By-Products in the Malting and Brewing Industries—Re-Usage Possibilities
Abstract
:1. Introduction
2. Basic Production Technology of Beer
- Water absorption (swelling);
- Germination;
- Kilning;
- Stabilization of malted grain.
- Malt production;
- Wort production;
- Main fermentation;
- Secondary fermentation—maturation of young beer;
- Finishing;
- Packaging of beer.
3. Malting and Brewing By-Products
3.1. Water
- Reduction of water usage in the production process, or the introduction of new technologies;
- Redirecting the used water in further activities;
- Proper treatment before being released into the wastewater system or the environment [7].
- Reuse of hot water obtained by cooling wort—hot water is stored in thermally insulated containers and can be used for various purposes (for cleaning, rinsing, or heating rooms);
- Reuse of wastewater from the strainer;
- Reuse of water used for bottling in pasteurization;
- Use of cross-flow filtration.
3.2. Spent Grains
3.3. Spent Yeast
3.4. Spent Hops
3.5. Germ/Rootlets
4. By-Products and Food Industry—Value Added Products
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kunze, W. Technology Brewing and Malting, 5th ed.; VLB Berlin: Berlin, Germany, 2014. [Google Scholar]
- Beer Market By Type (Strong Beer, Light Beer), Production (Macro, Micro Brewery), Category (Premium, Super premium, Normal) and Packaging (Canned, Bottled, Draught) - Global Opportunity Analysis and Industry Forecast, 2014–2020. Available online: https://www.premiummarketinsights.com/reports-amr/beer-market (accessed on 5 July 2020).
- Mussatto, S.I. Brewer’s spent grain: A valuable feedstock for industrial applications. J. Sci. Food Agric. 2014, 94, 1264–1275. [Google Scholar] [CrossRef] [Green Version]
- LIFE YEAST - Recycling brewer’s spent YEAST in innovative industrial applications. Available online: https://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=6265&docType=pdf (accessed on 31 July 2020).
- Gagula, G.; Mastanjević, K.; Mastanjević, K.; Krstanović, V.; Horvat, D.; Magdić, D. The influence of packaging material on volatile compounds of pale lager beer. Food Packag. Shelf Life 2020, 24, 100496. [Google Scholar] [CrossRef]
- Simate, G.S.; Cluett, J.; Iyuke, S.L.; Musapatika, E.T.; Ndlovu, S.; Walubita, L.F.; Alvarez, A.E. The treatment of brewery wastewater for reuse: State of the art. Desalination 2011, 273, 235–247. [Google Scholar] [CrossRef]
- Šarić, G.; Matijević, B.; Blažić, B.; Zavadlav, S.; Halambek, J. Brewery effluents-waste or raw material? In Proceedings of the 7th International Scientific and Professional Conference, “Water For All”, Osijek, Croatia, 9–10 March 2017; Habuda-Stanić, M., Šiljeg, V., Eds.; Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek: Osijek, Croatia, 2018; pp. 271–284. [Google Scholar]
- Brewers of Europe. Beer Statistics—2016 Edition. 2016. Available online: https://brewersofeurope.org/uploads/mycms-files/documents/publications/2016/stats_2016_web.pdf (accessed on 4 July 2020).
- Van der Merwe, A.I.; Friend, J.F.C. Water management at a malted barley brewery. Water SA 2002, 28, 313–318. [Google Scholar] [CrossRef] [Green Version]
- Rao, A.G.; Reddy, T.S.K.; Prakash, S.S.; Vanajakshi, J.; Joseph, J.; Sarma, P.N. pH regulation of alkaline wastewater with carbon dioxide: A case study of treatment of brewery wastewater in UASB reactor coupled with absorber. Bioresour. Technol. 2007, 98, 2131–2136. [Google Scholar] [CrossRef] [PubMed]
- Mielcarek, A.; Janczukowicz, W.; Ostrowska, K.; Jóźwiak, T.; Kłodowska, I.; Rodziewicz, J.; Zieliński, M. Biodegradability evaluation of wastewaters from malt and beer production. J. Inst. Brew. 2013, 119, 242–250. [Google Scholar] [CrossRef]
- Enitan, A.M.; Adeyemo, J.; Kumari, S.; Swalaha, F.M.; Bux, F. Characterization of Brewery Wastewater Composition. World A. Sci. Eng. Technol. Int. J. Environ. Eco. Eng. 2015, 9. [Google Scholar] [CrossRef]
- Thiel, P.G.; du Toit, P.J. The chemical composition of a brewery waste. J. Inst. Brew. 1965, 71, 509–514. [Google Scholar] [CrossRef]
- Best Available Techniques (BAT). Reference Document in the Food. Drink and Milk Industries, European IPPC Bureau, First Draft (January 2017). 2017. Available online: https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/best-available-techniques-bat-reference-document-food-drink-and-milk-industries-industrial (accessed on 6 July 2020).
