Improving Kefir Bioactive Properties by Functional Enrichment with Plant and Agro-Food Waste Extracts
Abstract
:1. Introduction
2. Plant Extracts for Kefir Enrichment
Soy-Derived Extracts Addition
3. Kefir Fortification with Juices and Honey
4. Kefir Fortification with Agro-Food Waste Extracts
5. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Farag, M.; Jomaa, S.; El-WAhed, A.; El-Seedi, H. The Many Faces of Kefir Fermented Dairy Products. Nutrients 2020, 12, 346. [Google Scholar] [CrossRef] [Green Version]
- Nejati, F.; Junne, S.; Neubauer, P. A big world in small grain: A review of natural milk Kefir starters. Microorganisms 2020, 8, 192. [Google Scholar] [CrossRef] [Green Version]
- Prado, M.R.; Blandón, L.M.; Vandenberghe, L.P.S.; Rodrigues, C.; Castro, G.R.; Thomaz-Soccol, V.; Soccol, C.R. Milk kefir: Composition, microbial cultures, biological activities, and related products. Front. Microbiol. 2015, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Z.; Hou, Q.; Kwok, L.; Yu, Z.; Zheng, Y.; Sun, Z.; Menghe, B.; Zhang, H. Bacterial microbiota compositions of naturally fermented milk are shaped by both geographic origin and sample type. J. Dairy Sci. 2016, 99, 7832–7841. [Google Scholar] [CrossRef] [PubMed]
- Bourrie, B.C.T.; Richard, C.; Willing, B.P. Kefir in the Prevention and Treatment of Obesity and Metabolic Disorders. Curr. Nutr. Rep. 2020, 9, 184–192. [Google Scholar] [CrossRef]
- Kıvanç, M.; Yapıcı, E. Kefir as a Probiotic Dairy Beverage: Determination Lactic Acid Bacteria and Yeast. ETP Int. J. Food Eng. 2015. [Google Scholar] [CrossRef]
- Kim, D.H.; Jeong, D.; Kim, H.; Seo, K.H. Modern perspectives on the health benefits of kefir in next generation sequencing era: Improvement of the host gut microbiota. Crit. Rev. Food Sci. Nutr. 2019, 59, 1782–1793. [Google Scholar] [CrossRef] [PubMed]
- Lagouri, V.; Dimitreli, G.; Kouvatsi, A. Effects of Greek Pomegranate Extracts in the Antioxidant Properties and Storage Stability of Kefir. Curr. Bioact. Compd. 2019, 15, 437–441. [Google Scholar] [CrossRef]
- Karagozlu, C.; Unal, G.; Akalin, A.S.; Akan, E.; Kinik, O. The effects of black and green tea on antioxidant activity and sensory characteristics of kefir. Agro Food Ind. Hi Tech. 2017, 28, 77–80. [Google Scholar]
- Governa, P.; Carullo, G.; Biagi, M.; Rago, V.; Aiello, F. Evaluation of the in vitro wound-healing activity of calabrian honeys. Antioxidants 2019, 8, 36. [Google Scholar] [CrossRef] [Green Version]
- Asli, M.Y.; Khorshidian, N.; Mortazavian, A.M.; Hosseini, H. A review on the impact of herbal extracts and essential oils on viability of probiotics in fermented milks. Curr. Nutr. Food Sci. 2017, 13, 1–10. [Google Scholar] [CrossRef]
- Marhamatizadeh, M.H.; Afrasiabi, S.; Rezazadeh, S.; Marhamati, Z. Effect of spearmint on the growth of Lactobacillus acidophilus and Bifidobacterium bifidum in probiotic milk and yogurt. Afr. J. Food Sci. 2011, 13, 747–753. [Google Scholar]
- García-Lomillo, J.; González-SanJosé, M.L.; Del Pino-García, R.; Rivero-Pérez, M.D.; Muñiz-Rodríguez, P. Antioxidant and antimicrobial properties of wine byproducts and their potential uses in the food industry. J. Agric. Food Chem. 2014, 62, 12595–12602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.-H.; Jeong, D.; Oh, Y.-T.; Song, K.-Y.; Kim, H.-S.; Chon, J.-W.; Kim, H.; Seo, K.-H. Stimulating the Growth of Kefir-isolated Lactic Acid Bacteria using Addition of Crude Flaxseed (Linum usitatissimum L.) Extract. J. Milk Sci. Biotechnol. 2017, 35, 93–97. [Google Scholar] [CrossRef] [Green Version]
