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Abstract: D-tagatose is a rare, naturally occurring low-calorie hexose, with a sweetness
of 92% sucrose but only 1/3 of the calories. It has beneficial functions in lowering blood
sugar, controlling obesity, preventing dental caries, and improving intestinal flora. In recent
years, biotechnological routes to D-tagatose production from renewable raw materials have
been regarded as very promising approaches. In this review, we provide an overview of
the properties and applications of D-tagatose, with a focus on the current developments
in the production of D-tagatose using enzymatic transformation and whole-cell catalytic
synthesis. The biosynthetic pathways and the types and characteristics of the catalytic
enzymes involved have been summarized, providing a reference for the design of D-
tagatose synthesis pathways. We also expect that rapid developments in the fields of
systems biology and synthetic biology will accelerate protein and metabolic engineering
for microbial D-tagatose production in the future.

Keywords: D-tagatose; functional sugar; in vitro enzymatic transformation; whole-cell
catalysis; biosynthetic pathways

1. Introduction
In recent years, sugar intake has become a major public health issue and is becoming

increasingly popular among people of all ages. However, excessive sugar intake increases
the risk of metabolic diseases, including diabetes, dental caries, obesity, and other health
problems [1,2]. Due to people’s demand for nutrition and health, it has been discovered
that sugar substitutes, which can be used as substitutes to maintain sugar intake, can
benefit consumers by reducing calorie and sugar intake [3]. The U.S. Food and Drug
Administration (FDA) has stated that the use of artificial sweeteners within the acceptable
daily intake (ADI) range is safe [4]. Nowadays, sugar substitutes have been widely used in
the food, medical, and cosmetics industries [5,6], and 25% of children and 41% of adults
use sugar substitutes in the United States [7]. According to statistics, the global market
size of sugar substitutes reached USD 18.96 billion in 2022, and the popularity of sugar
substitutes has been continuously increasing [8].

Sugar substitutes are divided into natural and artificial substitutes according to their
sources and processing methods. Artificial sugar substitutes are made through chemical
synthesis and have the advantages of high sweetness, low calories, and good stability, and
include saccharin, aspartame, sucralose, etc. Compared with artificial substitutes, natural
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sugar substitutes have higher safety and are unanimously considered a more promising
type of sweetener [9,10].

In natural sugar substitutes, those with the broadest market prospects include ste-
via [11], D-allulose [12], D-tagatose [13], and Brazilian sweet protein [14], among others.
Stevia has a sweetness 200–300 times that of sucrose, with only about 1/250 of the calories.
However, compared to sucrose, stevia exhibits a noticeable aftertaste of bitterness, which
affects its further application [15]. D-allulose is a type of monosaccharide that exists natu-
rally but in very small amounts. It has a sweetness level of 70% that of sucrose, yet contains
only 0.3% of the calories of sucrose, boasting advantages such as a low calorie content, high
stability, and non-hygroscopicity. With the further improvement of production efficiency
driven by synthetic biology, its market size is gradually expanding [16]. Brazilian sweet
protein is a sweet-tasting protein extracted from the fruit of a wild plant native to West
Africa. With a sweetness intensity ranging from 500 to 2000 times that of sucrose, it is one
of the sweetest natural substances known to date, devoid of metallic or bitter aftertaste,
and offering advantages such as long-lasting sweetness and flavor enhancement [17]. Due
to the high cost of traditional plant extraction methods, the development of a biological
fermentation process for the production of Brazilian sweet protein is urgently needed.

D-tagatose is a naturally occurring rare monosaccharide with a structure similar to
D-allulose. Its sweetness is 92% that of sucrose, and it contains only one-third of the
calories of sucrose. As a natural sugar substitute, D-tagatose is a substance derived from
the gum of a tropical evergreen tree called Sterculia setigera, and it has also been found in
limited amounts in lower plants, including mosses and lichens, and in other dairy products
exposed to heat [18–20]. Studies have shown that D-tagatose can inhibit oral bacterial
growth by affecting glycolysis and its downstream metabolism [21], so it has great potential
for preventing oral diseases [22].

In 2022, the global D-tagatose market reached hundreds of millions of dollars and
is projected to continue growing at a compound annual growth rate of 6%. The market
agencies predict that the global tagatose market size will expand from USD 155 million
in 2023 to USD 243 million by 2033. However, with the increase in market demand, ef-
fective methods for D-tagatose production have become an urgent issue. Currently, the
main producers of D-tagatose include Sukrin (Suriname), Living Fuel (U.S.), Damhert
Nutrition NV (Belgium), CJ Cheiljedang Corporation (Korea), Bonumose (U.S.), Linlu
Biotechnology (China), and other companies. The methods of production of D-tagatose
mainly include chemical synthesis and biological methods [23,24]. Chemical synthesis
involves using soluble alkali metal or alkaline earth metal salts as catalysts to promote the
formation of D-tagatose from D-galactose under alkaline conditions, resulting in a metal
hydroxide–tagatose complex, which is then neutralized with acid to obtain D-tagatose [25].
CJ Cheiljedang Corporation employs this method, with an annual production capacity
exceeding 3000 tons of D-tagatose. Although chemical synthesis has achieved industrial
production, they have many unfavorable production factors—for example, the produc-
tion of many chemical pollutants and by-products under alkaline conditions, complex
production processes, high energy consumption of intermediates, environmental pollution,
etc. [26]. The biological method for producing D-tagatose utilizes biological enzymes or
enzyme-containing cells as catalysts to catalyze the conversion of substrates into D-tagatose
at a certain concentration, followed by separation and purification to obtain the D-tagatose
product. Biosynthesis offers mild reaction conditions, safety, high efficiency, and production
of the least amount of by-products, and is currently the mainstream research approach [27].
Currently, Linlu Biotechnology (Huang shi, China) Co., Ltd., has reached a production
capacity of 2000 tons of D-tagatose using the bioconversion method. In this review, we
primarily focus on the research progress of biological production of D-tagatose and divide
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it into two types: in vitro enzymatic conversion and whole-cell catalytic synthesis. For
each class, we summarize the synthetic pathway, the enzymes and its sources, substrate
specificity, and catalytic efficiency. Finally, we discuss further improvements needed for
the production of D-tagatose using protein engineering, systems biology, and synthetic
biology strategies.