- Schenk, P.M.; Thomas-Hall, S.R.; Stephens, E.; Marx, U.C.; Mussgnug, J.H.; Posten, C.; Kruse, O.; Hankamer, B. Second generation biofuels: High-efficiency microalgae for biodiesel production. Bioenergy Res. 2008, 1, 20–43. [Google Scholar] [CrossRef]
- Maintinguer, S.I.; ZampolLazaro, C.; Pachiega, R.; Varesche, M.B.A.; Sequinel, R.; de Oliveira, J.E. Hydrogen bioproduction with Enterobacter sp. isolated from brewery wastewater. Int. J. Hydrog. Energy 2017, 42, 152–160. [Google Scholar] [CrossRef] [Green Version]
- Knothe, G.; Krahl, J.; van Gerpen, J. The Biodiesel Handbook; AOCS Press: Champaign, IL, USA, 2005. [Google Scholar]
- Tomas, N.G. Hidroponski uzgoj biljaka. Ph.D. Thesis, Josip Juraj Strossmayer University of Osijek. Faculty of Agrobiotechical Sciences Osijek, Osijek, Croatia, 2019. [Google Scholar]
- Leiper, K.A.; Miedl, M. Colloidal stability of beer. In Beer: A Quality Perspective; Bamforth, C., Ed.; Academic Press: London, UK, 2009; pp. 111–161. [Google Scholar]
- Barbosa-Pereira, L.; Bilbao, A.; Vilches, P.; Angulo, I.; Luis, J.L.; Fité, B.; Paseiro-Losada, P.; Cruz, J.M. Brewery waste as a potential source of phenolic compounds: Optimisation of the extraction process and evaluation of antioxidant and antimicrobial activities. Food Chem. 2014, 145, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Arantes, M.K.; Alves, H.J.; Sequinel, R.; da Silva, E.A. Treatment of brewery wastewater and its use for biological production of methane and hydrogen. Int. J. Hydrog. Energy 2017, 42, 26243–26256. [Google Scholar] [CrossRef]
- Arantes, M.K.; Sequinel, R.; Alves, H.J.; Machado, B.; Fiorini, A.; da Silva, E.A. Improvement of biohydrogen production from brewery wastewater: Evaluation of inocula, support and reactor. Int. J. Hydrog. Energy 2020, 45, 5216–5226. [Google Scholar] [CrossRef]
- Tchobanoglous, G.; Burton, F.L.; Stensel, H.D. Wastewater Engineering: Treatment, Disposal, and Reuse; McGraw-Hill: New York, NY, USA, 1991. [Google Scholar]
- Mohan, S.V. Fermentative hydrogen production with simultaneous wastewater treatment: Influence of pretreatment and system operating conditions. J. Sci. Ind. Res. 2008, 67, 950–961. [Google Scholar]
- Dai, H.; Yang, X.; Dong, T.; Ke, Y.; Wang, T. Engineering application of MBR process to the treatment of beer brewing wastewater. Mod. Appl. Sci. 2010, 4, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, L.; Villaseñor, J.; Fernandez, F.J. Influence of the cleaning additives on the methane production from brewery effluents. Chem. Eng. J. 2013, 215, 685–690. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, X.; Logan, B.E.; Lee, H. Brewery wastewater treatment using air-cathode microbial fuel cells. Appl. Microbiol. Biotechnol. 2008, 78, 873–880. [Google Scholar] [CrossRef]
- Osterman-Parac, Đ.; Sutlović, A.; Đurašević, V. Physicochemical Treatment and Biosorption of Dyehouse Effluents: Water Recycling Possibility. Tekstil 2010, 59, 307–315. [Google Scholar]
- Wu, B.; Wang, H.; Xue, X.; Li, X. Full-scale Application of an Integrated UF/RO System for Treatment and Reuse of Electroplating Wastewater. J. Water Sus. 2012, 2, 185–191. [Google Scholar]
- Kušter, D. Uloga filtracije u proizvodnji piva. Bachelor’s Thesis, Karlovac University of Applied Sciences, Karlovac, Croatia, 2016. Available online: https://urn.nsk.hr/urn:nbn:hr:128:249898 (accessed on 11 July 2020).