- Atalar, I. Functional kefir production from high pressure homogenized hazelnut milk. LWT 2019, 107, 256–263. [Google Scholar] [CrossRef]
- Perna, A.; Simonetti, A.; Gambacorta, E. Phenolic content and antioxidant activity of donkey milk kefir fortified with sulla honey and rosemary essential oil during refrigerated storage. Int. J. Dairy Technol. 2019, 72, 74–81. [Google Scholar] [CrossRef] [Green Version]
- Znamirowska, A.; Szajnar, K.; Rozek, P.; Kalicka, D.; Kuźniar, P.; Hanus, P.; Kotula, K.; Obirek, M.; Kluz, M. Effect of addition of wild garlic (Allium ursinum) on the quality of kefirs from sheep’s milk. Acta Sci. Pol. Technol. Aliment. 2017, 16, 209–215. [Google Scholar]
- Setiyoningruma, F.; Priadi, G.A.F. Supplementation of ginger and cinnamon extract into goat milk kefir. AIP Conf. Proc. 2019, 2175, 020069. [Google Scholar] [CrossRef]
- Wulansari, P.D.; Rahayu, N. Composition of Cow Milk Kefir Enriched with Ginger Extract (Zingiber officinale). J. Livest. Sci. Prod. 2019, 3, 193–198. [Google Scholar] [CrossRef] [Green Version]
- Da Costa, M.R.; De Alencar, E.R.; Dos Santos Leandro, E.; Mendonça, M.A.; De Souza Ferreira, W.F. Characterization of the kefir beverage produced from yam (Colocasia esculenta L.), sesame seed (Sesamum indicum L.) and bean (Phaseolus vulgaris L.) extracts. J. Food Sci. Technol. 2018, 55, 4851–4858. [Google Scholar] [CrossRef]
- Tundis, R.; Loizzo, M.R.; Menichini, F. Natural products as alpha-amylase and alpha-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: An update. Mini Rev. Med. Chem. 2010, 10, 315–331. [Google Scholar] [CrossRef] [PubMed]
- Carullo, G.; Ahmed, A.; Fusi, F.; Sciubba, F.; Di Cocco, M.E.; Restuccia, D.; Spizzirri, U.G.; Saponara, S.; Aiello, F. Vasorelaxant Effects Induced by Red Wine and Pomace Extracts of Magliocco Dolce cv. Pharmaceuticals 2020, 13, 87. [Google Scholar] [CrossRef] [PubMed]
- Carullo, G.; Durante, M.; Sciubba, F.; Restuccia, D.; Spizzirri, U.G.; Ahmed, A.; Di Cocco, M.E.; Saponara, S.; Aiello, F.; Fusi, F. Vasoactivity of Mantonico and Pecorello grape pomaces on rat aorta rings: An insight into nutraceutical development. J. Funct. Foods 2019, 57, 328–334. [Google Scholar] [CrossRef]
- Kwon, Y.I.; Apostolidis, E.; Shetty, K. Anti-diabetes functionality of Kefir culture-Mediated fermented soymilk supplemented with Rhodiola extracts. Food Biotechnol. 2006, 20, 13–29. [Google Scholar] [CrossRef]
- Puerari, C.; Magalhães, K.T.; Schwan, R.F. New cocoa pulp-based kefir beverages: Microbiological, chemical composition and sensory analysis. Food Res. Int. 2012, 48, 634–640. [Google Scholar] [CrossRef] [Green Version]
- Ayed, L.; M’Hir, S.; Hamdi, M. Microbiological, Biochemical, and Functional Aspects of Fermented Vegetable and Fruit Beverages. J. Chem. 2020, 2020, 5790432. [Google Scholar] [CrossRef]
- Gunenc, A.; Yeung, M.H.; Lavergne, C.; Bertinato, J.; Hosseinian, F. Enhancements of antioxidant activity and mineral solubility of germinated wrinkled lentils during fermentation in kefir. J. Funct. Foods 2017, 32, 72–79. [Google Scholar] [CrossRef]
- Bartolomé, B.; Estrella, I.; Hernández, T. Changes in phenolic compounds in lentils (Lens culinaris) during germination and fermentation. Eur. Food Res. Technol. 1997, 205, 290–294. [Google Scholar] [CrossRef]
- Liyana-Pathirana, C.M.; Shahidi, F. Importance of insoluble-bound phenolics to antioxidant properties of wheat. J. Agric. Food Chem. 2006, 54, 1256–1264. [Google Scholar] [CrossRef]