2. Overview of D-Tagatose
2.1. Structure and Physicochemical Properties of D-Tagatose

As a food sweetener, D-tagatose has 92% of the sweetness of sucrose, but the calorific
value is only 1.5 kcal/g, which is 30% of the calorific value of sucrose [13]. The molecular
formula of D-tagatose is C6H12O6 and it has a relative molecular mass of 180.16 g/mol [28],
which is the isomer of D-galactose, the C-3 diastereoisomer of D-sorbose and the C-4 di-
astereoisomer of D-fructose (Figure 1) [6]. Pure D-tagatose is a white crystalline substance
with no particular smell and a melting point of 134 ◦C. It is readily soluble in water and
slightly soluble in ethanol [19], and the solubility of D-tagatose is 58% at room tempera-
ture [26]. This reducing sugar has a low hygroscopicity but a high moisturizing capacity
and stability. Similar to other monosaccharides, D-tagatose remains stable within the pH
range of 3–7. Minimal loss of D-tagatose and browning were observed in citrate and phos-
phate buffers at pH 3.0. Furthermore, at 40 ◦C and in 0.1 M buffer (pH 3.0), a significant loss
of approximately 5% of D-tagatose was observed over a period of more than six months,
with a slight browning color [29].
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Figure 1. Chemical structures of D-tagatose, D-fructose, D-galactose, and D-sorbose. The caloric
value refers to the amount of heat (in kcal) produced by consuming one gram of sugar, and the
relative sweetness is compared with sucrose as the standard.

D-tagatose has also some alkalinity and heat resistance but is susceptible to the Mail-
lard reaction at high temperature [30]. D-tagatose reacts with amino acids in a Mail-
lard reaction to produce volatile substances such as 2-acetylfuran, 2-ethylpyrazine, and
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2-acetylthiazole, which are more volatile than reducing sugars such as D-glucose and
D-galactose [28]. These unique features enable D-tagatose to interact with other sweetening
substances, such as stevia and sucralose, resulting in a more desirable sweetness perception
through synergistic effects [31]. Saunders et al. showed in a study with mice that 68% of
D-tagatose was finally broken down to CO2 [32]. Kruger et al. conducted a tartar feeding
experiment on mice and found that D-tagatose did not cause chronic or genotoxic lesions in
mice at the experimental dose and was therefore safe and reliable for use as food. Other ex-
tensive safety toxicology studies on D-tagatose have also shown that it is safe and harmless
to consume [33].

2.2. Physiological Function and Applications of D-Tagatose

Based on the physicochemical properties of D-tagatose mentioned above, it has the
following four major functions: hypoglycemia [29], low energy consumption [34], improve-
ment of intestinal flora [25], and caries prevention (Table 1) [35]. Studies have shown
that only a small fraction (20–25%) of the D-tagatose that enters the body is digested and
absorbed in the small intestine, and that it also inhibits the absorption of D-glucose in
the small intestine, thus effectively suppressing an increase in blood glucose in patients
with diabetes and reducing the chance of related complications [23]. D-tagatose can be
catabolized by the 6-phosphate tagatose pathway, but this pathway is only present in
specific microorganisms [36]. Furthermore, during the metabolic process, a part of the
energy is lost due to the increased excretion of biomass from the flora [37]. Therefore, the
energy produced by the decomposition and metabolism of D-tagatose is much lower than
that of sucrose, which is beneficial for reducing food calories and obesity [38]. In addition to
reduced absorption in the small intestine, D-tagatose is hardly broken down and utilized by
microorganisms in the oral cavity, and trace amounts of D-tagatose that adhere to the tooth
surface can form a protective film, thus effectively protecting dental health and preventing
dental caries [21,34,35]. Moreover, D-tagatose undergoes selective fermentation in the colon
by certain microflora, which stimulates the growth of lactic acid bacteria and Lactobacilli
during the fermentation process and inhibits the growth of various pathogenic bacteria in
the intestine, resulting in a favorable probiotic effect [25]. Some studies have shown that a
daily intake of 4.5 g or more of D-tagatose can significantly improve intestinal flora [39].

Table 1. The functions and applications of D-tagatose.

Characteristic Health Functions Applications

1/3 of the caloric value of sucrose Low energy Low-sugar foods, diet foods, and
grain foods

Low calorie, difficult to metabolize Reduces blood sugar Exclusive food for type II
diabetic patients

Can be fermented by intestinal flora in
the colon Improves intestinal flora Dairy products, juice drinks, and

effervescent tablets

Difficult to be utilized by microorganisms in
the oral cavity Anti-caries Gum, toothpaste, and mouthwash

Easy to caramelize, heat and moisture
absorption resistant

Adds flavor Bread, beverages, and sweets

Medical field Cough syrup and denture adhesive

Wettability and stability Improves and prevents
skin roughness Cosmetic moisturizers

Inhibits the growth of some phytopathogens Protects plants Plant protection products
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In addition to these common functions, studies have shown that D-tagatose has other
physiological functions, including the enhancement of crucial blood factors that facilitate
the promotion of blood metabolic circulation in humans [40]. It effectively inhibits the
harmful effects of chemicals, such as cocaine and furantoin, on the liver, while enhancing
the sensitivity of liver cells to toxic substances and acting as a hepatoprotective agent [41].
It improves the chances of pregnancy in female rats and has tremendous potential for the
treatment of infertility [33]. It is able to inhibit the growth of numerous microorganisms,
and it has been proposed as a promising plant protection product [42].

