Side-by-Side Comparison of Clean and Biomass-Derived, Impurity-Containing Syngas as Substrate for Acetogenic Fermentation with Clostridium ljungdahlii
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganism, Medium and Fermentation Conditions
2.2. Experimental Set-Up
2.3. Analytical Methods
2.4. Gas Flow Rate Setting
3. Results
3.1. Comparison between Biomass-Derived and Impurity-Free Syngas
3.1.1. Bioliq® Syngas, Set-Ups 1 and 2
Substrate Usage and Carbon Fixation
Biomass, Product Formation, Yield, and Productivity
3.1.2. Bioliq® Syngas, Set-Ups 3 and 4
Substrate Usage and Carbon Fixation
Biomass, Product Formation, Yield, and Productivity
3.1.3. TNO Syngas, Set-Ups 5 and 6
Substrate Usage and Carbon Fixation
Biomass, Product Formation, Yield, and Productivity
3.2. Clean Syngas Fermentations
3.2.1. LNEG and ENEA Based Syngas, Set-Ups 7 and 8
Substrate Usage and Carbon Fixation
Biomass, Product Formation, Yield, and Productivity
3.2.2. Custom Mixtures A and B, Set-Ups 9 and 10
Substrate Usage and Carbon Fixation
Biomass, Product Formation, Yield, and Productivity
3.3. Productivity and Product Ratio Comparison According to Syngas Type and Composition
4. Discussion
4.1. Biomass, Product Formation, Yield and Productivity
4.2. Substrate Usage and Carbon Fixation
4.3. Product Ratio Comparison According to the Type and Composition of Syngas
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y.; Kadner, S.; Minx, J.C.; Brunner, S.; Agrawala, S.; Baiocchi, G.; Bashamakov, I.A.; Blanco, G.; et al. Technical Summary. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar] [CrossRef] [Green Version]
- McGlade, C.; Ekins, P. The geographical distribution of fossil fuels unused when limiting global warming to 2 °C. Nature 2015, 517, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Friedlingstein, P.; Andrew, R.M.; Rogelj, J.; Peters, G.G.; Canadell, J.G.; Knutti, R.; Luderer, G.; Raupach, M.R.; Schaeffer, M.; Van Vuuren, D.P.; et al. Persistent growth of CO2 emissions and implications for reaching climate targets. Nat. Geosci. 2014, 7, 709–715. [Google Scholar] [CrossRef]
- Henrich, E.; Dahmen, N.; Dinjus, E.; Sauer, J. The Role of Biomass in a Future World without Fossil Fuels. Chem. Ing. Tech. 2015, 87, 1667–1685. [Google Scholar] [CrossRef]
- Sikarwar, V.S.; Zhao, M.; Clough, P.T.; Yao, J.; Zhong, X.; Memon, M.Z.; Shah, N.; Anthony, E.; Fennell, P. An overview of advances in biomass gasification. Energy Environ. Sci. 2016, 9, 2939–2977. [Google Scholar] [CrossRef] [Green Version]
- Drake, H.L.; Küsel, K.; Matthies, C. Acetogenic prokaryotes. In The Prokaryotes, Vol. 2 (Ecophysiology and Biochemistry); Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E., Eds.; Springer: New York, NY, USA, 2006; pp. 354–420. ISBN 978-0-387-30742-8. [Google Scholar] [CrossRef]
- Bengelsdorf, F.R.; Beck, M.H.; Erz, C.; Hoffmeister, S.; Karl, M.M.; Riegler, P.; Wirth, S.; Poehlein, A.; Weuster-Botz, D.; Dürre, P. Bacterial Anaerobic Synthesis Gas (Syngas) and CO2 + H2 Fermentation. In Advances in Applied Microbiology; Sariaslani, S., Gadd, G.M., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 143–221. ISBN 978-0-12-815183-9. [Google Scholar] [CrossRef]
- Sun, X.; Atiyeh, H.; Huhnke, R.L.; Tanner, R.S. Syngas fermentation process development for production of biofuels and chemicals: A review. Bioresour. Technol. Rep. 2019, 7, 100279. [Google Scholar] [CrossRef]
- LanzaTech World’s First Commercial Waste Gas to Ethanol Plant Starts Up | LanzaTech. Available online: https://www.lanzatech.com/2018/06/08/worlds-first-commercial-waste-gas-ethanol-plant-starts/ (accessed on 27 February 2020).
