Fermentation Ability of Bovine Colostrum by Different Probiotic Strains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Colostrum
2.2. Determination of Gross Composition and Bioactive Compounds
2.3. Mineral Analysis
2.4. Growth of Probiotic and Potential Probiotic Strains in Bovine Colostrum
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Davis, P.F.; Greenhill, N.; Rowan, A.M.; Schollum, L.M. The safety of New Zealand bovine colostrum: Nutritional and physiological evaluation in rats. Food Chem. Toxicol. 2007, 45, 229–236. [Google Scholar] [CrossRef]
- Christiansen, S.; Guo, M.; Kjelden, D. Chemical composition and nutrient profile of low molecular weight fraction of bovine colostrum. Int. Dairy J. 2010, 20, 630–636. [Google Scholar] [CrossRef] [Green Version]
- Gopal, K.P.; Gill, H.S. Oligosacharides and glycoconjugates in bovine milk and colostrum. Br. J. Nutr. 2000, 84, S69–S74. [Google Scholar] [CrossRef] [Green Version]
- Kelly, G.S. Bovine colostrums: A review of clinical uses. Altern. Med. Rev. 2003, 4, 378–394. [Google Scholar]
- Elfstrand, L.; Lind-månsson, H.; Paulsson, M.; Nyberg, L.; Åkessons, B. Immunoglobulins, growth factors and growth hormone in bovine colostrum and the effects of processing. Int. Dairy J. 2002, 12, 879–887. [Google Scholar] [CrossRef]
- Mulder, A.M.; Connellan, P.A.; Oliver CH., J.; Morris, C.A.; Stevenson, L.M. Bovine lactoferrin supplementation support immune and antioxidant status in healthy human males. Nutr. Res. 2008, 28, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Stelwagen, K.; Carpenter, E.; Haigh, B.; Hodgkinson, A.; Wheeler, T.T. Immune components of bovine colostrum and milk. J. Anim. Sci. 2012, 87, 3–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pouliot, Y.; Gauthier, S.F. Milk growth factors and health products: Some technological aspects. Int. Dairy J. 2006, 16, 1415–1420. [Google Scholar] [CrossRef]
- Embleton, N.D.; Berrington, J.E.; McGuire, W.; Stewart Ch., J.; Cummings, S.P. Lactoferrin: Antimicrobial activity and therapeutic potential. Semin. Fetal Neonatal Med. 2013, 18, 143–149. [Google Scholar] [CrossRef]
- Zimecki, M.; Miedzybrodzki, R.; Mazurier, J.; Spik, G. Regulatory effect of lactoferrin and lipopolysaccharide of LFA-1 expression on human peripheral blood mononuclear cells. Arch. Immunol. Ther. Exp. 1999, 47, 257–264. [Google Scholar]
- He, F.; Tuomola, E.; Arvilommi, H.; Salminen, S. Modulation of humoral immune response through orally administered bovine colostrum. FEMS Immunol. Med. Microbiol. 2001, 31, 93–96. [Google Scholar] [CrossRef]
- Khan, Z.; Macdonald, C.; Wicks, A.C.; Holt, M.P.; Floyd, D.; Ghosh, S.; Wright, N.A.; Playford, R.J. Use of the ‘nutriceutical’, bovine colostrum, for the treatment of distal colitis: Results from an initial study. Aliment Pharmacol. Ther. 2002, 16, 1917–1922. [Google Scholar] [CrossRef]
- Benkerroum, N. Antimicrobial activity of lysozyme with special relevance to milk. Afr. J. Biotechnol. 2008, 7, 4856–4867. [Google Scholar]
- Playford, R.J. Peptide therapy and the gastroenterologist: Colostrum and milk-derived growth factors. Clin. Nutr. 2001, 20, 101–106. [Google Scholar] [CrossRef]
- FAO; WHO. Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food; Joint FAO/WHO Working Group: London, ON, Canada, 2002. [Google Scholar]
- Foligné, B.; Daniel, C.; Pot, B. Probiotics from research to market: The possibilities risks and challenges. Curr. Opin. Microbiol. 2013, 16, 284–292. [Google Scholar] [CrossRef]
- Ooi, L.G.; Liong, M.T. Cholesterol-lowering effect of probiotics and prebiotics: A review of in vivo and in vitro findings. Int. J. Mol. Sci. 2010, 11, 2499–2522. [Google Scholar] [CrossRef] [PubMed]