- Braeken, L.; van der Bruggen, B.; Vandecasteele, C. Regeneration of brewery waste water using nanofiltration. Water Res. 2004, 38, 3075–3082. [Google Scholar] [CrossRef]
- Götz, G.; Geissen, S.-U.; Ahrens, A.; Reimann, S. Adjustment of the wastewater matrix for optimization of membrane systems applied for water reuse in breweries. J. Membr. Sci. 2014, 465, 68–77. [Google Scholar] [CrossRef]
- Cicek, N. A review of membrane bioreactors and their potential application in the treatment of agricultural wastewater. Can. Biosyst. Eng. 2003, 45, 6–37. [Google Scholar]
- Serdarević, A. Razvoj i primjena MBR tehnologije u procesu prečišćavanja otpadnih voda/Development and application of MBR technology in the process of wastewater treatment. Vodoprivreda 2014, 46, 77–87. [Google Scholar]
- Alvarado-lassman, A.; Rustrian, E.; Garcıa-Alvarado, M.A.; Rodrıguez-Jimenez, G.C.; Houbron, E. Brewery wastewater treatment using anaerobic inverse fluidized bed reactors. Biores. Technol. 2008, 99, 3009–3015. [Google Scholar] [CrossRef]
- Chen, H.; Changa, S.; Guoa, Q.; Hong, Y.; Wu, P. Brewery wastewater treatment using an anaerobic membrane bioreactor. Biochem. Eng. J. 2016, 105, 321–331. [Google Scholar] [CrossRef]
- Wang, H.; Qu, Y.; Li, D.; Ambuchi, J.J.; He, W.; Zhou, X.; Liu, J.; Feng, Y. Cascade degradation of organic matters in brewery wastewater using a continuous stirred microbial electrochemical reactor and analysis of microbial communities. Sci. Rep. 2016. [Google Scholar] [CrossRef]
- Mussatto, S.I. Biotechnological potential of brewing industry by-products. In Biotechnology for Agro-Industrial Residues Utilisation; Springer: Dordrecht, The Netherlands, 2009; pp. 313–326. [Google Scholar]
- Robertson, J.A.; I’Anson, K.J.A.; Treimo, J.; Faulds, C.B.; Brocklehurst, T.F.; Eijsink, V.G.H.; Waldron, K.W. Profiling brewers’ spent grain for composition and microbial ecology at the site of production. LWT-Food Sci. Technol. 2010, 43, 890–896. [Google Scholar] [CrossRef]
- Andrew, J.J.; Parker, M.L.; Faulks, R.; Husband, F.; Wilde, P.; Smith, A.C.; Faulds, C.B.; Waldron, K.W. A systematic micro-dissection of brewers’ spent grain. J. Cereal Sci. 2008, 47, 357–364. [Google Scholar]
- Mccarthy, A.L.; O’Callaghan, Y.O.; Piggott, C.O.; FitzGerald, R.J.; O’Brien, N.M. Brewers’ spent grain; bioactivity of phenolic component, its role in animal nutrition and potential for incorporation in functional foods: A review. Proc. Nutr. Soc. 2013, 72, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Mussatto, S.I.; Dragone, G.; Roberto, I.C. Brewers’ spent grain: Generation, characteristics and potential applications. J. Cereal Sci. 2006, 43, 1–14. [Google Scholar] [CrossRef]
- Al-Hadithi, A.N.; Muhsen, A.A.; Yaser, A.A. A study on the possibility of using some organic acids as preservatives for brewer’s by products. J. of Agri. Water Res. Research (Iraq) 1985, 4, 229–242. [Google Scholar]
- Kuentzel, U.; Sonnenberg, H. Conservation of pressed brewers grain with potassium sorbate. Monatsschrift fuer Brauwiss. 1997, 50, 175–181. [Google Scholar]
- Muthusamy, N. Chemical composition of brewers spent grain—A review. Int. J. Sci. Environ. Technol. 2014, 3, 2109–2112. [Google Scholar]