- Griffin, D.W.; Schultz, M.A. Fuel and chemical products from biomass syngas: A comparison of gas fermentation to thermochemical conversion routes. Environ. Prog. Sustain. Energy 2012, 31, 219–224. [Google Scholar] [CrossRef]
- Munasinghe, P.C.; Khanal, S.K. Biomass-derived Syngas Fermentation into Biofuels. In Biofuels; Academic Press: Cambridge, MA, USA, 2011; pp. 79–98. [Google Scholar] [CrossRef]
- Takors, R.; Kopf, M.; Mampel, J.; Bluemke, W.; Blombach, B.; Eikmanns, B.; Bengelsdorf, F.R.; Weuster-Botz, D.; Dürre, P. Using gas mixtures of CO, CO2 and H2 as microbial substrates: The do’s and don’ts of successful technology transfer from laboratory to production scale. Microb. Biotechnol. 2018, 11, 606–625. [Google Scholar] [CrossRef]
- Liakakou, E.; Vreugdenhil, B.; Cerone, N.; Zimbardi, F.; Pinto, F.; André, R.; Marques, P.; Mata, R.; Girio, F. Gasification of lignin-rich residues for the production of biofuels via syngas fermentation: Comparison of gasification technologies. Fuel 2019, 251, 580–592. [Google Scholar] [CrossRef]
- Yasin, M.; Cha, M.; Chang, I.S.; Atiyeh, H.K.; Munasinghe, P.; Khanal, S.K. Syngas Fermentation Into Biofuels and Biochemicals. In Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels; Pandey, A., Larroche, C., Dussap, C.-G., Gnansounou, E., Khanal, S.K., Ricke, S., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 301–327. ISBN 9780128168561. [Google Scholar] [CrossRef]
- Cardarelli, F. Gases. In Materials Handbook; Springer London: London, UK, 2008; pp. 1037–1101. ISBN 978-1-84628-669-8. [Google Scholar] [CrossRef]
- Teixeira, L.V.; Moutinho, L.F.; Romão-Dumaresq, A.S. Gas fermentation of C1 feedstocks: Commercialization status and future prospects. Biofuels Bioprod. Biorefin. 2018, 12, 1103–1117. [Google Scholar] [CrossRef]
- Min, F.; Dennis, S.; Kopke, M. Gas Fermentation for Commercial Biofuels Production. In Liquid, Gaseous and Solid Biofuels Conversion Techniques; Fang, Z., Ed.; IntechOpen: London, UK, 2013; pp. 125–173. [Google Scholar] [CrossRef] [Green Version]
- Datar, R.P.; Shenkman, R.M.; Cateni, B.G.; Huhnke, R.L.; Lewis, R.S. Fermentation of biomass-generated producer gas to ethanol. Biotechnol. Bioeng. 2004, 86, 587–594. [Google Scholar] [CrossRef]
- Bengelsdorf, F.R.; Straub, M.; Dürre, P. Bacterial synthesis gas (syngas) fermentation. Environ. Technol. 2013, 34, 1639–1651. [Google Scholar] [CrossRef] [PubMed]
- Acharya, B.; Roy, P.; Dutta, A. Review of syngas fermentation processes for bioethanol. Biofuels 2014, 5, 551–564. [Google Scholar] [CrossRef]
- Ramachandriya, K.D.; Kundiyana, D.K.; Sharma, A.M.; Kumar, A.; Atiyeh, H.; Huhnke, R.L.; Wilkins, M.R. Critical factors affecting the integration of biomass gasification and syngas fermentation technology. AIMS Environ. Sci. 2016, 3, 188–210. [Google Scholar] [CrossRef]
- Ahmed, A.; Lewis, R.S. Fermentation of biomass-generated synthesis gas: Effects of nitric oxide. Biotechnol. Bioeng. 2007, 97, 1080–1086. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Lewis, R.S. Syngas fermentation to biofuels: Effects of ammonia impurity in raw syngas on hydrogenase activity. Biomass Bioenergy 2012, 45, 303–310. [Google Scholar] [CrossRef]
- Oswald, F.; Zwick, M.; Omar, O.; Hotz, E.N.; Neumann, A. Growth and Product Formation of Clostridium ljungdahlii in Presence of Cyanide. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef]