- Skorkina, I.A.; Tretyakova, E.N.; Sukhareva, T.N. The technology of biokefir production with natural additives functionality. Technol. Food Process. Ind. AIC Healthy Food 2015, 5, 79–83. (In Russian) [Google Scholar]
- Sukhikh, S.A.; Astakhova, L.A.; Golubcova, Y.V.; Lukin, A.A.; Prosekova, E.A.; Milentèva, I.S.; Kostina, N.G.; Rasshchepkin, A.N. Functional dairy products enriched with plant ingredients. Foods Raw Mater. 2019, 7, 428–438. [Google Scholar] [CrossRef]
- Da Silva Fernandes, M.; Sanches Lima, F.; Rodrigues, D.; Handa, C.; Guelfi, M.; Garcia, S.; Ida, E.I. Evaluation of the isoflavone and total phenolic contents of kefir-fermented soymilk storage and after the in vitro digestive system simulation. Food Chem. 2017, 229, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, D.C.; De Oliveira Filho, J.G.; Santana, A.C.A.; De Freitas, B.S.M.; Silva, F.G.; Takeuchi, K.P.; Egea, M.B. Optimization of soymilk fermentation with kefir and the addition of inulin: Physicochemical, sensory and technological characteristics. LWT 2019, 104, 30–37. [Google Scholar] [CrossRef]
- Tu, C.; Azi, F.; Huang, J.; Xu, X.; Xing, G.; Dong, M. Quality and metagenomic evaluation of a novel functional beverage produced from soy whey using water kefir grains. LWT 2019, 113, 108258. [Google Scholar] [CrossRef]
- Lai, L.R.; Hsieh, S.C.; Huang, H.Y.; Chou, C.C. Effect of lactic fermentation on the total phenolic, saponin and phytic acid contents as well as anti-colon cancer cell proliferation activity of soymilk. J. Biosci. Bioeng. 2013, 115, 552–556. [Google Scholar] [CrossRef]
- Usha Rani, V.; Pradeep, B.V. Antioxidant properties of soy milk fermented with Lactobacillus paracasei KUMBB005. Int. J. Pharm. Sci. Rev. Res. 2015, 30, 39–42. [Google Scholar]
- Buriti, F.C.A.; Castro, I.A.; Saad, S.M.I. Viability of Lactobacillus acidophilus in synbiotic guava mousses and its survival under in vitro simulated gastrointestinal conditions. Int. J. Food Microbiol. 2010, 137, 121–129. [Google Scholar] [CrossRef]
- Bedani, R.; Rossi, E.A.; Saad, S.M.I. Impact of inulin and okara on Lactobacillus acidophilus La-5 and Bifidobacterium animalis Bb-12 viability in a fermented soy product and probiotic survival under in vitro simulated gastrointestinal conditions. Food Microbiol. 2013, 34, 382–389. [Google Scholar] [CrossRef] [Green Version]
- Norberto, A.P.; Marmentini, R.P.; Carvalho, P.H.; Campagnollo, F.B.; Takeda, H.H.; Alberte, T.M.; Rocha, R.S.; Cruz, A.G.; Alvarenga, V.O.; Sant’Ana, A.S. Impact of partial and total replacement of milk by water-soluble soybean extract on fermentation and growth parameters of kefir microorganisms. LWT 2018, 93, 491–498. [Google Scholar] [CrossRef]
- Corona, O.; Randazzo, W.; Miceli, A.; Guarcello, R.; Francesca, N.; Erten, H.; Moschetti, G.; Settanni, L. Characterization of kefir-like beverages produced from vegetable juices. LWT Food Sci. Technol. 2016, 66, 572–581. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Chen, R.; Chen, W.; Chen, H.; Zhang, G. Comparative Evaluation of the Antioxidant Capacities, Organic Acids, and Volatiles of Papaya Juices Fermented by Lactobacillus acidophilus and Lactobacillus plantarum. J. Food Qual. 2018, 2018, 9490435. [Google Scholar] [CrossRef] [Green Version]
- Dimitreli, G.; Petridis, D.; Kapageridis, N.; Mixiou, M. Effect of pomegranate juice and fir honey addition on the rheological and sensory properties of kefir-type products differing in their fat content. LWT 2019, 111, 799–808. [Google Scholar] [CrossRef]