Based on the characteristics and physiological functions of D-tagatose, it has been
granted Generally Recognized as Safe (GRAS) status by the U.S. Food and Drug Admin-
istration (FDA) since 2001 [43]. The European Union also approved the marketing of
D-tagatose in Europe in 2003, and PepsiCo officially used D-tagatose as a flavor enhancer in
Sprite beverages in August 2006, marking the first time D-tagatose entered the commercial
arena. In 2007, Miada Sports Nutrition Foods of New Zealand applied D-tagatose to the
development of chocolate products, which were released to Australian and New Zealand
supermarkets in May. D-tagatose is currently used in large quantities in the U.S. as a substi-
tute for white sugar in health drinks as well as in yogurt and juice products. D-tagatose
products are now approved for use by food hygiene authorities in the U.S., Australia, Japan,
and Korea.

3. Production of D-Tagatose by Biological Methods
The amount of D-tagatose in nature is extremely low, and therefore it is difficult

for naturally extracted D-tagatose to meet the actual production demand. D-lactose, as
a relatively inexpensive and abundant raw material, has been used for the industrial
production of D-tagatose for the first time [44]. The current method of producing D-
tagatose is primarily chemical synthesis, which involves using alkaline metals as catalysts,
with D-lactose as the substrate, such as conversion of D-galactose to D-tagatose using a
calcium catalyst. Under the catalysis of metal hydroxides and metal salts, the isomerization
of D-lactose produces a D-tagatose–metal ion complex intermediate precipitate. Then, the
acid neutralization method can be used to separate and purify the D-tagatose [41]. D-lactose
can be hydrolyzed to produce D-glucose and D-galactose, and then chemically processed
to produce D-tagatose. Although the method has a high yield, it has many disadvantages.
Traditional manufacturing methods can only convert about 30% of D-galactose [45], and
the cost of separating D-tagatose is high, leading to a persistently high retail price for
tagatose. According to data from Dutch industry consulting firm FutureBridge, in 2020,
the retail price of D-tagatose was USD 26/kg, while the retail price of sucrose was only
USD 0.05/kg. Furthermore, alkaline conditions hinder the isomerization reaction of aldo-
ketose. Additionally, the reaction process is prone to browning and the production of a large
amount of by-product. This in turn leads to a complicated process of product separation and
purification, increasing production costs and causing environmental pollution and resource
waste, and the same molar amounts of D-galactose and Ca2+ must be used to obtain high
yields of D-tagatose [46]. Severe degradation of D-galactose led to a decrease in D-tagatose
yield, while a decrease in syrup quality allowed for the production of D-tagatose. Therefore,
it is not a safe or long-term method for the preparation of D-tagatose [47]. Although there
are other chemical methods to produce D-tagatose, such as supercritical fluid (<24%) [48],
arginine (<16.8%) [49], hydrotalcite (<27%) [50], etc., these methods produced low yields of
D-tagatose. Due to these disadvantages of chemical synthesis, the production of D-tagatose
by biotechnology has become a hot topic of research [51].

In contrast, the production of D-tagatose by biological methods is superior to chemical
methods in many ways, including enzymatic conversion and whole-cell catalysis. Enzy-
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matic conversion methods, which use enzymes as catalysts, have advantages over chemical
methods because they are substrate specific and produce products without any by-products,
thus simplifying the product purification process. The whole-cell method allows a wide
range of bacteria to be used as whole-cell factories. In addition, D-galactitol dehydrogenase
can be used to convert D-galactitol to D-tagatose. In summary, the bioprocess for D-tagatose
production offers advantages such as simple steps, mild reaction conditions, safety and
efficiency, high conversion efficiency, specificity, and fewer by-products [52,53]. The pro-
duction of D-tagatose using biotechnological methods includes enzymatic transformation
and whole-cell catalysis.

3.1. Synthesis of D-Tagatose by Enzymatic Transformation In Vitro

Enzymatic conversion is the process of using specific enzymes extracted from mi-
croorganisms, animals, and plants to catalyze the conversion of substrates into desired
products under suitable conditions. Depending on the substrate and enzyme adopted,
these strategies can be categorized into single-, dual-, and multi-enzyme methods.

3.1.1. Synthesis of D-Tagatose by a Single Enzyme

Currently, the single-enzyme method is the main approach for the enzymatic synthesis
of D-tagatose. The types of enzymes include L-arabinose isomerase (L-AI) [47,54–59],
D-tagatose 3-epimerase (DTEase) [60], D-arabinose 3-epimerase (DPEase) [61], and D-
galactose dehydrogenase (GDH) [62,63] catalyzing the one-step conversion of substrates to
D-tagatose. The most extensively studied method is the one-step synthesis of D-tagatose
from D-galactose catalyzed by L-AI, an intracellular enzyme that is widely present in
microorganisms. Patrick et al. [64] isolated L-AI from E. coli, and it was found that L-AI
consists of six identical subunits with a relative molecular mass of 36,200 Da. The enzyme
is composed of an N-terminal domain, a middle domain, and a C-terminal domain, and its
structure includes 16 β-sheets and 17 α-helices. Within its complete hexamer, six active sites
are located at the subunit–subunit interface and in the bridging region of adjacent subunits.
Manjasetty [65] observed the morphology of L-AI with an electron microscope. He found
that six subunits were composed of three subunits, which formed symmetrical triangles,
and then the triangles were stacked into triangular prisms. There was an equivalent
cleft on the surface of the triangular rhombohedron. The cleft in the subunit was located
between domains, forming a strong electron density abyss, which was presumed to be the
enzyme’s active center (Figure 2). L-AI catalyze not only the isomerization of L-arabinose
to L-ribulose but also D-galactose to D-tagatose (Figure 3A) [66–68]. In 1993, Cheetham
et al. [69] not only reported for the first time that L-AI from microbial sources could
catalyze the isomerization of L-arabinose to L-fructose but also successfully used L-AI from
Mycobacterium phlei and Lactobacillus gayonii to convert D-galactose into D-tagatose. Since
then, L-AI from microbial sources has become one of the most widely studied enzymes in
the research on the synthesis of D-tagatose.