- Ahmed, A.; Cateni, B.G.; Huhnke, R.L.; Lewis, R.S. Effects of biomass-generated producer gas constituents on cell growth, product distribution and hydrogenase activity of Clostridium carboxidivorans P7T. Biomass Bioenergy 2006, 30, 665–672. [Google Scholar] [CrossRef]
- Xu, D.; Tree, D.R.; Lewis, R.S. The effects of syngas impurities on syngas fermentation to liquid fuels. Biomass Bioenergy 2011, 35, 2690–2696. [Google Scholar] [CrossRef]
- Chiche, D.; Diverchy, C.; Lucquin, A.-C.; Porcheron, F.; Defoort, F. Synthesis Gas Purification. Oil Gas Sci. Technol. Rev. de l’IFP Energies Nouv. 2013, 68, 707–723. [Google Scholar] [CrossRef]
- Tanner, R.S. Cultivation of Bacteria and Fungi. In Manual of Environmental Microbiology, 3rd ed.; Hurst, C., Crawford, R., Garland, J., Lipson, D., Mills, A., Stetzenbach, L., Eds.; ASM Press: Washington, DC, USA, 2007; pp. 69–78. [Google Scholar] [CrossRef]
- Infantes, A.; Kugel, M.; Neumann, A. Evaluation of Media Components and Process Parameters in a Sensitive and Robust Fed-Batch Syngas Fermentation System with Clostridium ljungdahlii. Fermentation 2020, 6, 61. [Google Scholar] [CrossRef]
- Dahmen, N.; Abeln, J.; Eberhard, M.; Kolb, T.; Leibold, H.; Sauer, J.; Stapf, D.; Zimmerlin, B. The bioliq process for producing synthetic transportation fuels. Wiley Interdiscip. Rev. Energy Environ. 2017, 6, e236. [Google Scholar] [CrossRef]
- Liakakou, E.T.; Infantes, A.; Neumann, A.; Vreugdenhil, B.J. Connecting lignin gasification with syngas fermentation (PREPRINT). engrXiv 2020. [Google Scholar] [CrossRef]
- Cerone, N.; Zimbardi, F.; Contuzzi, L.; Prestipino, M.; Carnevale, M.O.; Valerio, V. Air-steam and oxy-steam gasification of hydrolytic residues from biorefinery. Fuel Process. Technol. 2017, 167, 451–461. [Google Scholar] [CrossRef]
- Pinto, F.; André, R.; Marques, P.; Mata, R.; Pacheco, M.; Moura, P.; Gírio, F. Production of syngas suitable to be used in fermentation to obtain biochemical added-value compounds. Chem. Eng. Trans. 2019, 76, 1399–1404. [Google Scholar]
- Oswald, F.; Dörsam, S.; Veith, N.; Zwick, M.; Neumann, A.; Ochsenreither, K.; Syldatk, C. Sequential Mixed Cultures: From Syngas to Malic Acid. Front. Microbiol. 2016, 7, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Oswald, F. Upgrading the Toolbox for Fermentation of Crude syngas: Process Characterization for Complete Carbon Usage, Cyanide Adaption and Production of C4 Components. Ph.D. Thesis, Karlsruhe Institute for Technology, Karlsruhe, Germany, 2018. [Google Scholar]
- Esquivel-Elizondo, S.; Delgado, A.G.; Rittmann, B.E.; Krajmalnik-Brown, R. The effects of CO2 and H2 on CO metabolism by pure and mixed microbial cultures. Biotechnol. Biofuels 2017, 10, 220. [Google Scholar] [CrossRef]
- Skidmore, B.E.; Baker, R.A.; Banjade, D.R.; Bray, J.M.; Tree, D.R.; Lewis, R.S. Syngas fermentation to biofuels: Effects of hydrogen partial pressure on hydrogenase efficiency. Biomass Bioenergy 2013, 55, 156–162. [Google Scholar] [CrossRef]
- Bertsch, J.; Müller, V. Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria. Biotechnol. Biofuels 2015, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Valgepea, K.; Lemgruber, R.D.S.P.; Abdalla, T.; Binos, S.; Takemori, N.; Takemori, A.; Tanaka, Y.; Tappel, R.; Köpke, M.; Simpson, S.D.; et al. H2 drives metabolic rearrangements in gas-fermenting Clostridium autoethanogenum. Biotechnol. Biofuels 2018, 11, 1–15. [Google Scholar] [CrossRef]
