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Abstract: Kluyveromyces marxianus is a food-grade yeast known for its diverse beneficial
traits, making it an attractive candidate for both food and biotechnology applications. This
study explores the potential of Kluyveromyces marxianus as a promising alternative protein
source for single-cell protein (SCP) production. Various Kluyveromyces strains were isolated
and screened from traditional fermented dairy products, with Kluyveromyces marxianus
NS127 identified as the most promising strain due to its superior growth characteristics,
high SCP yield, and environmental tolerance. Notably, Kluyveromyces marxianus NS127
demonstrated significant substrate conversion capacity with a biomass yield of 0.63 g
biomass/g molasses, achieving a dry biomass concentration of 66.64 g/L and a protein
yield of 28.37 g/L. The protein extracted from the dry biomass exhibited excellent solubility
(62.55%) and emulsification properties (13.15 m2/g) under neutral conditions, alongside
high foaming stability (93.70–99.20%) across a broad pH range (3–11). These results under-
score the potential of Kluyveromyces marxianus NS127 as a viable alternative protein source
and provide a solid theoretical foundation for its industrial application.

Keywords: Kluyveromyces marxianus; single-cell protein; production efficiency; environ-
mental tolerance; protein characterization

1. Introduction
In the coming years, the global population is projected to reach 9.3 billion, driving a

40% increase in the demand for protein by 2050 [1]. Traditional methods such as agriculture,
animal husbandry, and aquaculture are increasingly constrained by land degradation, water
scarcity, and climate change, making it difficult to meet this growing demand [2,3]. In
this context, single-cell protein (SCP), derived from microorganisms such as bacteria [4],
fungi [5], yeasts [6], and microalgae [7], has emerged as a promising solution. With its
minimal land requirements, ability to utilize industrial by-products, and independence from
climate or seasonal changes, SCP production offers a sustainable nutritional supplement
for both humans and animals [8,9].

Yeasts are ideal for the production of SCP due to their high protein content, small
cell size, ease of cultivation, and cost-efficiency [10,11]. Several yeast species, including
Saccharomyces [12], Candida [13], Pichia [14], and Kluyveromyces [15], have shown potential
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in the production of SCP. Among them, Kluyveromyces marxianus has garnered significant
research interest. This yeast is widely present in dairy products and is classified as Generally
Recognized As Safe (GRAS) [16]. It has been widely applied in the food industry, including
the production of flavor compounds [17], enzymes [18], and emulsifiers [19]. Moreover,
Kluyveromyces marxianus can efficiently utilize low-cost substrates such as molasses [20],
cheese whey [21], potato pulp [22], and other agro-industrial waste materials [23]. It is also
known for its rapid growth rate and resilience to environmental stress [24]. In addition,
Kluyveromyces marxianus is a Crabtree-negative yeast, which prevents ethanol accumulation
during aerobic fermentation [16]. These characteristics make Kluyveromyces marxianus an
attractive candidate for industrial applications.

Previous studies have demonstrated the ability of Kluyveromyces marxianus strains
to produce SCP [21,25,26], for instance, Kluyveromyces marxianus EXF-5288 showed that it
could produce SCP with a high protein content and a balanced amino acid profile when
cultured in deproteinized cheese whey [15]. However, the full potential of Kluyveromyces
marxianus for SCP production remains underexplored, particularly in the context of select-
ing optimal industrial strains and fermentation optimization to enhance protein yield and
quality. Furthermore, SCPs have been shown to possess superior functional properties,
such as excellent emulsification, foaming, and heat stability [27,28]. These properties make
SCP an attractive novel protein source with extensive application potential.

This study aims to explore the potential use of Kluyveromyces marxianus in SCP pro-
duction. The strains were initially screened based on their growth rate, protein production
capacity, and environmental tolerance. Single-factor and orthogonal experiments were
conducted to optimize the fermentation conditions for SCP production using Kluyveromyces
marxianus NS127. Subsequently, fed-batch cultivation was performed in a bioreactor. Fi-
nally, the solubility, emulsifying properties, and foaming properties of the extracted SCP
were characterized. These findings contribute to the further development of Kluyveromyces
marxianus NS127 as a viable alternative protein source.

2. Materials and Methods
2.1. Sampling

A total of 30 traditional fermented dairy products were collected using sterile samplers
from local farms in the Ulanqab pasturing area, Inner Mongolia Autonomous Region; these
products included 10 yogurt samples, 10 milk curd samples, and 10 Mongolian milk chew
samples. All samples were transported in a refrigerated container and maintained at 4 ◦C
until further processing.

2.2. Isolation and Identification of Kluyveromyces

The samples were homogenized using sterile homogenization bags and then serially
diluted in 0.1% (w/v) peptone water (10−1 to 10−5) [29]. Each dilution was plated with
a 100 µL aliquot onto Kluyveromyces marxianus selection medium, which contained 5 g/L
yeast extract, 3 g/L peptone, 3 g/L malt extract, 10 g/L glucose, 20 g/L agar, 200 mg/L
chloramphenicol, 250 mg/L sodium propionate, and 35 mg/L X-Gal. The plates were
subsequently incubated at 30 ◦C for 72 h [30,31]. Colonies exhibiting distinct blue pheno-
types were selected and sub-cultured on yeast extract–malt extract agar medium, which
contained 5 g/L peptone, 3 g/L malt extract, 10 g/L glucose, 3 g/L yeast extract, and
20 g/L agar; this was performed to isolate single yeast colonies.