Depending on the catalytic temperature, the microbial sources of L-AI can be classified
as mesophilic, thermophilic, or hyperthermophilic microorganisms. The optimum reaction
temperature of mesophilic microbial sources, including Lactobacillus brevis [30], Bacillus
coagulans [43], Lactobacillus fermentum [70], Pediococcus pentosaceus [71], Lactobacillus plan-
tarum [72], and E. coli [73], is 30–50 ◦C [25]. For thermophilic microbial sources, including
Geobacillus stearothermophilus [74,75], Geobacillus thermodenitrificans [40,76], Bacillus stearother-
mop hilus [77,78], and Arthrobacter psychrolactophilus [79], the optimum reaction temperature
is 60–80 ◦C. The optimum reaction temperature of L-AI from hyperthermophilic micro-
bial sources, including Thermotoga neapolitana [41,80] and Thermotoga maritima [81,82], is
85–90 ◦C. The properties of L-AI from various microbial sources shown in Table 2.
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Table 2. Properties of L-AI from various microbial sources.

Microbial Source Substrate Optimum
Temperature (◦C)

Optimum
pH Metal Ion Requirement References

Thermoanaerobacterium brockii D-galactose 65 6.9 Co2+ [83]
Thermotoga neapolitana 5068 D-galactose 80 7.0 Mn2+, Co2+ [56]

Thermotoga maritima D-galactose 90 7.5 Mn2+, Co2+ [81]
Lactobacillus plantarum NC8 D-galactose 60 7.5 Mn2+, Co2+ [72]

Thermophilic bacterium IM6501 D-galactose 60 8.0 Zn2+, Ni2+ [84]
Lactobacillus plantarum CY6 D-galactose 50 6.5 Mn2+ [13]
Bifidobacterium adolescentis D-galactose 55 6.5 Mn2+, Fe2+, Zn2+, Ca2+ [65]

Arthrobacter species 22c D-galactose 52 8.0 Mg2+, Mn2+, Ca2+ [85]
Clostridium hylemonae D-galactose 50 7.5 Mg2+ [86]
G. thermodenitrificans D-galactose 60 9.0 None [55]

Bacillus coagulans NL01 D-galactose 60 7.5 Mn2+, Co2+ [43]
Pediococcus pentosaceus PC-5 D-galactose 50 6.0 Mn2+, Co2+ [71]
Bifidobacterium longum NRRL

B-41409 D-galactose 55 6.0–6.5 Ca2+, Mg2+ [10]

Anoxybacillus flavithermus D-galactose 95 9.5–10.5 Ni2+ [9]
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The conversion of D-galactose varies depending on the monosaccharide isomerase and
the conditions used. The reaction temperature is an important parameter for catalyzing the
aldoketose isomerization reaction in vitro, and the isomerization equilibrium between D-
galactose and D-tagatose gradually favors D-tagatose as the reaction temperature increases.
Additionally, intracellular enzymes that are not involved in D-tagatose synthesis are less
active under high-temperature conditions, which reduces the occurrence of side reactions
and is more conducive to purification for downstream engineering [13]. The anaerobic
thermophilic bacterium Thermoanaerobacterium brockii, produced and characterized in E.
coli [83], produced D-tagatose from 300 g/L of D-galactose at 65 ◦C, with a yield of 126 g/L
and a conversion rate of 42%. Kim BC et al. [56] cloned the araA gene encoding L-AI
from the thermophilic bacterium Thermotoga neapolitana 5068 and expressed it in E. coli.
The recombinant enzyme was purified by heat treatment, ion exchange chromatography,
and gel filtration at an isomerization temperature of 80 ◦C, and the recombinant enzyme
produced 1.22 g/L of D-tagatose from 1.8 g/L of D-galactose, with a conversion rate of
68%. The temperature exceeding 80 ◦C may result in undesirable Maillard reactions, which
can decrease sugar production. Therefore, the temperature for D-tagatose production is
usually set at 60–70 ◦C for industrial production, and heat-resistant enzymes are preferred.

L-AI is also affected by pH. The optimal pH of L-AI from different microbial sources
varies. Most L-AI exhibits maximum activity under neutral or alkaline conditions. For
instance, the araA gene encoding L-AI was cloned from the hyperthermophilic bacterium
Thermotoga maritima and had maximum activity at 90 ◦C and pH 7.5 [81]. Chouayekh H
et al. [72] cloned and expressed the gene araA encoding L-AI from Lactobacillus plantarum
NC8. It exhibited 68% of its maximum activity at pH 5.5 and retained 89% of its activity
after incubation at pH 5 for 24 h. The purified L-AI NC8 achieved a biotransformation rate
of 30% for the conversion of D-galactose into D-tagatose after 6 h of reaction at 60 ◦C.