- Xiros, C.; Christakopoulos, P. Biotechnological potential of brewers spent grain and its recent applications. Waste Biomass Valori. 2012, 3, 213–232. [Google Scholar] [CrossRef]
- Steiner, J.; Procopio, S.; Becker, T. Brewer’s spent grain: Source of value-added polysaccharides for the food industry in reference to the health claims. Eur. Food Res. Technol. 2015, 241, 303–315. [Google Scholar] [CrossRef]
- Khidzir, N.M.; Abdullah, N.; Agamuthu, P. Brewery Spent Grain: Chemical Characteristics and Utilization as an Enzyme Substrate. Malaysian J. Sci. 2010, 29, 41–51. [Google Scholar]
- Huige, N.J. Brewery by-products and effluents. In Handbook of Brewing, 1st ed.; Hardwick, W.A., Ed.; Marcel Dekker: New York, NY, USA, 1995; pp. 501–550. [Google Scholar]
- Ding, C.; Li, Z.X.; Fang, B.; Yan, J.L. Fermentation of Brewers’ spent grain by effective microorganisms to produce proteins feed. Adv. Mat. Res. 2012, 396–398, 1980–1983. [Google Scholar] [CrossRef]
- Hassan, S.S.; Williams, G.A.; Jaiswal, A.K. Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresour. Technol. 2018, 262, 310–318. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.; Sun, Y.; Wang, W.; O’Keefe, S.F.; Neilson, A.P.; Feng, H.; Wang, Z.; Huang, H. Recovery of protein hydrolysates from brewer’s spent grain using enzyme and ultrasonication. Int. J. Food Sci. Tech. 2020, 55, 357–368. [Google Scholar] [CrossRef]
- Plaza, P.E.; Gallego-Morales, L.H.; Peñuela-Vásquez, M.; Lucas, S.; García-Cubero, M.T.; Coca, M. Biobutanol production from brewer’s spent grain hydrolysates by Clostridium beijerinckii. Bioresour. Technol. 2017, 244, 166–174. [Google Scholar] [CrossRef]
- Rojas-Chamorro, J.A.; Cara, C.; Romero, I.; Ruiz, E.; Romero-García, H.M.; Mussatto, S.I.; Castro, E. Ethanol production from brewers’ spent grain pretreated by dilute phosphoric acid. Energy Fuels 2018, 32, 5226–5233. [Google Scholar] [CrossRef]
- Wilkinson, S.; Smart, K.A.; James, S.; Cook, D.J. Bioethanol production from brewers spent grains using a fungal consolidated bioprocessing (CBP) approach. Bioenergy Res. 2017, 10, 146–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rojas-Chamorro, J.A.; Romero, I.; López-Linares, J.C.; Castro, E. Brewer’s spent grain as a source of renewable fuel through optimized dilute acid pretreatment. Renew. Energy 2020, 148, 81–90. [Google Scholar] [CrossRef]
- White, J.S.; Yohannan, B.K.; Walker, G.M. Bioconversion of brewer’s spent grains to bioethanol. FEMS Yeast Res. 2008, 8, 1175–1184. [Google Scholar] [CrossRef]
- Xiros, C.; Topakas, E.; Katapodis, P.; Christakopoulos, P. Evaluation of Fusarium oxysporum as an enzyme factory for the hydrolysis of brewer’s spent grain with improved biodegradability for ethanol production. Ind. Crops. Prod. 2008, 28, 213–224. [Google Scholar] [CrossRef]
- González-García, S.; Morales, P.C.; Gullón, B. Estimating the environmental impacts of a brewery waste–based biorefinery: Bio-ethanol and xylooligosaccharides joint production case study. Ind. Crops. Prod. 2018, 123, 331–340. [Google Scholar] [CrossRef]