The colony and cell morphologies of the purified yeast strains were observed using an
optical microscope. DNA was extracted using a fungal genomic DNA extraction kit (D2300
Solarbio, Beijing, China). The ITS region was then amplified with universal primer pair ITS1
(5′-TCCGTAGGTGAACCTGCGG-3′) and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′) [32].
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Sequencing was performed by Beijing Ruiboxing Biotechnology Co., Ltd. (Beijing, China).
The sequence data were analyzed and compared, using the NCBI database (https://www.
ncbi.nlm.nih.gov/) to identify the species, accessed on 27 August 2024. A phylogenetic
tree was then constructed using MEGA 11 software (MEGA Limited, Auckland, New
Zealand) [33].

2.3. Screening of Kluyveromyces marxianus Strains with High SCP Production
2.3.1. Specific Growth Rate

The specific growth rate (µ) was determined using OD600 measurements that were ob-
tained during the exponential growth phase. Then, 190 µL of yeast extract peptone dextrose
(YPD) medium and ammonium chloride-based (ACB) medium (containing 20 g/L glucose,
1 g/L KH2PO4, 3.8 g/L NH4Cl, 1 g/L MgSO4·7H2O, 75 mg/L CaCl2·2H2O, 15 mg/L EDTA-
2Na, 4.5 mg/L ZnSO4·7H2O, 1 mg/L MnCl2·7H2O, 0.3 mg/L CuSO4·5H2O, 0.4 mg/L
Na2MoO4·2H2O, 3 mg/L FeSO4·7H2O, 0.1 mg/L KI, 0.1 mg/L biotin, 1 mg/L calcium
pantothenate, 1 mg/L niacin) were dispensed into each well of a 96-well plate. Then,
10 µL of each Kluyveromyces marxianus strain, previously activated and standardized to
1 × 108 CFU/mL, was inoculated into the wells and cultured (30 ◦C, 150 rpm). The opti-
cal density at 600 nm was recorded every 4 h using a microplate reader (MK3, Thermo
Fisher Scientific, Waltham, MA, USA), with blank media serving as the control. The µ was
calculated using the following formula:

µmax = (ln (OD1)− ln(OD2))/(t1 − t2) (1)

where OD1 and OD2 are the optical densities at 600 nm at times t1 and t2, respectively [34].

2.3.2. Screening High Protein Yield Strains

Kluyveromyces marxianus strains were inoculated into YPD medium and incubated
at 30 ◦C via shaking at 200 rpm for 15 h, performed to establish a seed culture. The seed
culture was then standardized to 1 × 108 CFU/mL, inoculated into 50 mL ACB medium
(5% (v/v)). The culture was fermented at 30 ◦C via shaking at 200 rpm for 24 h, after which
the dry biomass was collected to evaluate the production of SCP.

2.3.3. Environmental Tolerance

The environmental tolerance of Kluyveromyces marxianus strains under different con-
ditions was evaluated based on OD600 measurements. Seed cultures were prepared as
described above and inoculated at 5% (v/v) into a 96-well plate containing ACB medium
with varying concentrations of ethanol (2%, 4%, 6%, 8%, and 10% (v/v)) and glucose (100,
200, 300, 400, and 500 g/L). The pH tolerance was evaluated by adjusting the pH of the
ACB medium to 1.5, 2.5, 3.5, 4.5, and 5.5. All cultures were incubated at 30 ◦C with shaking
at 150 rpm for 24 h. Temperature tolerance was evaluated by incubating the cultures
at 25, 30, 35, 40, and 45 ◦C [35]. The optical density at 600 nm was measured using a
microplate reader to determine the ethanol, glucose, pH, and temperature tolerance, with
blank medium serving as the control [36].

2.4. Determination of Yeast Dry Biomass and Protein Content

The dry biomass (g/L) was determined according to the method described by Liu
et al. [37], with some modifications. Yeast cells were collected by centrifuging the fermen-
tation broth at 5000 rpm for 10 min. The biomass was then washed with distilled water
and centrifuged again under the same conditions. The residue was dried at 60 ◦C until a
constant weight was obtained.

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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The protein content (%, w/w) was measured using a protein analyzer (DN3000, Beijing
Nord-Tech Instrument Co., Ltd., Beijing, China) according to the Dumas combustion
method, with a nitrogen-to-protein conversion factor of 6.25. The protein yield (g/L) was
calculated by multiplying the biomass by its protein content.