In addition, metal ions are essential cofactors of L-AI, especially Mn2+ and/or Co2+,
which play an important role in the activity and stability of L-AI [43]. These metal ions bind
to the active center of the enzyme and help stabilize its protein structure, enabling effective
catalysis. For example, Kim JW et al. [84] cloned L-AI from the thermophilic bacterium
IM6501 using the PCR method. The purified L-AI has heat resistance and exhibits the
highest activity when reacted for 30 min at 60 ◦C and pH 8. The Zn2+ and Ni2+ deactivated
the catalytic activity of L-AI, while 5 mM Mn2+ increased the biotransformation rate by
90%. Lee DW et al. [81] cloned the araA gene encoding L-AI from the hyperthermophilic
bacterium Thermotoga maritima, it is more thermostable in the presence of Mn2+ and/or Co2+

than in their absence, the enzyme achieved a conversion rate of 56% for the isomerization
of D-galactose into D-tagatose at 80 ◦C, with a reaction time of 6 h.

To improve the efficiency of producing D-tagatose with L-AI, some researchers have
used immobilized enzyme methods to enhance production efficiency. Kim P et al. [87]
immobilized L-AI from E. coli on agarose to produce D-tagatose. The immobilized L-AI
produced an average of 7.5 g/(L·d) D-tagatose for 7 days, with a yield exceeding that of
free enzymes. Using an expanded immobilized enzyme system, 99.9 g/L D-tagatose was
produced within 48 h from D-galactose, with a balance of 20%. Kim H J et al. [88] immobi-
lized L-AI Gali152 on alginate carriers and optimized the conditions for the D-galactose
isomerization reaction. Under stable conditions of pH 8.0 and 60 ◦C, the immobilized
enzyme produced 58 g/L of D-tagatose from 100 g/L of D-galactose in an intermittent
reaction over 90 h. In contrast, free enzyme, due to its lower stability, produced only 37 g/L
of D-tagatose. In a continuous circulation mode, Gali152 immobilized in alginate beads
was used in a packed-bed bioreactor with galactose as a raw material, producing 230 g/L of
D-tagatose from 500 g/L of D-galactose, with a productivity of 9.6 g/(L·h) and a conversion
rate of 46%.
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Despite the efficiency and simplicity of the catalytic reaction between D-galactose and
L-AI, the high cost of D-galactose currently poses a challenge to its widespread industrial
production. To mitigate this issue, D-lactose or whey is commonly used as a raw material
in the industrial production of D-tagatose. The initial step involves the acid hydrolysis
of D-lactose or whey, which converts it into a mixture of D-glucose and D-galactose.
Subsequently, L-AI is utilized to convert the D-galactose into D-tagatose, resulting in a
significant reduction in the cost of D-tagatose production. It was reported that Zhang
et al. [13] used recombinant E. coli to express L-AI from Lactobacillus plantarum CY6. The
net yield and volumetric productivity of D-tagatose after two-stage SSB were 0.7 mol/mol
D-lactose and 0.54 g/(L·h), respectively. Shin KC et al. [89] identified a D-tagaturate 3-
epimerase from Thermotoga petrophila, which has potential 4-epimerase activity towards D-
fructose. Through genetic engineering, the enzyme was modified to enhance its 4-epimerase
activity towards D-fructose. At 80 ◦C, the enzyme produced 213 g/L of D-tagatose from
700 g/L of D-fructose within 2 h, with a conversion rate of 30%.

3.1.2. Synthesis of D-Tagatose by Dual Enzymes

Although the single-enzyme method is relatively simple to operate and does not
require complex steps and multiple enzymes, the method may be limited by various factors,
such as the characteristics of the enzyme itself, the properties of the substrate, and the
reaction conditions, which can affect the efficiency and accuracy of the reaction. The
dual-enzyme method can optimize the disadvantages of the single-enzyme method to a
certain extent, thereby improving the efficiency of producing D-tagatose. The synthesis of
D-tagatose by dual-enzyme catalysis relies on D-lactose as the substrate. First, D-lactose is
hydrolyzed into D-galactose by β-galactosidase. Subsequently, D-galactose is converted
into D-tagatose using L-AI as the catalyst (Figure 3B). Zheng et al. [73] used a recombinant E.
coli expressing L-AI to establish a one-pot biosynthesis process for D-lactose hydrolysis and
D-galactose isomerization at 50 ◦C. Using whey permeate containing 100 g/L of D-lactose
as the raw material, they produced 23.5 g/L of D-tagatose and 26.9 g/L of bioethanol, with a
conversion rate of 23.5%. This process does not require the addition of extra β-galactosidase,
simplifies the biotransformation process, and reduces production costs. The gatz gene from
Caldilinea aerophile (a filamentous thermophilic bacterium found in Japanese hot springs)
was heterologously expressed in E. coli BL21, and the purified recombinant gatz was coupled
with phosphatase (PGP) to construct a two-enzyme catalytic system that transformed F6P
to produce D-tagatose [90]. The gatz has the properties of 6-phosphofructose 4-isomerase
with an optimum pH of 8.0, is a metal-dependent enzyme with an optimum metal ion
of Mg2+, and has a high thermal stability with an optimum temperature of 70 ◦C. After
holding at 60 ◦C for 30 h, it can still maintain more than 80% of the initial enzyme activity.
When PGP was added together with gatz, the final yield was approximately twice that
when PGP was added after the gatz reaction, yielding 1.23 g/L and 0.60 g/L of D-tagatose
after 6 h, respectively. In addition, the reaction reached equilibrium at 50 and 150 min, with
final yields of 4.1% and 2.0%, respectively [91]. Therefore, the consumption of 6-phosphate
D-tagatose by PGP would drive the equilibrium of the gatz-catalyzed reaction towards
D-tagatose production and increase the final concentration of D-tagatose.
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3.1.3. Synthesis of D-Tagatose by Multi-Enzyme

