D-lactate formation (□), 
residual glucose (○). 

Figure 6 illustrates the culture with 1% (v/v) CSExt at a dilution rate of 0.15 1/h. 
Within the first 1.5 h of the culture, a distinct increase in biomass formation and a pertur-
bation in lactic acid production were evident. Importantly, it should be noted that despite 
the addition of 1% CSExt, no increases in glucose or total sugar concentration were ob-
served. The biomass formation increased from 4.07 ± 0.33 g/L to 5.70 ± 0.18 g/L with the 
introduction of 1% CSExt. Notably, at no other dilution rate did the addition of 1% CSExt 
elicit either a positive or negative effect. 

Figure 5. Continuous culture of L. plantarum pulse CSExt 1% (v/v) at 0 h (steady state): (a) D = 0.10 1/h,
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Figure 6 illustrates the culture with 1% (v/v) CSExt at a dilution rate of 0.15 1/h.
Within the first 1.5 h of the culture, a distinct increase in biomass formation and a per-
turbation in lactic acid production were evident. Importantly, it should be noted that
despite the addition of 1% CSExt, no increases in glucose or total sugar concentration were
observed. The biomass formation increased from 4.07 ± 0.33 g/L to 5.70 ± 0.18 g/L with
the introduction of 1% CSExt. Notably, at no other dilution rate did the addition of 1%
CSExt elicit either a positive or negative effect.
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4. Discussion

Batch experiments were instrumental in acquiring crucial kinetic parameters, which
are essential for industrial scale-up and the development of multiple simulations. CSExt
pulses demonstrated a consistent increase in both final biomass and product concentration,
at least at the two concentrations evaluated, 1% (v/v) and 10% (v/v) CSExt. This aligns with
reported kinetic data showing similar cell biomass concentrations and specific growth rates
for Lactobacillus casei in a formulated goat milk culture media [29]. The highest biomass
productivity, 0.25 g/(L·h), was achieved with 10% (v/v) CSExt, while the highest lactic acid
formation productivity, 0.87 g/(L·h), was obtained with 1% (v/v) CSExt. Productivities
were determined by the ratio of maximum values measured at the end of fermentation.
The use of CSExt allowed higher biomass and lactate productivities compared to the
one reported for Lactobacillus casei in batch cultures with 50 g/L of lactose as the sole
carbon source [29], Lactobacillus amylovorus in batch culture and 20 g/L of glucose [9], and
Lactobacillus salivarius in an optimized culture media with 25 g/L [41].

The primary constituents of Camellia sinensis tea leaves are polyphenols, constituting
from 25% to 35% (dry basis), while saccharides such as polysaccharides and monosac-
charides account for 10% (dry basis) [42]. Notably, phenolics and catechins present in
CSExt significantly improved biomass production in batch culture, a finding supported by
previous studies on Lactobacillus casei ATCC 393, where growth and viability were enhanced
with the addition of green and black tea extracts [43]. However, numerical analyses of the
effects of tea extracts during the growth and fermentation of probiotic strains were lacking
in these reports. One of the objectives of this study was the kinetic analysis of LP growth
with the addition of green tea extract as a growth promoter; however, no data about CSExt
composition were available. Recent data indicate the presence of fructo-oligosaccharides
(FOS) [44–47] and phenolic compounds in plant extracts [48], suggesting that the increase
in biomass yield could be attributed to the presence of a carbon source metabolizable and
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incorporable by LP. Subsequent experiments using isolated components from the extract
are essential to pinpoint and identify the specific growth-promoting compound.

The term prebiotic has been understood as a non-viable food ingredient which is
selectively metabolized by beneficial intestinal bacteria [49]. Nonetheless, ongoing de-
bates persist, with some authors arguing that prebiotics are exclusively non-digestible
carbohydrates [50], while others assert that the native microbiota interacts metabolically
with polyphenolics [43], transforming polymeric prebiotics into easily absorbable phenolic
compounds, generating a beneficial effect on hosts, such as a cancer chemoprevention
compound [50].

While batch experiments revealed a positive effect of CSExt on biomass and prod-
uct formation, the dynamic nature of cellular metabolism, physiology, chemical species,
metabolic end products, and environmental growth conditions in classical batch produc-
tion processes necessitates a detailed analysis. Continuous culture, maintaining a constant
metabolic and physiological state in the steady state [51], offers a more stable platform for
such analyses [3,52,53]. The application of a specific dilution rate emerges as a strategic ap-
proach to enhance product biomass yields or direct metabolism towards biomass formation
in industrial-scale processes [54,55]. After examining physiological states at various growth
rates (mechanical dilution rates), an abnormal behavior in biomass and lactate production
was observed at 0.15 1/h. This finding provides a basis for establishing optimization
criteria in batch and fed-batch processes by attempting to maintain this specific growth rate
for as long as possible. Comparable results were observed with Clostridium acetobutylicum
in continuous culture with cell recycling, where solvent production increased at a specific
growth rate [56].

Further research is necessary to elucidate the mechanism and components that pro-
mote cell proliferation and increase lactic acid production. It is hypothesized that the high
content of phenolic compounds stimulates the cell division cycle at a genetic level and redi-
rects the flow of carbon towards biosynthesis processes. Understanding these mechanisms
will enable the development of industrial production processes using Lactiplantibacillus
plantarum strains optimized for cell proliferation.

5. Conclusions

These findings underscore that specific biochemical pathways and physiological states,
or membrane permeability can be achieved at particular dilution rates in continuous
production processes. Our results suggest that Camellia sinensis extract (CSExt) serves as
a promising cell growth promoter and lactic acid enhancer [19,43,57,58]. The acquisition
of kinetic parameters through several batch cultures facilitates meaningful comparisons.
In lactic acid fermentation, CSExt altered the carbon flux of Lactiplantibacillus plantarum
metabolism, leading to a substantial increase in both lactic acid and cell biomass. Moreover,
continuous culture at specific physiological stages demonstrated that CSExt induced a
significant increase in cell biomass concentration. This study stands as the first to report
on the kinetic parameters evaluating the effect of plant extract on the growth of a specific
strain of Lactiplantibacillus plantarum. The results and strategies outlined here hold potential
for application in industrial-scale probiotic production.
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