2.5. Effect of Different Medium Components on the SCP Production

In total, 20 g/L of maltose, corn starch, lactose, glucose, sucrose, or molasses was
added to ACB medium (no carbon source) to evaluate the carbon effect on SCP production.
The optimal carbon source identified was tested at concentrations of 10, 20, 30, 40, and
50 g/L. In addition to this, the effects of varying concentrations of KH2PO4 (1, 2, 3, 4,
5 g/L), NH4Cl (3.8, 5.7, 7.6, 9.5, 11.4 g/L), and corn steep liquor (3, 6, 9, 12, 15 g/L) on
the production of SCP using NS127 were also evaluated. The inoculums (5% (v/v)) were
cultured at 30 ◦C with shaking at 200 rpm for 24 h without pH adjustment. Furthermore, a
L9 (34) orthogonal array design was used to optimize the production of SCP using NS127
(Table S1).

2.6. Fed-Batch Fermentation Process for SCP Production

The initial medium (M1) consisted of molasses (25 g/L), KH2PO4 (3 g/L), NH4Cl
(2.85 g/L), corn steep liquor (15 g/L), MgSO4·7H2O (75 mg/L), CaCl2·2H2O (15 mg/L),
EDTA-2Na (4.5 mg/L), ZnSO4·7H2O (1 mg/L), MnCl2·7H2O (0.3 mg/L), CuSO4·5H2O
(0.4 mg/L), Na2MoO4·2H2O (3 mg/L), FeSO4·7H2O (0.1 mg/L), KI (0.1 mg/L), biotin
(0.1 mg/L), calcium pantothenate (1 mg/L), and niacin (1 mg/L). The feeding medium
(M2) was prepared as a 10-fold concentrated version of M1, with a total volume of 1.5 L.
The experiments were conducted in a 5 L bioreactor with an initial working volume of 2 L,
and the seed culture was set at 10% (v/v). During the fed-batch process, the temperature
was maintained at 30 ◦C, with stirring speeds ranging from 400 to 800 rpm, adjusted
based on the dissolved oxygen levels automatically. The total sugar concentration in the
bioreactor was maintained between 5 and 25 g/L, and the dissolved oxygen (DO) levels
were controlled within the range of 15 to 30%. Total sugar content was monitored using
the phenol–sulfuric acid method. The airflow rate was maintained at 1 L of air per liter of
culture per minute, with the pH naturally controlled (4.5–5.5).

2.7. Characterization of Kluyveromyces marxianus NS127 Protein Properties
2.7.1. Protein Extraction

The fermentation broth was sterilized by heating at 100 ◦C for 25 min. The cells were
centrifuged at 4 ◦C and 5000× g for 10 min to collect the biomass, then washed twice with
distilled water and freeze-dried to obtain dry biomass. The dry biomass was reconstituted
into a 10% (w/v) dispersion with deionized water. Cell disruption was carried out using an
ultrasonic cell disruptor (SCIENTZ-650E, Scientz Biotechnology Co., Ltd., Ningbo, China)
at 150 W for 20 min at 25 ◦C [38]. The disrupted suspension was then centrifuged at 4 ◦C
for 10 min at 6000× g to separate the supernatant. For protein extraction, the pH was
adjusted to 4.5 with 1 M HCl, followed by three gentle washes. The extracted protein was
freeze-dried after the pH was neutralized.

2.7.2. Protein Solubility

The protein solubility was determined by dispersing the freeze-dried protein in deion-
ized water at different pH levels (3–11). The protein suspension was stirred at 25 ◦C for 1 h,
centrifuged at 4 ◦C for 15 min at 7000× g, and the supernatant was collected so that the
protein concentration could be measured using the BCA method. The protein solubility was
calculated as the ratio of soluble protein concentration to the total protein concentration.
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2.7.3. Emulsification Capacity and Stability

In total, 5 milliliters of soybean oil were added to a beaker containing 15 mL of protein
dispersion (10 mg/mL), with pH levels ranging from 3 to 11. The mixture was then
homogenized at 12,000 rpm for 1 min. At 0 and 10 min, 50 µL aliquots of the emulsion were
collected from the bottom of the beaker and dispersed in 5 mL of 0.1% (w/v) sodium dodecyl
sulfate solution. The absorbance was then measured at 500 nm using a spectrophotometer.
The emulsifying activity index (EAI) and emulsifying stability index (ESI) were calculated
using the following formulas [27]:

EAI
(

m2/g
)
= 2 × 2.303 × A0/C × φ × 1000 × D (2)

ESI(min) = A0/A0 − A10 × ∆t (3)

where A0 and A10 represent the absorbance of the emulsion at 500 nm at 0 min and 10 min,
respectively, C is the protein concentration, D is the dilution factor, φ is the oil phase ratio
(0.25), and ∆t = 10 min.

