Optimized pH and Its Control Strategy Lead to Enhanced Itaconic Acid Fermentation by Aspergillus terreus on Glucose Substrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbial Catalyst
2.2. Bioreactor System for Itaconic Acid Production
2.3. Analytical Procedure
3. Results and Discussion
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Gonzalez-Garcia, R.-A.; McCubbin, T.; Navone, L.; Stowers, C.; Nielsen, L.-K.; Marcellin, E. Microbial propionic acid production. Fermentation 2017, 3, 21. [Google Scholar] [CrossRef]
- Murali, N.; Srinivas, K.; Ahring, B.-K. Biochemical production and separation of carboxylic acids for biorefinery applications. Fermentation 2017, 3, 22. [Google Scholar] [CrossRef]
- Nghiem, N.-P.; Kleff, S.; Schwegmann, S. Succinic acid: Technology development and commercialization. Fermentation 2017, 3, 26. [Google Scholar] [CrossRef]
- West, T.-P. Microbial production of malic acid from biofuel-related coproducts and biomass. Fermentation 2017, 3, 14. [Google Scholar] [CrossRef]
- Jang, Y.-S.; Kim, B.; Shin, J.-H.; Choi, Y.-J.; Choi, S.; Song, C.-W.; Lee, J.; Park, H.G.; Lee, S.Y. Bio-based production of C2–C6 platform chemicals. Biotechnol. Bioeng. 2012, 109, 2437–2459. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Lübeck, M.; Lübeck, P.-S. Aspergillus as a versatile cell factory for organic acid production. Fungal Biol. Rev. 2017, 31, 33–49. [Google Scholar] [CrossRef]
- El-Imam, A.-A.; Du, C. Fermentative itaconic acid production. J. Biodivers. Bioprospect. Dev. 2014, 1, 119. [Google Scholar] [CrossRef]
- Saha, B.-C. Emerging biotechnologies for production of itaconic acid and its applications as a platform chemical. J. Ind. Microbiol. Biotechnol. 2017, 44, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Dwiarti, L.; Otsuka, M.; Miura, S.; Yaguchi, M.; Okabe, M. Itaconic acid production using sago starch hydrolysate by Aspergillus terreus TN484-M1. Bioresour. Technol. 2007, 98, 3329–3337. [Google Scholar] [CrossRef]
- Mondala, A.-H. Direct fungal fermentation of lignocellulosic biomass into itaconic, fumaric, and malic acids: Current and future prospects. J. Ind. Microbiol. Biotechnol. 2015, 42, 487–506. [Google Scholar] [CrossRef]
- Pedroso, G.-B.; Montipó, S.; Mario, D.-A.-N.; Alves, S.-H.; Martins, A.-F. Building block itaconic acid from left-over biomass. Biomass Convers. Biorefin. 2017, 7, 23–35. [Google Scholar] [CrossRef]
- Hevekerl, A.; Kuenz, A.; Vorlop, K.-D. Influence of the pH on the itaconic acid production with Aspergillus terreus. Appl. Microbiol. Biotechnol. 2014, 98, 10005–10012. [Google Scholar] [CrossRef] [PubMed]
- Karaffa, L.; Díaz, R.; Papp, B.; Fekete, E.; Sándor, B.; Kubicek, C.-P. A deficiency of manganese ions in the presence of high sugar concentrations is the critical parameter for achieving high yields of itaconic acid by Aspergillus terreus. Appl. Microbiol. Biotechnol. 2015, 99, 7937–7944. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Pfelzer, N.; Zuijderwijk, R.; Punt, P. Enhanced itaconic acid production in Aspergillus niger using genetic modification and medium optimization. BMC Biotechnol. 2012, 12, 57. [Google Scholar] [CrossRef] [PubMed]