- Panjičko, M.; Zupančič, G.D.; Fanedl, L.J.; Marinšek Logar, R.; Tišma, M.; Zelic, B. Biogas production from brewery spent grain as a mono-substrate in a two-stage process composed of solid-state anaerobic digestion and granular biomass reactors. J. Clean. Prod. 2017, 166, 519–529. [Google Scholar] [CrossRef]
- Panjičko, M.; Zupančič, G.D.; Zelić, B. Anaerobic biodegradation of raw and pre-treated brewery spent grain utilizing solid state anaerobic digestion. Acta. Chim. Slov. 2015, 62, 818–827. [Google Scholar] [CrossRef] [Green Version]
- Bochmann, G.; Drosg, B.; Fuchs, W. Anaerobic digestion of thermal pretreated brewers’ spent grains. Environ. Prog. Sustain. Energy 2015, 34, 1092–1096. [Google Scholar] [CrossRef]
- Socaci, S.A.; Fărcaş, A.C.; Diaconeasa, Z.M.; Vodnar, D.C.; Rusu, B.; Tofană, M. Influence of the extraction solvent on phenolic content, antioxidant, antimicrobial and antimutagenic activities of brewers’ spent grain. J. Cereal Sci. 2018, 80, 180–187. [Google Scholar] [CrossRef]
- Carciochi, R.A.; Sologubik, C.A.; Fernández, M.B.; Manrique, G.D.; D’Alessandro, L.G. Extraction of antioxidant phenolic compounds from brewer’s spent grain: Optimization and kinetics modeling. Antioxidants 2018, 7, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rommi, K.; Niemi, P.; Kemppainen, K.; Kruus, K. Impact of thermochemical pre-treatment and carbohydrate and protein hydrolyzing enzyme treatment on fractionation of protein and lignin from brewer’s spent grain. J. Cereal Sci. 2018, 79, 168–173. [Google Scholar] [CrossRef]
- Qin, F.; Johansen, A.Z.; Mussatto, S.I. Evaluation of different pretreatment strategies for protein extraction from brewer’s spent grains. Ind. Crops Prod. 2018, 125, 443–453. [Google Scholar] [CrossRef]
- Carvalheiro, F.; Duarte, L.C.; Medeiros, R.; Gírio, F.M. Xylitol production by Debaryomyces hansenii in brewery spent grain dilute-acid hydrolysate: Effect of supplementation. Biotechnol. Lett. 2007, 29, 1887–1891. [Google Scholar] [CrossRef] [PubMed]
- Mussatto, S.I.; Fernandes, M.; Mancilha, I.M.; Roberto, I.C. Effects of medium supplementation and pH control on lactic acid production from brewer’s spent grain. Biochem. Eng. J. 2008, 40, 437–444. [Google Scholar] [CrossRef]
- Datta, R.; Henry, M. Lactic acid: Recent advances in products, processes and technologies—A review. J. Chem. Technol. Biotechnol. 2006, 81, 1119–1129. [Google Scholar] [CrossRef]
- Balakrishnan, R.; Rajaram, S.K.; Sivaprakasam, S. Biovalorization potential of agro-forestry/industry biomass for optically pure lactic acid fermentation: Opportunities and challenges. In Biovalorisation of Wastes to Renewable Chemicals and Biofuels; Rathinam, N.K., Sani, R.K., Eds.; Elsevier: Cambridge, MA, USA, 2020; pp. 261–276. [Google Scholar]
- Brányik, T.; Vicente, A.A.; Cruz, J.M.M.; Teixeira, J.A. Spent grains–a new support for brewing yeast immobilisation. Biotechnol. Lett. 2001, 23, 1073–1078. [Google Scholar] [CrossRef] [Green Version]
- O’Rourke, T. Mash separation. Brewer’s Guardian 1999, 7, 48–50. [Google Scholar]
- Kerby, C.; Vriesekoop, F. An overview of the utilisation of brewery by-products as generated by british craft breweries. Beverages 2017, 3, 24. [Google Scholar] [CrossRef] [Green Version]
