Amylase Production from Thermophilic Bacillus sp. BCC 021-50 Isolated from a Marine Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Screening of Amylase-Producing Microbes
2.2. Cultivation Conditions of Marine Bacteria
2.3. Amylase Assay
2.4. Effect of Temperature
2.5. Effect of the Carbon Source
2.6. Effect of the Nitrogen Source and the Influence of the Initial pH
2.7. Amylase Activity and Stability at Different pH
2.8. Amylase Activity and the Stability at Different Temperatures
2.9. Enzyme Stability in Surfactant, Oxidizing, and Bleaching Agents
2.10. Statistical Analysis
3. Results and Discussion
3.1. Isolation, Screening, and Identification of Amylase-Producing Marine Bacteria
3.2. Optimization of Fermentation Conditions for Amylase Production
3.3. Characterization of Crude Amylase of Bacillus sp. BCC 021-50
4. Conclusions
Supplementary Materials
Acknowledgment
Author Contributions
Conflicts of Interest
References
- Malik, S.; Iftikhar, T.; Haq, I.; Khattak, M.I. Process optimization for amyloglucosidase by a mutant strain of aspergillus niger in stirred fermenter. Pak. J. Bot. 2013, 45, 663–666. [Google Scholar]
- Gupta, R.; Gigras, P.; Mohapatra, H.; Goswami, V.K.; Chauhan, B. Microbial α-amylases: A biotechnological perspective. Process Biochem. 2003, 38, 1599–1616. [Google Scholar] [CrossRef]
- Chakraborty, S.; Khopade, A.; Kokare, C.; Mahadik, K.; Chopade, B. Isolation and characterization of novel α-amylase from marine Streptomyces sp. D1. J. Mol. Catal. B 2009, 58, 17–23. [Google Scholar] [CrossRef]
- Sivaramakrishnan, S.; Gangadharan, D.; Nampoothiri, K.M.; Soccol, C.R.; Pandey, A. α-amylases from microbial sources—An overview on recent developments. Food Technol. Biotechnol. 2006, 44, 173–184. [Google Scholar]
- Qureshi, A.S.; Dahot, M.U. Production of proteases by staphylococcus epidermidis EFRL 12 using cost effective substrate (molasses) as a carbon source. Pak. J. Biotechnol. 2009, 6, 55–60. [Google Scholar]
- De Azeredo, L.; Leite, S.; Freire, D.; Benchetrit, L.; Coelho, R. Proteases from actinomycetes interfere in solid media plate assays of hyaluronidase activity. J. Microbiol. Methods 2001, 45, 207–212. [Google Scholar] [CrossRef]
- Hameş-Kocabaş, E.E.; Uzel, A. Alkaline protease production by an actinomycete MA1–1 isolated from marine sediments. Ann. Microbiol. 2007, 57, 71–75. [Google Scholar] [CrossRef]
- Sharma, A.D.; Kainth, S.; Gill, P.K. Inulinase production using garlic (Allium sativum) powder as a potential substrate in Streptomyces sp. J. Food Eng. 2006, 77, 486–491. [Google Scholar] [CrossRef]
- Stamford, T.; Stamford, N.; Coelho, L.; Araujo, J. Production and characterization of a thermostable glucoamylase from streptosporangium sp. Endophyte of maize leaves. Bioresour. Technol. 2002, 83, 105–109. [Google Scholar] [CrossRef]
- Ventosa, A.; Nieto, J. Biotechnological applications and potentialities of halophilic microorganisms. World J. Microbiol. Biotechnol. 1995, 11, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, A.S.; Dahot, M.U.; Rehman, A. Production of amylase by fungi through submerged fermentation. Pak. J. Biotechnol. 2004, 1, 35–42. [Google Scholar]
- Aqeel, B.M.; Umar, D.M. Effect of alternative carbon and nitrogen sources on production of α-amylase by bacillus megaterium. World Appl. Sci. J. 2010, 8, 85–90. [Google Scholar] [CrossRef]