2.7.4. Foaming Property

The foaming capacity (FC) and foam stability (FS) were assessed according to the
method established by Ye et al. [39], with some modifications. In total, 15 milliliters of
protein dispersion (10 mg/mL, pH 3–11) was placed in a 50 mL graduated cylinder and
sheared at 13,600 rpm for 2 min. The total volume of the sample solution and the foam
produced was recorded at 0 min (V0) and 10 min (V10). The FC and FS were calculated
using the following formulas:

FC(%) = V0/15 × 100% (4)

FS(%) = V10/V0 × 100% (5)

2.8. Statistical Analysis

The graphs were plotted using OriginPro 2024 software (OriginLab Corporation,
Northampton, MA, USA). The data are presented as the mean ± standard deviation (SD)
from three independent experiments, each performed in triplicate. Statistical analysis was
carried out using SPSS 19.0, with one-way ANOVA followed by Tukey’s post hoc test for
significance (p < 0.05).

3. Results and Discussion
3.1. Isolation and Identification of Kluyveromyces Strains

A total of 167 microbial colonies were isolated from 30 samples of traditional fermented
dairy products according to chromogenic reactions and the morphological characteristics.
Among these, 72 strains were isolated from Mongolian milk chew, 61 strains were isolated
from yogurt, and 34 strains were isolated from milk curd. ITS sequence analysis was
performed to identify strains with identical sequences; these were then removed, and 11 dif-
ferent strains were identified, including 10 Kluyveromyces marxianus and 1 Kluyveromyces
lactis. As shown in Figure 1a, the diversity of Kluyveromyces in Mongolian milk chew
(11 strains) was significantly higher than that in yogurt (3 strains) and milk curd (2 strains).
Kluyveromyces lactis was isolated exclusively from Mongolian milk chew. Mongolian milk
chew is fermented under natural conditions with minimal human intervention, which may
contribute to the higher microbial diversity observed in Mongolian milk chew compared to
yogurt and milk curd. The observed differences in strain diversity may be related to the
production process and physicochemical properties of the samples [40,41].
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To investigate the evolutionary relationships among these strains, Kluyveromyces wick-
erhamii was selected as the outgroup to construct a phylogenetic tree (Figure 1b). The phy-
logenetic analysis revealed that 10 of the isolated strains clustered with the Kluyveromyces
marxianus reference strains, displaying varying degrees of evolutionary divergence. One
strain, identified as Kluyveromyces lactis NS190, clustered with the Kluyveromyces lactis CBS
683, confirming its classification. The high intraspecific diversity within Kluyveromyces
marxianus strains has been reported to potentially impact their physiological character-
istics [42,43]. Therefore, it is essential to further characterize the physiology of these
Kluyveromyces marxianus strains, which could be utilized in SCP production.

3.2. Specific Growth Rates, SCP Production, Tolerance Assessment

The specific growth rates (µ) of ten Kluyveromyces marxianus strains were measured
in both YPD medium and ammonium chloride basal (ACB) medium (Figure 2a). In YPD
medium, the µ values ranged from 0.20 to 0.44 h−1. The highest µ value was observed in
NS45. In the ACB medium, the µ values were slightly lower, ranging from 0.16 to 0.43 h−1,
with NS127 reaching the highest µ value of 0.43 h−1. In general, stains cultured in mineral
media exhibit lower growth rates compared to those in nutrient media [44]. However, six
strains (NS127, NS125, NS122, NS260, NS265, and NS377) showed higher growth rates in
ACB medium than in YPD medium. This suggests that they have a higher utilization effi-
ciency for inorganic nitrogen sources. The dry biomass values ranged from 2.97 to 4.74 g/L,
and the protein content varied from 31.16% to 42.86% (w/w) (Figure 2b). Among these
strains, NS265, NS127, and NS122 exhibited higher protein yields of 1.66 g/L, 1.64 g/L,
and 1.58 g/L, respectively. These strains were selected for further tolerance analysis.

Three strains (NS127, NS122, and NS265) were assessed for their tolerance to ethanol,
glucose, pH, and temperature. NS127 and NS265 exhibited tolerance to 10% (v/v) ethanol
(Figure 2c), consistent with that of Kluyveromyces marxianus FIM1 after adaptive evolu-
tion [45]. In contrast, NS122 was more sensitive to ethanol, showing only minimal growth
under the same conditions. Regarding glucose tolerance, all strains showed a decrease
in growth as the concentration of glucose increased but maintained significant osmotic
tolerance up to 400 g/L (Figure 2d). They tolerated a broad pH range from 2.5 to 5.5
(Figure 2e), with the lowest pH tolerance being comparable to results reported by Amrane
and Prigent [46]. Regarding temperature tolerance, NS127 showed higher OD600 values
across all temperatures than NS122 and NS265, indicating superior growth performance
under these thermal conditions (Figure 2f). Overall, NS127 was chosen for further investi-
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gation owing to its remarkable growth rate in inorganic nitrogen media, balanced ability to
produce protein, and environmental tolerance.
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3.3. Optimization of Carbon, Nitrogen, and Phosphorus Sources in the Culture Media