- Shin, W.-S.; Lee, D.; Kim, S.; Jeong, Y.-S.; Chun, G.-T. Application of scale-up criterion of constant oxygen mass transfer coefficient (kLa) for production of itaconic acid in a 50 L pilot-scale fermentor by fungal cells of Aspergillus terreus. J. Microbiol. Biotechnol. 2013, 23, 1445–1453. [Google Scholar] [CrossRef]
- Cartensen, F.; Klement, T.; Büchs, J.; Melin, T.; Wessling, M. Continuous production and recovery of itaconic acid in a membrane bioreactor. Bioresour. Technol. 2013, 137, 179–187. [Google Scholar] [CrossRef]
- Magalhães, I.-A., Jr.; de Carvalho, J.C.; Medina, J.D.C.; Soccol, C.R. Downstream process development in biotechnological itaconic acid manufacturing. Appl. Microbiol. Biotechnol. 2017, 101, 1–12. [Google Scholar] [CrossRef]
- Varga, V.; Bélafi-Bakó, K.; Vozik, D.; Nemestóthy, N. Recovery of itaconic acid by electrodialysis. Hung. J. Ind. Chem. 2018, 46, 43–46. [Google Scholar] [CrossRef]
- Luo, H.; Cheng, X.; Liu, G.; Zhou, Y.; Lu, Y.; Zhang, R.; Li, X.; Teng, W. Citric acid production using a biological electrodialysis with bipolar membrane. J. Membr. Sci. 2017, 523, 122–128. [Google Scholar] [CrossRef]
- Tongwen, X.; Weihua, Y. Citric acid production by electrodialysis with bipolar membranes. Chem. Eng. Process. 2002, 41, 519–524. [Google Scholar] [CrossRef]
- Pinacci, P.; Radaelli, M. Recovery of citric acid from fermentation broths by electrodialysis with bipolar membranes. Desalination 2002, 148, 177–179. [Google Scholar] [CrossRef]
- Kuenz, A.; Gallenmüller, Y.; Willke, T.; Vorlop, K.-D. Microbial production of itaconic acid: Developing a stable platform for high product concentrations. Appl. Microbiol. Biotechnol. 2012, 96, 1209–1216. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Li, C.; Wang, Y.; Zhang, X.; Li, Q.; Xu, T. Regenerating sodium hydroxide from the spent caustic by bipolar membrane electrodialysis (BMED). Sep. Purif. Technol. 2012, 86, 49–54. [Google Scholar] [CrossRef]
- Chen, M.; Huang, X.; Zhong, C.; Li, J.; Lu, X. Identification of an itaconic acid degrading pathway in itaconic acid producing Aspergillus terreus. Appl. Microbiol. Biotechnol. 2016, 100, 7541–7548. [Google Scholar] [CrossRef]
- Klement, T.; Büchs, J. Itaconic acid—A biotechnological process in change. Bioresour. Technol. 2013, 135, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Riscaldati, E.; Moresi, M.; Federici, F.; Petruccioli, M. Effect of pH and stirring rate on itaconate production by Aspergillus terreus. J. Biotechnol. 2000, 83, 219–230. [Google Scholar] [CrossRef]
- Vassilev, N.; Kautola, H.; Linko, Y.-Y. Immobilized Aspergillus terreus in itaconic acid production from glucose. Biotechnol. Lett. 1992, 14, 201–206. [Google Scholar] [CrossRef]
- Gao, Q.; Liu, J.; Liu, L. Relationship between morphology and itaconic acid production by Aspergillus terreus. J. Microbiol. Biotechnol. 2014, 24, 168–176. [Google Scholar] [CrossRef]
- Meena, V.; Sumanjali, A.; Dwarka, K.; Subburathinam, K.-M.; Sambasiva Rao, K.-R.-S. Production of itaconic acid through submerged fermentation employing different species of Aspergillus. Rasayan J. Chem. 2010, 3, 100–109. [Google Scholar]
- Nemestóthy, N.; Bakonyi, P.; Rózsenberszki, T.; Kumar, G.; Koók, L.; Kelemen, G.; Kim, S.-H.; Bélafi-Bakó, K. Assessment via the modified Gompertz-model reveals new insights concerning the effects of ionic liquids on biohydrogen production. Int. J. Hydrogen Energy 2018, 43, 18918–18924. [Google Scholar] [CrossRef]