- Stocks, C.; Barker, A.J.; Guy, S. The composting of brewery sludge. J. Inst. Brew. 2002, 108, 452–458. [Google Scholar] [CrossRef]
- Lewis, M.J.; Young, T.W. Brewing; Chapman and Hall: London, UK, 1995. [Google Scholar]
- Belousova, N.I.; Gordienko, S.V.; Eroshin, V.K. Influence of autolysis conditions on the properties of amino-acid mixtures produced by ethanol-assimilating yeast. Appl. Biochem. 1995, 31, 391–395. [Google Scholar]
- Bekatorou, A.; Psarianos, C.; Koutinas, A.A. Production of food grade yeasts. Food Technol. Biotech. 2006, 44, 407–415. [Google Scholar]
- Santos, M.; Jiménez, J.J.; Bartolomé, B.; Gómez-Cordovés, C.; del Nozal, M.J. Variability of brewer’s spent grain within a brewery. Food Chem. 2003, 80, 17–21. [Google Scholar] [CrossRef]
- Huige, N.J. Brewery by-products and effluents. In Handbook of Brewing; Stewart, G.G., Priest, F.G., Eds.; CRC Press: Boca Raton, FL, USA, 2006; pp. 670–729. [Google Scholar]
- Ferreira, I.M.P.L.V.O.; Pinhoa, O.; Vieiraa, E.; Tavarelaa, J.G. Brewer’s Saccharomyces yeast biomass: Characteristics and potential applications. Trends Food Sci. Technol. 2010, 21, 77–84. [Google Scholar] [CrossRef]
- Lamoolphak, W.; Goto, M.; Sasaki, M.; Suphantharika, M.; Muangnapoh, C.; Prommuag, C.; Shotipruk, A. Hydrothermal decomposition of yeast cells for production of proteins and amino acids. J. Hazard. Mater. 2006, 137, 1643–1648. [Google Scholar] [CrossRef]
- Ding, W.J.; Qian, Q.F.; Hou, X.L.; Feng, W.Y.; Chai, Z.F. Determination of chromium combined with DNA, RNA and proteins in chromium-rich brewer’s yeast by NAA. J. Radioanal. Nucl. Chem. 2000, 244, 259–262. [Google Scholar] [CrossRef]
- Rakin, M.; Baras, J.; Vukasinovic, M. The influence of brewer’s yeast autolysate and lactic acid bacteria on the production of a functional food additive based on beetroot juice fermentation. Food Technol. Biotech. 2004, 42, 109–113. [Google Scholar]
- Champagne, C.P.; Gaudreau, H.; Conway, J. Effect of the production or use of mixtures of bakers or brewers’ yeast extracts on their ability to promote growth of Lactobacilli and Pediococci. Electron. J. Biotechn. 2003, 6, 185–197. [Google Scholar] [CrossRef] [Green Version]
- Thammakiti, S.; Suphantharika, M.; Phaesuwan, T.; Verduyn, C. Preparation of spent brewer’s yeast β-glucans for potential applications in the food industry. Int. J. Food Sci. Tech. 2004, 39, 21–29. [Google Scholar] [CrossRef]
- Worrasinchai, S.; Suphantharika, M.; Pinjai, S.; Jamnong, P. b-Glucan prepared from spent brewer’s yeast as a fat replacer in mayonnaise. Food Hydrocoll. 2006, 20, 68–78. [Google Scholar] [CrossRef]
- Stojceska, V.; Ainsworth, P.; Plunkett, A.; Ibanoglu, S. The recycling of brewer’s processing by-product into ready-to-eat snacks using extrusion technology. J. Cereal Sci. 2008, 47, 469–479. [Google Scholar] [CrossRef]
- Eyres, G.; Dufour, J.P. Hop essential oil: Analysis, chemical composition and odor characteristics. In Beer in Health and Disease Prevention, 1st ed.; Preedy, V., Ed.; Academic Press: Oxford, UK, 2009; pp. 239–254. [Google Scholar]
- Hardwick, W.A. Handbook of Brewing; Marcel Decker: New York, NY, USA, 1995. [Google Scholar]