- Du, X.; Myracle, A.D. Fermentation alters the bioaccessible phenolic compounds and increases the alpha-glucosidase inhibitory effects of aronia juice in a dairy matrix following: In vitro digestion. Food Funct. 2018, 9, 2998–3007. [Google Scholar] [CrossRef] [PubMed]
- Kabakcı, S.A.; Türkyılmaz, M.; Özkan, M. Changes in the quality of kefir fortified with anthocyanin-rich juices during storage. Food Chem. 2020, 326, 126977. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Myracle, A.D. Development and evaluation of kefir products made with aronia or elderberry juice: Sensory and phytochemical characteristics. Int. Food Res. J. 2018, 25, 1373–1383. [Google Scholar]
- Settanni, L.; Cruciata, M.; Guarcello, R.; Francesca, N.; Moschetti, G.; La Carrubba, V.; Gaglio, R. Valorisation of Dairy Wastes Through Kefir Grain Production. Waste Biomass Valorization 2020, 11, 3979–3985. [Google Scholar] [CrossRef]
- Da Costa Branco, P.M.S. Integrated Valorization of Anona cherimola Mill. Seeds. Ph.D. Thesis, Universidade da Madeira, Funchal, Portugal, January 2016. In Proceedings of the PQDT—Glob. 2016; pp. 1–239. [Google Scholar]
- Saadi, L.O.; Zaidi, F.; Oomah, B.D.; Haros, M.; Yebra, M.J.; Hosseinian, F. Pulse ingredients supplementation affects kefir quality and antioxidant capacity during storage. LWT Food Sci. Technol. 2017, 86, 619–626. [Google Scholar] [CrossRef] [Green Version]
- Ould Saadi, L.; Zaidi, F.; Sanz, T.; Haros, C.M. Effect of faba bean and chickpea mucilage incorporation in the structure and functionality of kefir. Food Sci. Technol. Int. 2020. [Google Scholar] [CrossRef]
- Boudjou, S.; Zaidi, F.; Hosseinian, F.; Oomah, B.D. Effects of Faba Bean (Vicia faba L.) Flour on Viability of Probiotic Bacteria During Kefir Storage. J. Food Res. 2014, 3, 13. [Google Scholar] [CrossRef] [Green Version]
- Vicenssuto, G.M.; De Castro, R.J.S. Development of a novel probiotic milk product with enhanced antioxidant properties using mango peel as a fermentation substrate. Biocatal. Agric. Biotechnol. 2020, 24, 101564. [Google Scholar] [CrossRef]
- Carullo, G.; Spizzirri, U.G.; Loizzo, M.R.; Leporini, M.; Sicari, V.; Aiello, F.; Restuccia, D. Valorization of red grape (Vitis vinifera cv. Sangiovese) pomace as functional food ingredient. Ital. J. Food Sci. 2020, 32, 367–385. [Google Scholar]
- Carullo, G.; Governa, P.; Spizzirri, U.G.; Biagi, M.; Sciubba, F.; Giorgi, G.; Loizzo, M.R.; Di Cocco, M.E.; Aiello, F.; Restuccia, D. Sangiovese cv pomace seeds extract-fortified kefir exerts anti-inflammatory activity in an in vitro model of intestinal epithelium using caco-2 cells. Antioxidants 2020, 9, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakraborty, S.; De, S.D. Eggshell: An Alternative, Cheap, Bioavailable Source of Calcium in Human Diet. Res. Rev. J. Dairy Sci. Technol. 2019, 8, 25–33. [Google Scholar]
- Semeniuc, C.A.; Rotar, A.; Stan, L.; Pop, C.R.; Socaci, S.; Mireşan, V.; Muste, S. Characterization of pine bud syrup and its effect on physicochemical and sensory properties of kefir. CYTA J. Food 2016, 14, 213–218. [Google Scholar] [CrossRef] [Green Version]
- Mechmeche, M.; Ksontini, H.; Hamdi, M.; Kachouri, F. Production of Bioactive Peptides in Tomato Seed Protein Isolate Fermented by Water Kefir Culture: Optimization of the Fermentation Conditions. Int. J. Pept. Res. Ther. 2019, 25, 137–150. [Google Scholar] [CrossRef]