- Nagpal, R.; Kumar, A.; Kumar, M.; Behare, P.V.; Jain, S.; Yadav, H. Probiotics, their health benefits and applications for developing healthier foods: A review. FEMS Microbiol. Lett. 2012, 334, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saad, N.; Delattre, C.; Urdaci, M.; Schmitter, J.M.; Bressollier, P. An overview of the last advances in probiotic and prebiotic field. LWT-Food Sci. Technol. 2013, 50, 1–16. [Google Scholar] [CrossRef]
- Hyrslova, I.; Krausova, G.; Bartova, J.; Kolesar, L.; Curda, L. Goat and bovine colostrum as a basis for new probiotic functional foods and dietary supplements. J. Microb. Biochem. Technol. 2016, 8, 56–59. [Google Scholar] [CrossRef] [Green Version]
- Champagne, C.P.; Raymond, Y.; Pouliot, Y.; Gauthier, S.F.; Lessard, M. Effect of bovine colostrum, cheese whey, and spray-dried porcine plasma on the in vitro growth of probiotic bacteria and Escherichia coli. Can. J. Microbiol. 2014, 60, 287–295. [Google Scholar] [CrossRef]
- Bartkiene, E.; Bartkevics, V.; Ikkere, L.E.; Pugajeva, I.; Zavistanaviciute, P.; Lele, V.; Zadeike, D. The effects of ultrasonication, fermentation with Lactobacillus sp., and dehydration on the chemical composition and microbial contamination of bovine colostrum. J. Dairy Sci. 2018, 101, 6787–6798. [Google Scholar] [CrossRef] [PubMed]
- Saalfeld, M.H.; Pereira, D.I.B.; Silveira, K.R.K.; Schramm, R.; Valente, J.D.S.S.; Borchardt, J.L.; Leite, F.P.L. Anaerobically fermented colostrum: An alternative for feeding calves. Ciência Rural 2013, 43, 1636–1641. [Google Scholar] [CrossRef] [Green Version]
- Vitola, H.R.S.; da Silva Dannenberg, G.; de Lima Marques, J.; Lopes, G.V.; da Silva, W.P.; Fiorentini, Â.M. Probiotic potential of Lactobacillus casei CSL3 isolated from bovine colostrum silage and its viability capacity immobilized in soybean. Process Biochem. 2018, 75, 22–30. [Google Scholar] [CrossRef]
- Castillo, E.; Franco, I.; Pérez, M.D.; Calvo, M.; Sánchez, L. Thermal denaturation of recombinant human lysozyme from rice: Effect of pH and comparison with human milk lysozyme. Eur. Food Res. Technol. 2011, 233, 1067–1073. [Google Scholar] [CrossRef]
- Mader, P.; Haber, V.; Zelinka, J. Classical dry ashing of biological and agricultural materials. Part I. Following the course of removal of organic matrix. Analusis 1997, 25, 175–183. [Google Scholar]
- Houser, B.A.; Donaldson, S.C.; Kehoe, S.I.; Heinrichs, A.J.; Jayarao, B.M. A survey of bacteriological quality and the occurrence of Salmonella in raw bovine colostrum. Foodborne Pathog. Dis. 2008, 5, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Rockova, S.; Rada, V.; Havlik, J.; Svestil, R.; Vlkova, E.; Bunesova, V.; Janda, K.; Profousova, I. Growth of bifidobacteria in mammalian milk. Czech J. Anim. Sci. 2013, 3, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Conte, F.; Scarantino, S. A study on the quality of bovine colostrums: Physical, chemical and safety assessment. Int. Food Res. J. 2013, 20, 925–931. [Google Scholar]
- McGrath, B.A.; Fox, P.F.; McSweeney, P.L.; Kelly, A.L. Composition and properties of bovine colostrum: A review. Dairy Sci. Technol. 2016, 96, 133–158. [Google Scholar] [CrossRef]
- Kehoe, S.I.; Jayarao, B.M.; Heinrichs, A.J. A survey of bovine colostrums composition and colostrums management practices on Pennsylvania dairy farms. Int. Dairy J. 2007, 90, 4108–4116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, S.G.; Ham, J.S.; Kim, D.H.; Ahn, C.N.; Chae, H.S.; You, Y.M.; Lee, S.G. Physicochemical properties of colostrum by milking time of Gyeonggi Province. Food Sci. Anim. 2009, 29, 445–456. [Google Scholar] [CrossRef] [Green Version]
- Cashman, K.Y. Macroelements, nutritional significance. In Encyclopedia of Dairy Sciences; Roginski, H., Fuquay, J.W., Fox, P.F., Eds.; Elsevier Academic Press: London, UK, 2002. [Google Scholar]