The effect of various carbon, nitrogen, and phosphorus sources on the dry biomass
and protein yield of Kluyveromyces marxianus NS127 was evaluated. The dry biomass
of NS127 ranged from 0.93 g/L to 4.93 g/L (Figure 3a). The protein yield ranged from
0.54 g/L to 2.35 g/L when using different carbon sources (maltose, corn starch, lactose,
glucose, sucrose, and molasses). The protein content in the dry biomass across these media
ranged from 37.50% to 58.06% (w/w). Among these, molasses was the preferable carbon
source for the production of SCP, followed by sucrose and glucose. Molasses contains many
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fermentable sugars, such as sucrose, glucose, and fructose, as well as valuable non-sugar
organic compounds and inorganic salts [47]. The synergistic effects of these components
may enhance both the growth and protein yield of NS127. It is noteworthy that dry biomass
was significantly higher at a lower concentration of molasses (10–20 g/L), whereas the
protein yield remained relatively stable (Figure 3b). These results suggest that regulating
the total sugar concentration during fermentation could help enhance protein yield.
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The dry biomass and protein yield of NS127 did not vary significantly as the concen-
tration of KH2PO4 increased (1–5 g/L) (Figure 3c). Wang et al. observed a reduction in the
dry biomass of Kluyveromyces marxianus FXJ1 when the concentration of KH2PO4 exceeded
4 g/L [48]. This difference shows that NS127 could be more adaptable to changes in the
concentration of KH2PO4, which may enhance the flexibility of the medium formulation.

With the increase in NH4Cl concentration, neither the dry biomass nor the protein
yield was enhanced as expected (Figure 3d). Further adding corn steep liquor was tested to
improve protein yield. The dry biomass reached 6.91 g/L, and the protein yield reached
3.26 g/L upon the addition of 15 g/L corn steep liquor (Figure 3e). This represented
a 40% improvement in protein yield compared to the basal medium containing only
inorganic nitrogen source. This suggests that the addition of NH4Cl along with corn
steep liquor enhances protein yield, offering a more favorable balance between cost and
production efficiency.

3.4. Optimization of Protein Yield Through Orthogonal Experiments

The composition of the media was optimized using an L9 (34) orthogonal design to
maximize the SCP yield produced by Kluyveromyces marxianus NS127. As shown in Table 1,
factor A had the highest range (R) value of 0.61, followed by factors D (0.29), B (0.10), and
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C (0.07). A higher range indicates a greater effect on protein yield. Hence, the factors
influencing protein yield were ranked as follows: molasses > corn steep liquor > NH4Cl
> KH2PO4. Additionally, the analysis of variance showed that molasses had a significant
effect on protein yield (p < 0.05) (Table S2). Based on the mean (K) values of the factors, the
optimal combination was determined as A3B1C3D3. This combination corresponds to a
media formulation containing molasses (25 g/L), NH4Cl (2.85 g/L), KH2PO4 (3 g/L), corn
steep liquor (15 g/L), and trace elements (designated as M1; see Section 2.6 for details).

Table 1. The results of the orthogonal experiment.

Test Number

Factor

A.
Molasses

(g/L)

B.
NH4Cl (g/L)

C.
KH2PO4 (g/L)

D.
Corn Steep
Liquor (g/L)

Protein Yield
(g/L)

Dry Biomass
(g/L)

1 15 2.85 1 9 2.74 ± 0.04 6.04 ± 0.04
2 15 3.80 2 12 2.92 ± 0.01 6.35 ± 0.11
3 15 4.75 3 15 3.00 ± 0.10 6.50 ± 0.08
4 20 2.85 2 15 3.41 ± 0.06 7.24 ± 0.02
5 20 3.80 3 9 3.09 ± 0.01 6.65 ± 0.02
6 20 4.75 1 12 3.13 ± 0.12 6.59 ± 0.04
7 25 2.85 3 12 3.59 ± 0.00 7.11 ± 0.16
8 25 3.80 1 15 3.60 ± 0.09 7.09 ± 0.09
9 25 4.75 2 9 3.30 ± 0.01 6.74 ± 0.02

K1 2.89 3.25 3.16 3.04
K2 3.21 3.20 3.21 3.21
K3 3.50 3.14 3.23 3.34
R 0.61 0.10 0.07 0.29

To validate the predicted results, fermentation was conducted using A3B1C3D3 formu-
lation, resulting in a dry biomass of 7.30 g/L and a protein yield of 3.66 g/L. As expected,
the protein yield was 2.23-fold higher than the initial medium (1.64 g/L) and exceeded all
orthogonal experiment groups (2.74–3.60 g/L). These results demonstrated the reliability
of the optimized fermentation medium.