- Goncu, B.; Celikel, A.; Guler-Akin, M.B.; Akin, M.S. Obogaćivanje kefira vlaknima jabuke i limuna. Mljekarstvo 2017, 67, 208–216. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.; Shukla, S. Fermentation of Food Wastes for Generation of Nutraceuticals and Supplements; Elsevier Inc.: Amsterdam, The Netherlands, 2017; ISBN 9780128023099. [Google Scholar]
- Ertekin, B.; Guzel-Seydim, Z.B. Effect of fat replacers on kefir quality. J. Sci. Food Agric. 2010, 90, 543–548. [Google Scholar] [CrossRef]
- Montanuci, F.D.; Pimentel, T.C.; Garcia, S.; Prudencio, S.H. Effect of starter culture and inulin addition on microbial viability, texture, and chemical characteristics of whole or skim milk Kefir. Food Sci. Technol. 2012, 32, 580–865. [Google Scholar] [CrossRef] [Green Version]
- Yépez, A.; Russo, P.; Spano, G.; Khomenko, I.; Biasioli, F.; Capozzi, V.; Aznar, R. In situ riboflavin fortification of different kefir-like cereal-based beverages using selected Andean LAB strains. Food Microbiol. 2019, 77, 61–68. [Google Scholar] [CrossRef]
Extract | Enrichment | Microorganism | Effect | Reference |
---|---|---|---|---|
Kefir + Linum usitatissimum (flaxseed) | 1% (w/v) | L. kefiranofaciens L. bulgaricus L. brevis L. plantarum | ↑ Growth and viability | [14] |
Kefir + hazelnut milk | 25–50–75% (w/v) | Lactobacilli and lactococci | ↑ Growth and viability | [15] |
Kefir + honey | 30% (w/v) | N.R. | ↑ Antioxidant activity | [16] |
Kefir + Rosmarinum officinalis L. EO | 0.15% (w/v) | N.R. | ↑ Antioxidant activity | [16] |
Kefir + leaves garlic powder | 1% (w/v) | N.R. | ↓ Sensorial parameters ↓ Adverse effect of syneresis | [17] |
Kefir + cinnamon | 8% (v/v) | N.R. | ↑ Antioxidant activity ↓ Sensorial parameters | [18] |
Kefir + yam (Colocasia esculenta L.), sesame seed (Sesamum indicum L.), and bean (Phaseolus vulgaris L.) extracts | 25–50–75% (w/v) | N.R. | ↑ Fermentation process | [20] |
Kefir + Rhodiola | 2% (w/v) | N.R. | ↑ Hypoglycemic activity ↑ Anti-inflammatory activity | [24] |
Kefir + black and green tea | 2–4% (w/v) | N.R. | ↑ Antioxidant activities ↑ sensory characteristics | [9] |
Kefir + cocoa-pulp | 25.5 (w/v) | Lactobacillus kefiranofaciens subsp. kefirgranum Lactobacillus plantarum Lactobacillus fermentum L. kefiranofaciens subsp. Kefiranofaciens | ↑ Sensorial parameters | [25] |
Kefir + brown lentils | 2% (w/v) | ↓ pH values ↑ TTA ↑ Antioxidant activity ↑ TPC ↑ Bacterial activity | [27] | |
Skim milk enriched with hawthorn puree and stevia syrup | 0.5% (w/v) | N.R. | ↑ Antioxidant activity | [30] |
Extract | Enrichment | Microorganism | Effect | Reference |
---|---|---|---|---|
Kefir + soymilk | (5 UC/L) | Lactococcus lactis ssp. lactis, Lactococcus lactis spp. lactis biovar diacetylactis, Lactobacillus brevis, Leuconostoc, and Saccharomyces cerevisiae | ↑ TPC ↑ Aglycone isoflavones | [32] |
Soybean beverage fermented with kefir + inulin | 3.5% (w/v) | N.R. | ↓ TSS | [33] |
Water kefir + soy whey | 5% (w/v) | N.R. | ↑ Phytochemicals content ↑ Antioxidant activity ↑ Sensorial properties ↑ Gut microbiota growth | [34] |
Extract | Enrichment | Effect | Reference |
---|---|---|---|
Kefir + vegetable juices | 4% (w/v) | ↑ Alcohols ↑ Antioxidant activities ↑ Volatile compounds | [40] |
Papaya juice + lactic acid bacteria | 45% (w/v) | ↑ Antioxidant activities ↑ Aroma associated compounds | [41] |
Kefir + pomegranate juice | 15% (w/w) | ↓ pH values ↑ Acidity ↓ Colorimetric parameters | [42] |
Kefir + honey | 3% (w/w) | ↓ Acidity ↓ Colorimetric parameters ↑ Viscosity ↑ Sweetness | [8] |
Kefir + aronia juice | 13% (w/v) | ↑TPC ↑ Anthocyanins content ↑ Antioxidant activity | [45] |