- Fossi, B.T.; Tavea, F.; Fontem, L.A.; Ndjouenkeu, R.; Wanji, S. Microbial interactions for enhancement of α-amylase production by Bacillus amyloliquefaciens 04BBA15 and Lactobacillus fermentum 04BBA19. Biotechnol. Rep. 2014, 4, 99–106. [Google Scholar] [CrossRef]
- Halder, D.; Biswas, E.; Basu, M. Amylase production by Bacillus cereus strain BRSC-S-A26MB under optimal laboratory condition. Int. J. Curr. Microbiol. App. Sci. 2014, 3, 1035–1047. [Google Scholar]
- Reddy, L.; Wee, Y.-J.; Yun, J.-S.; Ryu, H.-W. Optimization of alkaline protease production by batch culture of Bacillus sp. RKY3 through Plackett–Burman and response surface methodological approaches. Bioresour. Technol. 2008, 99, 2242–2249. [Google Scholar] [CrossRef] [PubMed]
- Erdal, S.; Taskin, M. Production of α-amylase by penicillium expansum MT-1 in solid-state fermentation using waste loquat (Eriobotrya japonica Lindley) kernels as substrate. Romanian Biotechnol. Lett. 2010, 15, 5342–5350. [Google Scholar]
- Singh, S.; Kaur, B.; Mann, N.K.; Cheema, S.K. Influence of calcium chloride on growth and α-amylase production for wild and UV-mutated strains of aspergillus fumigatus. Int. J. Biotechnol. Bioeng. Res. 2013, 4, 697–702. [Google Scholar]
- Qureshi, A.S.; Bhutto, M.A.; Khushk, I.; Dahot, M.U. Optimization of cultural conditions for protease production by bacillus subtilis EFRL 01. Afr. J. Biotechnol. 2013, 10, 5173–5181. [Google Scholar]
- Karataş, H.; Uyar, F.; Tolan, V.; Baysal, Z. Optimization and enhanced production of α-amylase and protease by a newly isolated bacillus licheniformis ZB-05 under solid-state fermentation. Ann. Microbiol. 2013, 63, 45–52. [Google Scholar] [CrossRef]
- Gangadharan, D.; Sivaramakrishnan, S.; Nampoothiri, K.M.; Sukumaran, R.K.; Pandey, A. Response surface methodology for the optimization of α amylase production by bacillus amyloliquefaciens. Bioresour. Technol. 2008, 99, 4597–4602. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elhalem, B.T.; El-Sawy, M.; Gamal, R.F.; Khadiga, A.-T.A.A. Production of amylases from Bacillus amyloliquefaciens under submerged fermentation using some agro-industrial by-products. Ann. Agric. Sci 2015, 60, 193–202. [Google Scholar] [CrossRef]
- Božić, N.; Ruiz, J.; López-Santín, J.; Vujčić, Z. Production and properties of the highly efficient raw starch digesting α-amylase from a bacillus licheniformis atcc 9945a. Biochem. Eng. J. 2011, 53, 203–209. [Google Scholar] [CrossRef]
- Akcan, N.; Uyar, F.; Aysel, G.A. α-Amylase production by Bacillus subtilis RSKK96 in submerged cultivation. Kafkas Univ. Vet. Fak. Derg. 2011, 17, 17–22. [Google Scholar]
- Kumari, N.; Jain, V.; Malhotra, S. Purification and characterization of extracellular acidophilic α-amylase from bacillus cereus MTCC 10205 isolated from soil. Afr. J. Microbiol. Res. 2013, 7, 5440–5448. [Google Scholar]
- Asad, W.; Asif, M.; Ajaz, R.A.S. Extracellular enzyme production by indigenous thermophilic bacteria: Partial purification and characterization of α-amylase by Bacillus sp. Wa21. Pak. J. Bot. 2011, 43, 1045–1052. [Google Scholar]
- Qureshi, A.S.; Bhutto, M.A.; Chisti, Y.; Khushk, I.; Dahot, M.U.; Bano, S. Production of pectinase by bacillus subtilis efrl 01 in a date syrup medium. Afr. J. Biotechnol. 2012, 11, 12563–12570. [Google Scholar]