- Valgepea, K.; Lemgruber, R.D.S.P.; Meaghan, K.; Palfreyman, R.W.; Abdalla, T.; Heijstra, B.D.; Behrendorff, J.; Tappel, R.; Köpke, M.; Simpson, S.D.; et al. Maintenance of ATP Homeostasis Triggers Metabolic Shifts in Gas-Fermenting Acetogens. Cell Syst. 2017, 4, 505–515. [Google Scholar] [CrossRef] [Green Version]
- Hurst, K.M.; Lewis, R.S. Carbon monoxide partial pressure effects on the metabolic process of syngas fermentation. Biochem. Eng. J. 2010, 48, 159–165. [Google Scholar] [CrossRef]
- Phillips, J.R.; Clausen, E.C.; Gaddy, J.L. Synthesis gas as substrate for the biological production of fuels and chemicals. Appl. Biochem. Biotechnol. 1994, 45, 145–157. [Google Scholar] [CrossRef]
- Jack, J.; Lo, J.; Maness, P.-C.; Ren, Z.J. Directing Clostridium ljungdahlii fermentation products via hydrogen to carbon monoxide ratio in syngas. Biomass Bioenergy 2019, 124, 95–101. [Google Scholar] [CrossRef]
- Bengelsdorf, F.R.; Poehlein, A.; Linder, S.; Erz, C.; Hummel, T.; Hoffmeister, S.; Daniel, R.; Dürre, P. Industrial Acetogenic Biocatalysts: A Comparative Metabolic and Genomic Analysis. Front. Microbiol. 2016, 7, 1036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richter, H.; Molitor, B.; Wei, H.; Chen, W.; Aristilde, L.; Angenent, L.T. Ethanol production in syngas-fermenting Clostridium ljungdahlii is controlled by thermodynamics rather than by enzyme expression. Energy Environ. Sci. 2016, 9, 2392–2399. [Google Scholar] [CrossRef]
Syngas Source | Bioliq®-Straw | Custom Mixture (Bioliq®) | Bioliq®-Straw | Custom Mixture (Bioliq®) | Custom Mixture (TNO BW) | Custom Mixture (TNO LS) | Custom Mixture (LNEG) | Custom Mixture (ENEA) | Custom Mixture A | Custom Mixture B | |
---|---|---|---|---|---|---|---|---|---|---|---|
Impurities | Yes | No | Yes | No | No | No | No | No | No | No | |
Set-up | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
Syngas composition [vol-%] | CO | 28.8 | 29.8 | 28.9 | 29.2 | 27.0 | 21.3 | 26.1 | 26.7 | 32.5 | 21.2 |
CO2 | 2.8 | 2.6 | 2.8 | 2.7 | 18.3 | 20.6 | 16.7 | 26.4 | 11.9 | 13.7 | |
H2 | 29.5 | 29.1 | 28.4 | 28.3 | 23.3 | 25.4 | 30.4 | 34.5 | 21.9 | 21.9 | |
CH4 | - | - | - | - | - | - | 18.9 | 5.3 | - | - | |
Gas flow rate [mL/min] | 26.3 | 26.3 | 18.0 | 18.0 | 18.0 | 23.0 | 20.0 | 16.0 | 18.0 | 23.0 | |
Cin (CO2 + CO) [mmol/min] | 0.37 | 0.38 | 0.25 | 0.26 | 0.37 | 0.43 | 0.38 | 0.38 | 0.36 | 0.36 | |
H2, in [mmol/min] | 0.35 | 0.34 | 0.23 | 0.23 | 0.19 | 0.26 | 0.27 | 0.25 | 0.18 | 0.23 | |
COin [mmol/min] | 0.34 | 0.35 | 0.23 | 0.23 | 0.22 | 0.22 | 0.23 | 0.19 | 0.26 | 0.22 | |
CO2, in [mmol/min] | 0.03 | 0.03 | 0.02 | 0.02 | 0.15 | 0.21 | 0.15 | 0.19 | 0.10 | 0.14 | |
CH4, in [mmol/min] | - | - | - | - | - | - | 0.18 | 0.04 | - | - | |
Impurities | HCN [ppm] | 0.91 | - | 0.91 | - | - | - | - | - | - | - |
NH3 [ppm] | 150 | - | 150 | - | - | - | - | - | - | - | |
H2S [ppb] | 54.1 | - | 54.1 | - | - | - | - | - | - | - | |
COS [ppb] | 12.3 | - | 12.3 | - | - | - | - | - | - | - |
Set-Up | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Total process time [h] | 93 | 93 | 93 | 93 | 93 | 93 | 94 | 95 | 93 | 94 | |
YP/S, used [g/g] | 0.54 | 0.68 | 0.77 | 0.80 | 0.87 | 0.95 | 0.85 | 0.82 | 0.72 | 0.87 | |