3.5. Fed-Batch Fermentation for SCP Production

The potential of NS127 to produce SCP in medium M1 was evaluated using a fed-batch
culture in a 5 L bioreactor. Based on the values of DO (45.41%) and sugar concentration
(20.5 g/L), feeding was initiated after 8 h fermentation. During the feeding process,
DO levels were kept between 15% and 30% (Figure 4a). Meanwhile, the residual sugar
concentration was maintained between 5 and 20 g/L. The cumulative added sugar with a
final concentration of 121.4 g/L. Consequently, following 30 h fermentation, the dry biomass
achieved a concentration of 66.64 g/L, while the SCP yield reached 28.37 g/L (Figure 4c).
The carbon source conversion rate was 0.63 g biomass/g molasses, representing a 2.17-fold
increase compared to the shake flask stage. The protein content of dry biomass reached
nearly 59% during the initial 12 h but gradually decreased to 42.60% as the fermentation
progressed. This decrease may be attributed to factors such as agitation, DO levels, or shear
stress, all of which can affect the physiology and metabolism of cells [15]. Yadav et al. [21]
reported the production of protein using cheese whey in a 10 L bioreactor, achieving a
protein content of 42.0%; however, the biomass yield was only 0.19 g biomass/g lactose.
Koukoumaki et al. [15] observed a final protein concentration of 37% and a biomass yield
of 0.06 g biomass/g lactose when using Kluyveromyces marxianus EXF-5288. In summary,
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NS127 can produce a high yield of SCP and a competitive yield of biomass in an optimized
synthetic medium, indicating its strong potential for industrial applications.
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3.6. Protein Solubility, Emulsifying and Foaming Properties

Protein solubility is a critical functional property in food applications, influencing
emulsification, foaming, and other functionalities [49]. The protein content of NS127 SCP
increased to 81.15% after cell disruption, protein extraction, and purification. Figure 5a
presents the protein solubility curve at different pH values. Under acidic conditions,
the protein exhibited low solubility, with the lowest solubility (1.25%) observed near its
isoelectric point (pH 4.5). As the pH increases above 5.0, the solubility of protein increases
significantly, reaching a maximum of 70.20% at pH 11. Notably, the protein solubility at
pH 7.0 (62.55%) was higher than freeze-dried soy protein isolate (40.8%) [50], indicating
that NS127 protein could be a viable alternative to soy protein isolate in the formulation of
food products.
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Figure 5. Functional properties of Kluyveromyces marxianus NS127 protein under different pH condi-
tions: (a) protein solubility; (b) emulsification activity index (EAI) and emulsification stability index
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significant differences (p < 0.05).

Emulsifying ability refers to a protein’s capacity to reduce interfacial tension and
promote the formation of stable oil-water interfaces [51]. As shown in Figure 5b, the
trend observed in the protein’s emulsification activity index (EAI) at different pH levels
closely aligns with its solubility profile. NS127 protein possesses significantly (p < 0.05)
higher EAI under pH 9 and 11 than others. The emulsification stability index (ESI) of the
protein differed slightly from its EAI, reaching its highest value at pH 9. This could be
explained by the impact of surface hydrophobicity on the ESI once the solubility surpasses
a certain threshold [52]. In particular, the emulsifying capacity of the protein at pH 7.0
(13.15 m2/g) and pH 9.0 (13.65 m2/g) exceeds that of eight traditional Chinese bean proteins
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(9.10–10.33 m2/g) [53]. Therefore, this protein could be an alternative to plant proteins for
emulsifying applications.

The foaming capacity (FC) and foaming stability (FS) of the NS127 protein were
evaluated under different pH conditions (Figure 5c). The lowest FC was observed at
pH 3.0 (109.3%), while the highest values were recorded at pH 7.0 (140%) and pH 11.0
(141.1%). According to Garcia-Vaquero et al., the improved foaming capacity at higher
pH levels can be attributed to an increase in the protein's net charge, which weakens
hydrophobic interactions [54]. This reduction in hydrophobic interactions enhances the
protein flexibility, enabling it to rapidly migrate to the air-water interface and facilitate
foam formation. The FS of the protein remained high across all pH conditions (93.7–99.2%),
likely due to its structural characteristics, which enable the formation of a strong network
at the air-water interface.

4. Conclusions
Kluyveromyces marxianus NS127 was isolated and identified from traditional fermented

dairy products, exhibiting a high specific growth rate and excellent single-cell protein
production capacity. Additionally, it demonstrated remarkable environmental tolerance,
including resistance to ethanol, glucose, pH variations, and temperature fluctuations. Fed-
batch cultivation using molasses and corn steep as primary carbon and nitrogen sources
resulted in a high carbon source conversion efficiency of 0.63 g biomass/g molasses and a
high protein yield of 28.37 g/L. The extracted protein exhibited superior functional prop-
erties, underscoring its potential advantages for food processing applications. This study
highlights the significant potential of Kluyveromyces marxianus NS127 as an alternative pro-
tein source. Further optimization of the fermentation process, large-scale cultivation, and
cost-effectiveness evaluations will be crucial for its broader application in the food industry.

5. Patents
Lichao Dong, Yanyan Wu and Dingrong Kang are the inventors of the patent: A

High-Density Cultivable Kluyveromyces marxianus Strain and Its Application in Single-Cell
Protein Production. Patent No.: ZL 2024 1 0576609.7.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/fermentation11020070/s1, Table S1: The factor level of orthogonal
experiment; Table S2: Analysis of variance of orthogonal experiment results.