- Kautola, H.; Vahvaselka, M.; Linko, Y.-Y.; Linko, P. Itaconic acid production by immobilized Aspergillus terreus from xylose and glucose. Biotechnol. Lett. 1985, 7, 167–172. [Google Scholar] [CrossRef]
Experimental Setting | pH | Aeration (L (STP)/min) | Agitation (Hz) | Substrate |
---|---|---|---|---|
A | Initial pH set to 3 and left uncontrolled | 1.5 | 2 | glucose |
B | Initial pH set to 3 and maintained | 1.5 | 2 | glucose |
C | Initial pH set to 2.5 and maintained | 1.5 | 2 | glucose |
D | Initial pH set to 4 and maintained | 1.5 | 2 | glucose |
E | Initial pH set to 3 and, after 48 h, maintained at 2.5 | 1.5 | 2 | glucose |
Time (h) | Experimental Setting | ||||
---|---|---|---|---|---|
A | B | C | D | E | |
Itaconic Acid Titer (g/L) | |||||
0 | 0 | 0 | 0 | 0 | 0 |
24 | 0 | 1.63 | 0 | 0.80 | 0 |
48 | 2.88 | 3.99 | 0.94 | 0 | |
72 | 5.63 | 5.07 | 17.17 | ||
96 | 8.32 | 6.07 | 9.20 | ||
120 | 12.18 | 0.90 | |||
144 | 18.48 | 1.79 | 17.84 | ||
168 | 18.69 | 8.94 | 20.37 | 1.98 | 24.40 |
192 | 21.01 | 12.48 | 19.81 | 3.39 | 29.47 |
216 | 24.24 | 14.12 | 3.43 | ||
240 | 26.28 | 13.87 | 41.4 | ||
264 | 13.99 | 19.98 | |||
288 | 5.10 |
Statistical Data | Experimental Setting | ||||
---|---|---|---|---|---|
A | B | C | D | E | |
Valid number of data | 9 | 10 | 8 | 9 | 8 |
Mean | 11.89 | 8.02 | 12.5 | 2.04 | 16.29 |
Minimum | 0 | 0 | 0 | 0 | 0 |
Maximum | 26.28 | 14.12 | 20.37 | 5.1 | 41.4 |
Standard deviation | 10.63 | 5.39 | 8.71 | 1.63 | 15.44 |
Kinetic Data | Experimental Setting | ||||
---|---|---|---|---|---|
A | B | C | D | E | |
P (g/L) | 32.70 | 17.17 | 20.75 | 12.98 | 87.32 |
Rm (g/L/h) | 0.15 | 0.07 | 0.26 | 0.02 | 0.22 |
λ (h) | 41.61 | 4.51 | 63.70 | 72.44 | 56.04 |
Experimental Setting | Score | Sum of Scores | Final Rank | ||
---|---|---|---|---|---|
P | Rm | λ | |||
A | 4 | 3 | 4 | 11 | 2 |
B | 2 | 2 | 5 | 9 | 4 |
C | 3 | 5 | 2 | 10 | 3 |
D | 1 | 1 | 1 | 3 | 5 |
E | 5 | 4 | 3 | 12 | 1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komáromy, P.; Bakonyi, P.; Kucska, A.; Tóth, G.; Gubicza, L.; Bélafi-Bakó, K.; Nemestóthy, N. Optimized pH and Its Control Strategy Lead to Enhanced Itaconic Acid Fermentation by Aspergillus terreus on Glucose Substrate. Fermentation 2019, 5, 31. https://doi.org/10.3390/fermentation5020031
Komáromy P, Bakonyi P, Kucska A, Tóth G, Gubicza L, Bélafi-Bakó K, Nemestóthy N. Optimized pH and Its Control Strategy Lead to Enhanced Itaconic Acid Fermentation by Aspergillus terreus on Glucose Substrate. Fermentation. 2019; 5(2):31. https://doi.org/10.3390/fermentation5020031
Chicago/Turabian StyleKomáromy, Péter, Péter Bakonyi, Adrienn Kucska, Gábor Tóth, László Gubicza, Katalin Bélafi-Bakó, and Nándor Nemestóthy. 2019. "Optimized pH and Its Control Strategy Lead to Enhanced Itaconic Acid Fermentation by Aspergillus terreus on Glucose Substrate" Fermentation 5, no. 2: 31. https://doi.org/10.3390/fermentation5020031
APA StyleKomáromy, P., Bakonyi, P., Kucska, A., Tóth, G., Gubicza, L., Bélafi-Bakó, K., & Nemestóthy, N. (2019). Optimized pH and Its Control Strategy Lead to Enhanced Itaconic Acid Fermentation by Aspergillus terreus on Glucose Substrate. Fermentation, 5(2), 31. https://doi.org/10.3390/fermentation5020031