In recent years, with the discovery of more enzyme preparations with novel functions,
methods for synthesizing rare sugars based on multi-enzyme catalytic systems have gradu-
ally emerged. These new methods have the advantages of high efficiency, simplicity, and
low cost. For the synthesis of D-tagatose, various enzyme conversion methods have been
studied. Among the isomers of D-tagatose, D-fructose is the cheapest. However, there are
no naturally occurring enzymes that can directly convert D-fructose into D-tagatose. While
the conversion of D-fructose to D-tagatose can barely be achieved by the single-enzyme
method, D-tagatose can be produced by a multi-enzyme catalytic system based on the Izu-
moring strategy and a phosphorylation–dephosphorylation multi-enzyme catalytic system.
The Izumoring strategy was used for the biological production of all hexoses—16 aldohex-
oses, 8 ketohexoses, and 10 hexanols using enzymatic and microbial reactions that can cycle
and prepare all monosaccharides using three enzymes (D-tagatose 3-epimerase, polyol
dehydrogenases, and aldose isomerases) [92].

The phosphorylation–dephosphorylation multi-enzyme catalytic system involves a
series of enzymes, starting with kinases or phosphatases, that react to produce phosphory-
lated sugars. Subsequently, the sugars are gradually converted using isomerase, differential
isomerase, or synthase, and the phosphate groups are removed using phosphatase to obtain
the target product (Figure 3C). Dai et al. [93] used this system to obtain D-tagatose by a
three-step enzymatic cascade reaction involving hexokinase, D-fructose-1,6-bisphosphate
aldolase (FbaA), and phytase (a phosphatase), with D-fructose as the substrate, and its
conversion rate could reach 80%. Although this approach reduces the production costs
of D-tagatose, the starting enzyme, kinase, requires the participation of ATP during the
reaction, which is unstable at high temperatures and results in difficulty in purifying the
product, making it unsuitable for practical production. In contrast, Wichelecki et al. [94]
employed different functional phosphorylases as starting enzymes to synthesize high-
purity D-tagatose in one step, where maltodextrin, cellulose, or sucrose were used as
substrates after a multistep enzyme-catalyzed conversion. Han et al. [95] synthesized
D-tagatose using starch as a substrate. This reaction pathway involves α-glucan phospho-
rylase (αGP), phosphoglucomutase (PGM), phosphoglucose isomerase (PGI), D-tagatose
6-phosphate 4-epimerase (TPE), and D-tagatose 6-phosphate phosphatase (T6PP), and this
method further reduces the production cost of D-tagatose. Zhang et al. [96] synthesized
D-tagatose from maltodextrin using a four-step enzymatic reaction. They immobilized α-
glucan phosphorylase (αGP) and phosphoglucose mutase (PGM) on Duolite A568 exchange
resin, constructing a catalytic cascade system to generate the D-tagatose precursor glucose
6-phosphate (G6P). The co-immobilized αGP&PGM can serve as a catalyst for one-pot
production of G6P, which can serve as an initial pathway for further production of D-
tagatose. Currently, over 30 phosphorylases have been explored and identified [97], which
are anticipated to facilitate the one-step production of D-tagatose while reducing costs.
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Figure 3. Enzymatic synthesis of D-tagatose. L-AI catalyzes D-galactose isomerization to D-tagatose
(A). Lactose undergoes hydrolysis with β-galactosidase, resulting in the formation of D-galactose.
The D-galactose is transformed to D-tagatose using L-AI as the catalyst (B). Fructose is converted
by hexokinase into fructose-6-phosphate, which is then converted by fructose-1, 6-diphosphate into
taglose-6-phosphate, which is finally catalyzed by phosphatase into D-tagatose (C).

3.2. Whole-Cell Catalytic Synthesis of D-Tagatose

Compared with in vitro enzymatic methods, whole-cell catalysis does not require
cell fragmentation or enzyme isolation and purification, and the cell membrane prevents
enzyme damage by shear forces, which is conducive to improving enzyme stability and
reducing production costs. In addition to the use of L-AI for in vitro catalysis, whole-cell
catalysis has been extensively studied, with E. coli being one of the most commonly used
hosts [98–100]. Figure 4 shows the construction of the metabolic pathway for the synthesis
of D-tagatose in E. coli in vivo. The whole-cell catalysis of multi-enzyme co-expressing
recombinant strains has the advantages of high efficiency, low cost, and good reaction stabil-
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ity, and has been widely used in the biosynthesis of many important chemicals [97,101–103].
Yuan et al. [104] demonstrated the overexpression of L-AI, which was derived from Lac-
tobacillus parabuchneri in E. coli BL21, and the recombinant bacterium was employed to
catalyze 140 g/L D-galactose to produce 54 g/L D-tagatose with a conversion efficiency of
39% and a yield of 0.54 g/(L·h). Du et al. [105] adopted a single-factor experiment to opti-
mize the process conditions for the cell-catalyzed production of D-tagatose by Lactobacillus
brevis sp, and the yield of D-tagatose was 3.916 g/L at pH 7.0 and 55 ◦C for 48 h, catalyzing
9 g/L D-galactose with a conversion rate of 43.5%. It was shown that the catalytic time
was 48 h when cells were used as catalysts, and the cells could be reused three times to
the maximum extent. Therefore, the use of cells as catalysts in the industrial production
of D-tagatose could save a lot of cost and facilitate the stable production of D-tagatose.
The reaction time of L-AI as a catalyst was relatively short, at 23 h, but the conversion
efficiency per unit time was relatively high. However, the process of purification of L-AI
required a long time for cell wall breaking, the purification process required a lot of energy,
and the yield of L-AI was lower compared with that of cell catalysis after two instances
of reuse. Together, these results suggest that the cell conversion method is more suitable
for the industrial production of D-tagatose. Many researchers have found that a variety
of microorganisms can catalyze the production of D-galactitol to D-tagatose, including
Mycobacterium smegmatis [62,68], Enterobater agglomerans [106], Klebsiella pneumoniae [107],
Acetobacter [108], and Arthrobacter globiformis [109]. However, owing to the relatively high
costs of D-galactose and D-galactitol, their fermentation processes as substrates are difficult
to apply for industrial production.
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Figure 4. Biosynthesis of D-tagatose using starch-based ingredients as substrate through an in vivo
multi-enzyme system. agp, a-Glucan phosphorylase; pgm, phosphoglucomutase; pgi, glucose 6-
phosphate isomerase; gatZ, tagatose 1,6-bisposphate aldolase subunit GatZ; pgp, phosphoglyco-
late phosphatase.
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Some research has shown that by expressing a multi-enzyme catalytic system con-
sisting of five heat-resistant enzymes, E. coli was able to synthesize D-tagatose using
maltodextrin as a substrate, with a yield of 1.88 g/L and a conversion rate of 18.8%, which
was 5.9% higher than the conversion rate of the in vitro multi-enzyme catalytic system
under the same experimental conditions [87]. Under optimal reaction conditions, recombi-
nant cells were co-expressed for 24 h with 10 g/L and 20 g/L maltodextrin as substrates,
yielding 2.08 g/L and 3.2 g/L D-tagatose [110]. There is a growing interest in the use of
whole-cell catalysts in chemical synthesis [102,111]. The application of whole-cell cata-
lysts can avoid the need to supplement expensive cofactors and preparation steps such as
enzyme purification and isolation [112].