- Briggs, D.E.; Hough, J.S.; Stevens, R.; Young, T.W. Malt. Brew. Sci: Hopped Wort. Beer, 2nd ed.; Chapman and Hall: New York, NY, USA, 1982. [Google Scholar]
- Oosterveld, A.; Voragen, A.G.J.; Schols, H.A. Characterization of hop pectins shows the presence of an arabinogalactan-protein. Carbo. Poly. 2002, 49, 407–413. [Google Scholar] [CrossRef]
- Bedini, S.; Flamini, G.; Girardi, J.; Cosci, F.; Conti, B. Not just for beer: Evaluation of spent hops (Humulus lupulus L.) as a source of eco-friendly repellents for insect pests of stored foods. J. Pest. Sci. 2015, 88, 583–592. [Google Scholar] [CrossRef]
- Anioł, M.; Huszcza, E.; Bartmańska, A.; Żołnierczyk, A.; Mączka, W.; Wawrzeńczyk, C. Trace analysis of hop essential oils in spent hop. J. Am. Soc. Brew. Chem. 2007, 65, 214–218. [Google Scholar] [CrossRef]
- Daenicke, R.; Rohr, K.; Engling, F.P. Influence of brewers’ spent hops silage in diets for dairy cows on digestion and performance variables. In Umweltaspekte der Tierproduktion, Vorträge zum Generalthema des 103. VDLUFA-Kongresses, Ulm, Deutschland, 16th–21st September 1991; Helmut, Z., Ed.; VDLUFA-Verlag: Speyer, Germany, 1991; pp. 539–544. [Google Scholar]
- Luzak, B.; Golanski, J.; Przygodzki, T.; Boncler, M.; Sosnowska, D.; Oszmianski, J.; Watala, C.; Rozalski, M. Extract from spent hop (Humulus lupulus L.) reduces blood platelet aggregation and improves anticoagulant activity of human endothelial cells in vitro. J. Funct. Foods 2016, 22, 257–269. [Google Scholar] [CrossRef]
- Callemien, D.; Collin, S. Involvement of flavanoids in beer color instability during storage. J. Agric. Food Chem. 2007, 55, 9066–9073. [Google Scholar] [CrossRef]
- Dos Santos Mathias, T.R.; Alexandre, V.M.F.; Cammarota, M.C.; de Mello, P.P.M.; Sérvulo, E.F.C. Characterization and determination of brewer’ssolid wastes composition. J. Instit. Brew. 2015, 121, 400–404. [Google Scholar] [CrossRef] [Green Version]
- Ishiwaki, N.; Murayama, H.; Awayama, H.; Kanauchi, O.; Sato, T. Development of high value uses of spent grain by fractionation technology. Tech. Q. Master Brew. Assoc. Am. 2000, 37, 261–265. [Google Scholar]
- Donkor, O.N.; Stojanovska, L.; Ginn, P.; Ashton, J.; Vasiljevic, T. Germinated grains–Sources of bioactive compounds. Food Chem. 2012, 135, 950–959. [Google Scholar] [CrossRef]
- Paśko, P.; Bartoń, H.; Zagrodzki, P.; Gorinstein, S.; Fołta, M.; Zachwieja, Z. Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chem. 2009, 115, 994–998. [Google Scholar] [CrossRef]
- Aborus, N.E.; Čanadanović-Brunet, J.; Ćetković, G.; Šaponjac, V.T.; Vulić, J.; Ilić, N. Powdered barley sprouts: Composition, functionality and polyphenol digestibility. Int. J. Food Sci. Technol. 2017, 52, 231–238. [Google Scholar] [CrossRef]
- Creasy, M.E.; Gunter, S.A.; Beck, P.A.; Weyers, J.S. Malt Sprouts as a Supplement for Forage Fed Beef Cattle. J. App. Anim. Res. 2001, 20, 129–140. [Google Scholar] [CrossRef]
- Kondo, K.; Nagao, K.; Yokoo, Y. Process for producing food and beverage products from malt sprouts. Available online: https://patents.justia.com/patent/9326542 (accessed on 10 July 2020).