- Qureshi, A.S.; Dahot, M.U.; Panhwar, S.I. Biosysnthesis of alkaline phosphatase by escherichia coli efrl 13 in submerged fermentation. World App. Sci. J. 2010, 8, 50–56. [Google Scholar]
- Abdullah, R.; Shaheen, N.; Iqtedar, M.; Naz, S.; Tehreema, I.A. Optimization of cultural conditions for the production of alpha amylase by aspergillus niger (BTM-26) in solid state fermentation. Pak. J. Bot. 2014, 46, 1071–1078. [Google Scholar]
- Dar, G.H.; Kamili, A.N.; Nazir, R.; Bandh, S.A.; Jan, T.R.; Chishti, M.Z. Enhanced production of α-amylase by penicillium chrysogenum in liquid culture by modifying the process parameters. Microb. Pathog. 2015, 88, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Ashwini, K.; Gaurav, K.; Karthik, L.; Bhaskara Rao, K. Optimization, production and partial purification of extracellular α-amylase from bacillus sp. Marini. Arch. App. Sci. Res. 2011, 3, 33–42. [Google Scholar]
- Vijayaraghavan, P.; Kalaiyarasi, M.; Vincent, S.G.P. Cow dung is an ideal fermentation medium for amylase production in solid-state fermentation by bacillus cereus. J. Genet. Eng. Biotechnol. 2015, 13, 111–117. [Google Scholar] [CrossRef]
- Goyal, N.; Gupta, J.; Soni, S. A novel raw starch digesting thermostable α-amylase from Bacillus sp. I-3 and its use in the direct hydrolysis of raw potato starch. Enzyme Microb. Technol. 2005, 37, 723–734. [Google Scholar] [CrossRef]
- Hagihara, H.; Igarashi, K.; Hayashi, Y.; Endo, K.; Ikawa-Kitayama, K.; Ozaki, K.; Kawai, S.; Ito, S. Novel α-amylase that is highly resistant to chelating reagents and chemical oxidants from the Alkaliphilic Bacillus isolate KSM-K38. App. Environ. Microb. 2001, 67, 1744–1750. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-H.; Liu, W.-H. Purification and properties of a maltotriose-producing α-amylase from thermobifida fusca. Enzyme Microb. Technol. 2004, 35, 254–260. [Google Scholar] [CrossRef]
- Vieille, C.; Zeikus, G.J. Hyperthermophilic enzymes: Sources, uses, and molecular mechanisms for thermostability. Microb. Mol. Biol. Rev. 2001, 65, 1–43. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simair, A.A.; Khushk, I.; Qureshi, A.S.; Bhutto, M.A.; Chaudhry, H.A.; Ansari, K.A.; Lu, C. Amylase Production from Thermophilic Bacillus sp. BCC 021-50 Isolated from a Marine Environment. Fermentation 2017, 3, 25. https://doi.org/10.3390/fermentation3020025
Simair AA, Khushk I, Qureshi AS, Bhutto MA, Chaudhry HA, Ansari KA, Lu C. Amylase Production from Thermophilic Bacillus sp. BCC 021-50 Isolated from a Marine Environment. Fermentation. 2017; 3(2):25. https://doi.org/10.3390/fermentation3020025
Chicago/Turabian StyleSimair, Altaf Ahmed, Imrana Khushk, Abdul Sattar Qureshi, Muhammad Aqeel Bhutto, Haider Ali Chaudhry, Khalil Ahmed Ansari, and Changrui Lu. 2017. "Amylase Production from Thermophilic Bacillus sp. BCC 021-50 Isolated from a Marine Environment" Fermentation 3, no. 2: 25. https://doi.org/10.3390/fermentation3020025
APA StyleSimair, A. A., Khushk, I., Qureshi, A. S., Bhutto, M. A., Chaudhry, H. A., Ansari, K. A., & Lu, C. (2017). Amylase Production from Thermophilic Bacillus sp. BCC 021-50 Isolated from a Marine Environment. Fermentation, 3(2), 25. https://doi.org/10.3390/fermentation3020025