D-tagatose can be synthesized through two pathways: epimerization or oxidoreduc-
tion [113]. Many D-tagatose production routes involve epimerization. In the epimer-
ization synthesis pathway, L-AI can convert D-galactose to D-tagatose. Co-expression
of β-D-tagatose galactosidase and L-AI in Saccharomyces cerevisiae produces D-tagatose
from D-lactose and achieves a conversion rate of 30%, which is higher than that of most
in vitro enzymatic reactions [85]. D-tagatose can be produced from D-fructose through
epimerization. However, although a large number of UDP-hexose 4-epimerases have been
identified in various organisms, enzymes with excellent catalytic activity for the epimer-
ization of D-fructose are rare [114,115]. Thus, D-tagatose can be produced by modifying
some enzymes. In order to reduce production costs, a whole-cell biocatalytic system in-
volving α-glucan phosphorylase, phosphoglucomutase, D-glucose 6-phosphate isomerase,
D-tagatose 1,6-bisphosphate aldolase, and phosphoglycolate phosphatase was constructed
to produce D-tagatose from maltodextrin [110]. However, the biotransformation efficiency
of this whole-cell catalyst was low because of the unbalanced ratio of each enzyme and
metabolic flux of the intermediates. By optimizing vectors and improving the expression of
rate-limiting enzymes through the construction of multi-copy genes to regulate expression
levels, the conversion rate of D-tagatose increased from 20.8% after 24 h to 25.2% after 3 h
using 10 g/L maltodextrin as the substrate. Furthermore, the genes in the bypass pathways
in E. coli, pfka and zwf, were deleted to increase the accumulation of intermediates. The
strain ER-2GatZ (∆p∆z) produced 3.383 g/L D-tagatose using 10 g/L substrate after 3 h,
which was 1.34 times that of the wild strain [116]. However, due to the chemical equilibrium
limitations of the epimerization reaction, epimerization was replaced by the oxidoreduction
process. In the oxidoreduction pathway, D-galactose is first converted into D-galactitol,
which is then converted into D-tagatose under the catalysis of galactitol-2-dehydrogenase
from Rhizobium leguminosarum (GDH) and D-xylose-1-reductase isolated from S. stipites
(XYL1). D-tagatose was ultimately extracted from D-lactose at 37.69 g/L [117]. With this
route, although D-galactose is efficiently converted into D-tagatose without being limited
by the equilibrium, further optimization is required.

Rhimi et al. [118] successfully catalyzed the production of D-tagatose and D-fructose
from D-lactose hydrolysates using sodium alginate-embedded engineered bacteria co-
expressing thermophilic L-AI and D-glucose isomerase. It was shown that the optimal
temperature for D-galactose and D-glucose isomerization was 80 ◦C and 85 ◦C, respec-
tively, and the activity of both isomerases was optimal at pH 7.5. The cell encapsulation
significantly enhanced the acid resistance of both isomerases and their stability at a high
temperature, but the isolation and purification of the sugar fractions in the mixture re-
mained at the exploratory stage. Therefore, although whole-cell catalysis eliminates the
enzyme extraction steps, the production process is simpler; however, it poses difficulties
for downstream extraction due to the complexity of its fermentation products (Table 3).



Fermentation 2025, 11, 46 14 of 20

Table 3. Research progress of D-tagatose production by chemical and biological methods.