YP/S, fed [g/g] | 0.29 | 0.43 | 0.46 | 0.38 | 0.38 | 0.34 | 0.38 | 0.36 | 0.38 | 0.38 | |
YP/S, fixed [g/g] | 0.93 | 0.99 | 0.91 | 0.98 | 0.92 | 0.96 | 0.88 | 0.82 | 0.91 | 0.96 | |
YP/X [g/g] | 20.51 | 32.36 | 20.23 | 28.09 | 34.79 | 32.54 | 29.29 | 31.01 | 29.49 | 33.49 | |
Vgas, fed [L] | 147 | 148 | 100 | 101 | 100 | 129 | 112 | 91 | 100 | 128 | |
acetate: ethanol [mol] | 2.35 | 5.25 | 3.43 | 15.90 | 16.63 | 8.29 | 7.38 | 9.16 | 11.92 | 8.00 | |
Productivity [g/L∙h] | Acetate | 0.10 | 0.18 | 0.12 | 0.12 | 0.19 | 0.20 | 0.19 | 0.19 | 0.17 | 0.18 |
Ethanol | 0.03 | 0.03 | 0.03 | 0.001 | 0.01 | 0.02 | 0.02 | 0.02 | 0.01 | 0.02 | |
Total | 0.14 | 0.21 | 0.15 | 0.12 | 0.20 | 0.22 | 0.21 | 0.20 | 0.18 | 0.19 | |
EC, total [mol%] | 30.95 | 44.65 | 52.23 | 39.87 | 48.79 | 42.53 | 42.72 | 50.88 | 46.61 | 47.75 |
Set-Up | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|
YP/S, used [g/g] | 0.83 | 0.88 | 0.89 | 0.95 | 0.93 | 0.82 | 0.83 | 0.87 | |
YP/S, fed [g/g] | 0.44 | 0.61 | 0.38 | 0.35 | 0.41 | 0.39 | 0.38 | 0.37 | |
YP/S, fixed [g/g] | 0.98 | 1.03 | 0.93 | 0.95 | 0.93 | 0.82 | 0.99 | 0.90 | |
YP/X [g/g] | 13.82 | 15.24 | 21.67 | 24.24 | 21.34 | 21.73 | 15.34 | 20.38 | |
Vgas, fed [L] | 79 | 52 | 77 | 103 | 87 | 71 | 55 | 93 | |
acetate: ethanol [mol] | 3.45 | 17.20 | 31.81 | 11.60 | 12.07 | 14.89 | 45.20 | 12.39 | |
Productivity [g/L·h] | Acetate | 0.12 | 0.20 | 0.20 | 0.21 | 0.22 | 0.21 | 0.19 | 0.18 |
Ethanol | 0.03 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.003 | 0.01 | |
Total | 0.15 | 0.21 | 0.20 | 0.23 | 0.23 | 0.23 | 0.19 | 0.20 | |
EC, total [mol%] | 49.33 | 61.07 | 48.04 | 43.27 | 52.31 | 52.68 | 44.72 | 47.35 |
Set-Up | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Maximum overall usage interval | Start [h] | n.a. | n.a. | 54.4 | 34.5 | 18.1 | 21.0 | 21.0 | 16.2 | 28.2 | 22.0 |
End [h] | n.a. | n.a. | 63.2 | 44.0 | 73.9 | 71.0 | 69.0 | 70.7 | 66.2 | 67.0 | |
Duration [h] | n.a. | n.a. | 8.8 | 9.5 | 55.8 | 50.0 | 48.0 | 54.5 | 38.0 | 45.0 | |
Time to end of maximum CO fixation (>85%) [h] | n.a. | n.a. | 82.1 | 48.8 | 82.6 | 79.2 | 80.0 | 84.2 | 59.3 | 66.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Infantes, A.; Kugel, M.; Raffelt, K.; Neumann, A. Side-by-Side Comparison of Clean and Biomass-Derived, Impurity-Containing Syngas as Substrate for Acetogenic Fermentation with Clostridium ljungdahlii. Fermentation 2020, 6, 84. https://doi.org/10.3390/fermentation6030084
Infantes A, Kugel M, Raffelt K, Neumann A. Side-by-Side Comparison of Clean and Biomass-Derived, Impurity-Containing Syngas as Substrate for Acetogenic Fermentation with Clostridium ljungdahlii. Fermentation. 2020; 6(3):84. https://doi.org/10.3390/fermentation6030084
Chicago/Turabian StyleInfantes, Alba, Michaela Kugel, Klaus Raffelt, and Anke Neumann. 2020. "Side-by-Side Comparison of Clean and Biomass-Derived, Impurity-Containing Syngas as Substrate for Acetogenic Fermentation with Clostridium ljungdahlii" Fermentation 6, no. 3: 84. https://doi.org/10.3390/fermentation6030084
APA StyleInfantes, A., Kugel, M., Raffelt, K., & Neumann, A. (2020). Side-by-Side Comparison of Clean and Biomass-Derived, Impurity-Containing Syngas as Substrate for Acetogenic Fermentation with Clostridium ljungdahlii. Fermentation, 6(3), 84. https://doi.org/10.3390/fermentation6030084