Author Contributions: Conceptualization, D.K.; methodology, L.D., M.L. and D.K.; software, L.D.;
validation, Y.W. and W.Z.; formal analysis, Y.W.; investigation, L.D., Y.W. and J.C.; resources, D.K.;
writing—original draft, L.D.; writing—review and editing, C.Z., R.L.-A., W.Z. and D.K.; visualization,
L.D.; supervision, W.Z. and D.K.; project administration, D.K.; funding acquisition, D.K. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Beijing Municipal Bureau of Agriculture and Rural
Affairs (Grant No. BMBARA202310), and the Beijing Association for Science and Technology (Grant
No. BAST202401).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The sequences were deposited in the NCBI GenBank database with the
following accession numbers: Kluyveromyces lactis strain NS190 (PQ269330.1), Kluyveromyces marxianus
strains NS265 (PQ269329.1), NS115 (PQ269328.1), NS116 (PQ269327.1), NS117 (PQ269326.1), NS125
(PQ269325.1), NS122 (PQ269324.1), NS45 (PQ269323.1), NS127 (PQ269322.1), NS377 (PQ269321.1),

https://www.mdpi.com/article/10.3390/fermentation11020070/s1
https://www.mdpi.com/article/10.3390/fermentation11020070/s1


Fermentation 2025, 11, 70 12 of 14

and NS260 (PQ269320.1). The original contributions presented in this study are included in the
article/Supplementary Materials. Further inquiries can be directed to the corresponding author.

Acknowledgments: The authors are grateful for the guidance provided by Rugang Zhu and
Wei Zhang.

Conflicts of Interest: Authors Lichao Dong, Yanyan Wu, Mingxia Li, Jialu Cao and Dingrong Kang
are employed by the DeePro Technology (Beijing) Co., Ltd. The remaining authors declare that the
research was conducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

References
1. Ye, L.; Bogicevic, B.; Bolten, C.J.; Wittmann, C. Single-cell protein: Overcoming technological and biological challenges towards

improved industrialization. Curr. Opin. Biotechnol. 2024, 88, 103171. [CrossRef]
2. Graham, A.E.; Ledesma-Amaro, R. The microbial food revolution. Nat. Commun. 2023, 14, 2231. [CrossRef]
3. Wang, G.; Wu, X.; Yin, Y. Synthetic biology-driven customization of functional feed resources. Trends. Biotechnol. 2022, 40, 777–780.

[CrossRef] [PubMed]
4. Zha, X.; Tsapekos, P.; Zhu, X.; Khoshnevisan, B.; Lu, X.; Angelidaki, I. Bioconversion of wastewater to single cell protein by

methanotrophic bacteria. Bioresour. Technol. 2021, 320, 124351. [CrossRef]
5. Furlan, O.; de Oliveira, N.S.; de Paula, R.C.; Rosa, R.T.; Michelotto, P.V.; Weber, S.H.; Bianchini, L.F.; Rosa, E.A.R. Pilot scale

production of high-content mycoprotein using Rhizopus microsporus var. oligosporus by submerged fermentation and agro-
industrial by-products. Bioresour. Technol. 2024, 413, 131515. [CrossRef]

6. Gao, L.; Meng, J.; Dai, W.; Zhang, Z.; Dong, H.; Yuan, Q.; Zhang, W.; Liu, S.; Wu, X. Deciphering cell wall sensors enabling the
construction of robust P. pastoris for single-cell protein production. Biotechnol. Biofuels Bioprod. 2023, 16, 178. [CrossRef]

7. Janssen, M.; Wijffels, R.H.; Barbosa, M.J. Microalgae based production of single-cell protein. Curr. Opin. Biotechnol. 2022,
75, 102705. [CrossRef] [PubMed]

8. Koukoumaki, D.I.; Tsouko, E.; Papanikolaou, S.; Ioannou, Z.; Diamantopoulou, P.; Sarris, D. Recent advances in the production of
single cell protein from renewable resources and applications. Carbon Resour. Convers. 2024, 7, 100195. [CrossRef]

9. Nyyssölä, A.; Suhonen, A.; Ritala, A.; Oksman-Caldentey, K. The role of single cell protein in cellular agriculture. Curr. Opin.
Biotechnol. 2022, 75, 102686. [CrossRef] [PubMed]

10. Jach, M.E.; Serefko, A.; Ziaja, M.; Kieliszek, M. Yeast Protein as an Easily Accessible Food Source. Metabolites. 2022, 12, 63.
[CrossRef] [PubMed]

11. Dai, W.; Dong, H.; Zhang, Z.; Wu, X.; Bao, T.; Gao, L.; Chen, X. Enhancing the Heterologous Expression of a Thermophilic
Endoglucanase and Its Cost-Effective Production in Pichia pastoris Using Multiple Strategies. Int. J. Mol. Sci. 2023, 24, 15017.
[CrossRef]

12. Bertasini, D.; Binati, R.L.; Bolzonella, D.; Battista, F. Single Cell Proteins production from food processing effluents and digestate.
Chemosphere 2022, 296, 134076. [CrossRef] [PubMed]