Production
Method Reagent/Enzyme

Optimum
Temperature

(◦C)
Substrate D-Tagatose

(g/L)
Conversion

Rate (%) References

Chemical
method

Supercritical ethanol 180 D-galactose 80 24 [48]

CaCl2, triethylamine 60 1 mmol/L of methanol,
D-glucose 38 32 [119]

Sn/β zeolite 110 D-galactose 29 24 [46]

Magnesium aluminates 110 D-galactose 16 18–27 [46]

Sn/deAl-β zeolite 110 D-galactose 89.5 28.3 [120]

Enzyme
catalysis

L-AI from E. coli 30 100 g/L D-galactose 28.8 28.8 [85]

L-AI from Lactobacillus plantarum 35 100 g/L D-galactose 39 39.0 [55]

L-AI from G. stearothermophilus 60 100 g/L D-galactose 30.6 30.6 [89]

L-AI from G. thermodenitrificans 60 300 g/L D-galactose 158 52.7 [55]

L-AI from Thermus sp. 60 1.0 g/L D-galactose 0.54 54.0 [84]

L-AI from Thermoanaerobacter mathranii 65 300 g/L D-galactose 126 42.0 [82]

L-AI from B. stearothermophilus 70 0.9 g/L D-galactose 0.43 48.0 [57]

L-AI from Thermotaga maritima 80 1.8 g/L D-galactose 1.0 56.0 [81]

L-AI from Thermotoga neapolitana 80 1.8 g/L D-galactose 1.22 68.0 [56]

Tagaturonate 3-epimerase from
Thermotoga petrophila 80 700 g/L D-fructose 213 30.0 [88]

Hexokinase from Saccharomyces cerevisiae
50 180 g/L D-fructose 144 80.0 [93]FbaA from E. coli

Phytase from NR

L-AI and β-galactosidase from E. coli
BL21 50 100 g/L lactose 23.5 23.5 [73]

αGP, PGM, PGI, GatZ, and PGP from E.
coli BL21 50 20 g/L maltodextrin 9.2 46.0 [94]

Whole-cell
catalysis

E. coli BLT 60 10 g/L maltodextrin 1.88 18.8 [109]

L. brevis sp. D-tag 1 55 9 g/L D-galactose 3.916 43.5 [105]

L-AI from Lactobacillus parabuchneri 45 140 g/L D-galactose 54 39.0 [104]

E. coli/pETDuet-αgp-pgm and
pCDFDuet-pgi-gatz-pgp 60 20 g/L maltodextrin 3.2 16.0 [110]

4. Conclusions and Prospects
D-tagatose is a low-calorie sweetener with physiological functions, such as hypo-

glycemia, obesity prevention, anti-caries, and probiotics, and it is gaining popularity
among consumers and is widely employed in the food and biomedical fields [24]. The
production of D-tagatose by biological methods has the advantages of green environmental
protection, safety, and efficiency, and it can be achieved by in vitro enzymes and whole-
cell catalysis using D-galactose as substrates. However, D-galactose has a high cost, and
traditional manufacturing methods can only convert about 30% of D-galactose, with the
additional high cost of separating D-tagatose, leading to a persistently high retail price for
D-tagatose. The development of synthetic biology and other technologies has brought more
solutions to the future production of D-tagatose, such as using inexpensive substrates like
D-fructose, D-lactose, maltodextrin, and starch as raw materials to reduce production costs.
A multi-enzyme catalytic system based on the Izumoring strategy and a phosphorylation–
dephosphorylation multi-enzyme catalytic system has been shown to produce D-tagatose
using fructose as a substrate. Although in vitro multi-enzyme catalytic systems simplify the
biotransformation process and reduce production costs, they are susceptible to interference
from external conditions, and product isolation and purification can be challenging. An
alternative approach for industrial production is the whole-cell catalytic method, which
involves the construction of a de novo D-tagatose synthesis pathway in E. coli and other
cells to catalyze the synthesis of D-fructose or D-lactose into D-tagatose. This method offers
high conversion rates and a stable production process, and does not require additional ATP.
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Overall, the whole-cell catalytic method is the most promising approach for the industrial
production of D-tagatose.

By optimizing the whole-cell catalytic conditions and strengthening the conversion
system, safe and efficient production of D-tagatose was achieved, laying a good research
foundation for the industrial production of D-tagatose. Various efforts have been made to
reduce the cost of D-tagatose production by using inexpensive raw materials as substrates;
however, there are still some shortcomings at the current stage of research. For example,
the enzyme has poor thermal stability, poor substrate specificity, low catalytic efficiency,
and other shortcomings. In subsequent research, the protein’s crystal structure has been
analyzed and resolved by combining it with molecular simulation tools, and the target
protein was modified using directed evolution and rational design methods to obtain a
recombinant enzyme with stronger substrate specificity and catalytic conditions that meet
the requirements of industrial production. The popular host in D-tagatose production is E.
coli. However, the use of E. coli, a conditional pathogenic bacterium, as a host for producing
D-tagatose, a functional food additive, is controversial. From the perspective of food safety,
subsequent experiments should select food-safe strains or adopt extracellular expression
and other means to realize the function of D-tagatose synthesis so that the safety of the
whole-cell D-tagatose catalyst meets the requirements of industrial food production.

Fortunately, the development of synthetic biology and other technologies has brought
more solutions to the future production of D-tagatose [121]. Currently, there are mainly
three approaches to attempt to expand the production capacity of D-tagatose. Some
companies, like Roquette and Bonumose, use starch as a raw material to produce D-tagatose
on a large scale through enzymatic conversion processes. Another approach involves
utilizing genetic engineering and synthetic biology technologies to produce D-tagatose on
a large scale through yeast-based fermentation [113]. The third approach employs bacteria
such as E. coli as miniature bioreactors that encapsulate enzymes and reactants, using
substrates like maltodextrin to produce D-tagatose. We believe that with the continuous
development of synthetic biology and enzyme engineering technology, the technology of
producing D-tagatose by biological methods will become more mature. By optimizing
enzyme preparations, improving conversion rates, and reducing energy consumption, the
production of D-tagatose by biological methods will be safer and more efficient, and the
cost will gradually decrease, thereby enhancing its market competitiveness.
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