- Mastanjević, K.; Krstanović, V.; Mastanjević, K.; Šarkanj, B. Malting and Brewing Industries Encounter Fusarium spp. Related Problems. Fermentation 2018, 4, 3. [Google Scholar] [CrossRef] [Green Version]
- Jozinović, A.; Šubarić, D.; Ačkar, Đ.; Miličević, B.; Babić, J.; Jašić, M.; Lendić, V.K. Food industry by-products as raw materials in functional food production. Hrana u Zdravlju i Bolesti 2014, 3, 22–30. [Google Scholar]
- Obradović, V.; Babić, J.; Šubarić, D.; Ačkar, Đ.; Jozinović, A. Improvement of nutritional and functional properties of extruded food products. J. Food Nutr. Res. 2014, 53, 189–206. [Google Scholar]
- Meneses, N.G.T.; Martins, S.; Teixeira, J.A.; Mussatto, S.I. Influence of extraction solvents on the recovery of antioxidant phenolic compounds from brewer’s spent grains. Sep. Purif. Technol. 2013, 108, 152–158. [Google Scholar] [CrossRef] [Green Version]
- Moreira, M.M.; Morais, S.; Carvalho, D.O.; Barros, A.A.; Delerue-Matos, C.; Guido, L.F. Brewer’s spent grain from different types of malt: Evaluation of the antioxidant activity and identification of the major phenolic compounds. Food Res. Int. 2013, 54, 382–388. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, A.L.; O’Callaghan, C.; Connolly, A.; Piggott, C.O.; FitzGerald, R.J.; O’Brien, N.M. Phenolic extracts of brewers’ spent grain (BSG) as functional ingredients-Assessment of their DNA protective effect against oxidant-induced DNA single strand breaks in U937 cells. Food Chem. 2012, 134, 641–646. [Google Scholar] [CrossRef]
- Ktenioudaki, A.; Chaurin, V.; Reis, S.; Gallagher, E. Brewer’s spent grain as a functional ingredient for breadsticks. Int. J. Food Sci. Technol. 2012, 47, 1765–1771. [Google Scholar] [CrossRef] [Green Version]
Parameters | Values | Source |
---|---|---|
pH | 3–12 | [10,11,12,13] |
4–1 | ||
Temperature | 18–40 °C | |
10–20 | ||
24–30 | ||
Chemical oxygen demand (COD) | 2000–6000 mg/L | |
1000–6000 mg/L | ||
Biological oxygen demand (BOD5) | 1200–3600 mg/L | |
0.44–0.95 g/g d.m. | ||
1600–4000 mg/L | ||
Volatile fatty acids | 1000–2500 mg/L | |
350 mg/L as acetic acid | ||
Phosphates as PO4 | 10–50 mg/L | |
2–43 mg/L | ||
Total nitrogen per Kjeldahl | 25–80 mg/L | |
16–67 mg/L | ||
Total solids | 5100–8750 mg/L | |
Total suspended solids | 2901–3000 mg/L | |
187–2000 mg/L | ||
Total dissolved solids | 2020–5940 mg/L | |
Total dry matter | 1900–8000 mg d.m./L |
Component | Value | Source | |
---|---|---|---|
Water | 75–80% | [45,46,47] | |
Hemicellulose | 20–25% | ||
Proteins | 19–30% | ||
Cellulose | 12–25% | ||
Lignin | 12–28% | ||
Lipids | 10% | ||
Ash | 2–5% | ||
Minerals | Phosphorous | 2000 ppm | [48] |
Calcium | 1040 ppm | ||
Magnesium | 690 ppm | ||
Silicon | 240 ppm | ||
Vitamins | Choline | 1800 ppm | [42,49] |
Niacin | 44 ppm | ||
Pantothenic acid | 8.5 ppm | ||
Riboflavin | 1.5 ppm | ||
Thiamine | 0.7 ppm | ||
Pyridoxine | 0.7 ppm | ||
Folic acid | 0.2 ppm | ||
Biotin | 0.1 ppm |
Component | Value | Source |
---|---|---|
Non-cellulose carbohydrates | 25–35% | [39,42,78] |
Cellulose | 17–25% | |
Proteins | 15–24% | |
Lignin | 8–28% | |
Lipids | 10% | |
Ash | 5% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karlović, A.; Jurić, A.; Ćorić, N.; Habschied, K.; Krstanović, V.; Mastanjević, K. By-Products in the Malting and Brewing Industries—Re-Usage Possibilities. Fermentation 2020, 6, 82. https://doi.org/10.3390/fermentation6030082
Karlović A, Jurić A, Ćorić N, Habschied K, Krstanović V, Mastanjević K. By-Products in the Malting and Brewing Industries—Re-Usage Possibilities. Fermentation. 2020; 6(3):82. https://doi.org/10.3390/fermentation6030082
Chicago/Turabian StyleKarlović, Andrea, Anita Jurić, Nevena Ćorić, Kristina Habschied, Vinko Krstanović, and Krešimir Mastanjević. 2020. "By-Products in the Malting and Brewing Industries—Re-Usage Possibilities" Fermentation 6, no. 3: 82. https://doi.org/10.3390/fermentation6030082
APA StyleKarlović, A., Jurić, A., Ćorić, N., Habschied, K., Krstanović, V., & Mastanjević, K. (2020). By-Products in the Malting and Brewing Industries—Re-Usage Possibilities. Fermentation, 6(3), 82. https://doi.org/10.3390/fermentation6030082