Kefir + elderberry juice | 10% (w/v) | ↑ Phytochemicals content ↑ Antioxidant activity | [43] |
Kefir + black carrot juice | 25% (w/w) | ↑ Antioxidant activity | [44] |
Kefir + black mulberry juice | 25% (w/w) | ↑ Antioxidant activity ↑ Palatability | [44] |
Kefir + pomegranate juice | 25% (w/w) | ↑ Antioxidant activity ↑ Palatability | [44] |
Kefir + strawberry juice | 25% (w/w) | ↑ Antioxidant activity ↑ Palatability | [44] |
Extract | Enrichment | Microorganism | Effect | Reference |
---|---|---|---|---|
Kefir grains + whey and deproteinized whey from cow, goat and sheep milk | 3% (w/v) | Lactococcus lactis Leuconostoc mesenteroides Kluyveromyces marxianus | ↑ Kefir grains growing | [46] |
Kefir grains + Hydrolyzate Annona seeds | 0.07% (w/v) | Ferments kefir, Lacto Labo, France | ↑ Kefir grains growing | [47] |
Kefir + whole faba bean (Vicia faba L.) and its de-hulled fractions hulls and cotyledon; whole chickpea (Cicer arietinum L.) and its crude mucilage | 4% (w/v) | N.R. | ↑ Antioxidant activity | [48] |
Kefir + Vicia faba L. bean | 3% (w/v) | L. plantarum L. rhamnosus, L. lactis L. cremosis | ↑ Microbial count | [49] |
Kefir + Vicia faba L. bean | 4% (w/v) | L. acidophilus and B. lactis | ↑ Growth and viability | [50] |
Kefir + mango peel | 5% (w/v) | N.R. | ↑ Antioxidant activities | [51] |
Kefir + wine pomace | 0.1% (w/v) | N.R. | ↑ Antioxidant activities | [52] |
Kefir + wine pomace | 0.1% (w/v) | N.R. | ↑ Antioxidant activities ↑ Inhibitory activity α-amylase, α-glucosidase, pancreatic lipase | [53] |
Kefir + eggshell | 0.90% (in CaCO3) (w/v) | N.R. | ↑ Ca2+ | [54] |
Kefir + pine bud syrup | 2–10% (w/v) | Lactobacillus kefiranofaciens subsp. kefirgranum, Lactobacillus kefiri, Lactobacillus parakefiri, Lactococcus lactis subsp. lactis, Leuconostoc mesenteroides, Acetobacter sp., Kazachstania exigua | ↑ Sensorial parameters | [55] |
Kefir + proteins of tomato seed | 100 mL tomato seed extract + water kefir microbial mixture (0.5, 0.75, 1, 1.25, or 1.5% v/v) | Lactococcus lactis sp. lactis, L. lactis sp. lactis biovar diacetylactis, L. lactis sp. cremoris, Leuconostoc mesenteroides sp. cremoris, Lactobacillus kefyr) and Candida kefyr and Saccharomyces Unisporus | ↑ Antioxidant activities | [56] |
Kefir + apple and lemon fiber | 0.25–1% (w/v) | ↓ pH values ↑ Viscosity | [57] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aiello, F.; Restuccia, D.; Spizzirri, U.G.; Carullo, G.; Leporini, M.; Loizzo, M.R. Improving Kefir Bioactive Properties by Functional Enrichment with Plant and Agro-Food Waste Extracts. Fermentation 2020, 6, 83. https://doi.org/10.3390/fermentation6030083
Aiello F, Restuccia D, Spizzirri UG, Carullo G, Leporini M, Loizzo MR. Improving Kefir Bioactive Properties by Functional Enrichment with Plant and Agro-Food Waste Extracts. Fermentation. 2020; 6(3):83. https://doi.org/10.3390/fermentation6030083
Chicago/Turabian StyleAiello, Francesca, Donatella Restuccia, Umile Gianfranco Spizzirri, Gabriele Carullo, Mariarosaria Leporini, and Monica Rosa Loizzo. 2020. "Improving Kefir Bioactive Properties by Functional Enrichment with Plant and Agro-Food Waste Extracts" Fermentation 6, no. 3: 83. https://doi.org/10.3390/fermentation6030083
APA StyleAiello, F., Restuccia, D., Spizzirri, U. G., Carullo, G., Leporini, M., & Loizzo, M. R. (2020). Improving Kefir Bioactive Properties by Functional Enrichment with Plant and Agro-Food Waste Extracts. Fermentation, 6(3), 83. https://doi.org/10.3390/fermentation6030083