13. Ding, H.; Li, J.; Deng, F.; Huang, S.; Zhou, P.; Liu, X.; Li, Z.; Li, D. Ammonia nitrogen recovery from biogas slurry by SCP
production using Candida utilis. J. Environ. Manag. 2023, 325, 116657. [CrossRef] [PubMed]

14. Meng, J.; Liu, S.; Gao, L.; Hong, K.; Liu, S.; Wu, X. Economical production of Pichia pastoris single cell protein from methanol at
industrial pilot scale. Microb. Cell. Fact. 2023, 22, 198. [CrossRef]

15. Koukoumaki, D.I.; Papanikolaou, S.; Ioannou, Z.; Mourtzinos, I.; Sarris, D. Single-Cell Protein and Ethanol Production of a Newly
Isolated Kluyveromyces marxianus Strain through Cheese Whey Valorization. Foods 2024, 13, 1892. [CrossRef]

16. Karim, A.; Gerliani, N.; Aïder, M. Kluyveromyces marxianus: An emerging yeast cell factory for applications in food and
biotechnology. Int. J. Food Microbiol. 2020, 333, 108818. [CrossRef] [PubMed]

17. Martínez, O.; Sánchez, A.; Font, X.; Barrena, R. Bioproduction of 2-phenylethanol and 2-phenethyl acetate by Kluyveromyces
marxianus through the solid-state fermentation of sugarcane bagasse. Appl. Microbiol. Biotechnol. 2018, 102, 4703–4716. [CrossRef]
[PubMed]

18. Yupanqui-Mendoza, S.L.; de Arruda, P.V.; Da Silva, G.M.C. Statistical sequential optimization of process parameters for inulinase
production by Kluyveromyces marxianus ATCC 36907 in solid-state fermentation using beer residue. Biocatal. Agric. Biotechnol.
2022, 39, 102252. [CrossRef]

19. Hajhosseini, A.; Doroud, D.; Sharifan, A.; Eftekhari, Z. Stress response and characterization of oil-in-water emulsions stabilized
with Kluyveromyces marxianus mannoprotein. J. Food Sci. 2021, 86, 454–462. [CrossRef]

20. Martínez, O.; Sánchez, A.; Font, X.; Barrena, R. Valorization of sugarcane bagasse and sugar beet molasses using Kluyveromyces
marxianus for producing value-added aroma compounds via solid-state fermentation. J. Clean. Prod. 2017, 158, 8–17. [CrossRef]

https://doi.org/10.1016/j.copbio.2024.103171
https://doi.org/10.1038/s41467-023-37891-1
https://doi.org/10.1016/j.tibtech.2022.03.002
https://www.ncbi.nlm.nih.gov/pubmed/35379501
https://doi.org/10.1016/j.biortech.2020.124351
https://doi.org/10.1016/j.biortech.2024.131515
https://doi.org/10.1186/s13068-023-02428-7
https://doi.org/10.1016/j.copbio.2022.102705
https://www.ncbi.nlm.nih.gov/pubmed/35231772
https://doi.org/10.1016/j.crcon.2023.07.004
https://doi.org/10.1016/j.copbio.2022.102686
https://www.ncbi.nlm.nih.gov/pubmed/35093677
https://doi.org/10.3390/metabo12010063
https://www.ncbi.nlm.nih.gov/pubmed/35050185
https://doi.org/10.3390/ijms241915017
https://doi.org/10.1016/j.chemosphere.2022.134076
https://www.ncbi.nlm.nih.gov/pubmed/35216985
https://doi.org/10.1016/j.jenvman.2022.116657
https://www.ncbi.nlm.nih.gov/pubmed/36335696
https://doi.org/10.1186/s12934-023-02198-9
https://doi.org/10.3390/foods13121892
https://doi.org/10.1016/j.ijfoodmicro.2020.108818
https://www.ncbi.nlm.nih.gov/pubmed/32805574
https://doi.org/10.1007/s00253-018-8964-y
https://www.ncbi.nlm.nih.gov/pubmed/29627852
https://doi.org/10.1016/j.bcab.2021.102252
https://doi.org/10.1111/1750-3841.15584
https://doi.org/10.1016/j.jclepro.2017.04.155


Fermentation 2025, 11, 70 13 of 14

21. Yadav, J.S.S.; Bezawada, J.; Elharche, S.; Yan, S.; Tyagi, R.D.; Surampalli, R.Y. Simultaneous single-cell protein production and
COD removal with characterization of residual protein and intermediate metabolites during whey fermentation by K. marxianus.
Bioprocess. Biosyst. Eng. 2014, 37, 1017–1029. [CrossRef] [PubMed]

22. Aggelopoulos, T.; Bekatorou, A.; Pandey, A.; Kanellaki, M.; Koutinas, A.A. Discarded Oranges and Brewer’s Spent Grains as
Promoting Ingredients for Microbial Growth by Submerged and Solid State Fermentation of Agro-industrial Waste Mixtures.
Appl. Biochem. Biotechnol. 2013, 170, 1885–1895. [CrossRef]
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