- Kamel, N.N.; Hafez, Y.M.; El-Kholy, A.F.; Maareck, Y.A.; Abou Ward, G.A. Periparturient changes in mammary gland secretions in multiparous buffalo cows (Bubalus bubalis). Adv. Environ. Biol. 2015, 9, 12–20. [Google Scholar]
- Silva, E.G.D.S.O.; Rangel, A.H.D.N.; Mürmam, L.; Bezerra, M.F.; Oliveira, J.P.F.D. Bovine colostrum: Benefits of its use in human food. J. Food Sci. Technol. 2019, 39, 355–362. [Google Scholar] [CrossRef] [Green Version]
- Nikolic, I.; Stojanovic, I.; Vujicic, M.; Fagone, P.; Mangano, K.; Stosic Grujicic, S.; Nicoletti, F.; Saksida, T. Standardized bovine colostrum derivative impedes development of type 1 diabetes in rodents. Immunobiology 2017, 222, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Gyawali, R.; Ibrahim, S.A.; Abu Hasfa, S.H.; Smqadri, S.Q.; Haik, Y. Antimicrobial activity of copper alone and in combination with lactic acid against Escherichia coli O157: H7 in laboratory medium and on the surface of lettuce and tomatoes. J. Pathog 2011, 2011, 650968. [Google Scholar] [CrossRef] [Green Version]
- Rada, V.; Splichal, I.; Rockova, S.; Grmanová, M.; Vlkova, E. Susceptibility of bifidobacteria to lysozyme as a possible selection criterion for probiotic bifidobacterial strains. Biotechnol. Lett. 2010, 32, 451–455. [Google Scholar] [CrossRef]
- You, L.X.; Cai, D.; Ren, L.L.; Liu, J.S. Studies on the fermentation characteristics of B. bifidum in colostrums. Chin. Dairy Ind. 2006, 10, 27–28. [Google Scholar]
- Ruiz, P.; Barragán, I.; Seseña, S.; Palop, M.L. Functional properties and safety assessment of lactic acid bacteria isolated from goat colostrum for application in food fermentations. Int. J. Dairy Technol. 2016, 69, 559–568. [Google Scholar] [CrossRef]
Strain | Species | Origin | Growth Condition |
---|---|---|---|
* CCDM 229 | B. animalis ssp. animalis | original culture | MRS broth/agar 6.2 + L-cysteine hydrochloride; anaerobic, 37 °C, 72 h |
* CCDM 562 | B. breve | GIT of child | |
** AVNB3-P1 | B. adolescentis | GIT of child | |
*** JOV | B. bifidum | infant faeces | |
*** JKM | B. bifidum | infant faeces | |
Bb12 | B. animalis ssp. lactis | original culture | |
* CCDM 150 | Lacticaseibacillus rhamnosus | curd | MRS broth/agar 5.7; anaerobic 37 °C, 72 h |
* CCDM 66 | L. delbrueckii ssp. bulgaricus | yogurt | |
* CCDM 151 | L. acidophilus | tabl. Biolacta | |
*** RL 25 | Limosilactobacillus fermentum | human faeces | |
** DM1TA6-P | Lacticaseibacillus paracasei | GIT of child | |
* CCDM 945 | Enterococcus faecium | original culture | M 17 broth/agar; aerobic 37 °C, 72 h |
* CCDM 922A | Enterococcus faecium | isolated |
Bovine Colostrum | pH | Fat (%) | TS (%) | Protein (%) | Lactose (%) |
---|---|---|---|---|---|
C1 | 6.44 ± 0.09 | 12.18 ± 0.06 | 20.22 ± 0.02 | 15.22 ± 0.01 | 2.14 ± 0.00 |
C2 | 6.50 ± 0.13 | 7.03 ± 0.02 | 26.04 ± 0.04 | 14.97 ± 0.02 | 2.29 ± 0.04 |
C3 | 6.65 ± 0.15 | 11.00 ± 0.09 | 33.88 ± 0.01 | 21.30 ± 0.01 | 2.07 ± 0.07 |
C4 | 6.86 ± 0.06 | 5.10 ± 0.01 | 15.48 ± 0.02 | 4.91 ± 0.01 | 2.01 ± 0.00 |
C5 | 6.45 ± 0.04 | 7.54 ± 0.02 | 26.55 ± 0.04 | 15.38 ± 0.02 | 2.83 ± 0.00 |
C6 | 6.45 ± 0.02 | 7.44 ± 0.01 | 16.40 ± 0.02 | 18.29 ± 0.01 | 2.68 ± 0.00 |
C7 | 6.12 ± 0.01 | 6.00 ± 0.01 | 21.23 ± 0.01 | 11.83 ± 0.0 | 2.55 ± 0.01 |
C8 | 6.34 ± 0.05 | 5.40 ± 0.05 | 26.07 ± 0.01 | 15.98 ± 0.04 | 3.55 ± 0.00 |
C9 | 6.22 ± 0.01 | 6.70 ± 0.09 | 23.89 ± 0.04 | 12.54 ± 0.01 | 2.26 ± 0.00 |
C10 | 6.25 ± 0.05 | 4.30 ± 0.02 | 26.74 ± 0,01 | 18.29 ± 0.03 | 4.05 ± 0.01 |
Samples of Colostrum | Ca | Mg | Zn | K | Na | Cu |
---|---|---|---|---|---|---|
(g/kg) | (g/kg) | (mg/kg) | (g/kg) | (mg/kg) | (μg/kg) | |
C1 | 3.06 ± 0.02 | 1.14 ± 0.02 | 76.08 ± 0.78 | 3.70 ± 0.07 | 956.38 ± 80.36 | 409.19 ± 46.41 |
C2 | 3.10 ± 0.26 | 1.62 ± 0.11 | 98.93 ± 6.75 | 7.56 ± 0.78 | 941.43 ± 144.90 | 460.40 ± 47.21 |
C3 | 3.06 ± 0.04 | 1.79 ± 0.09 | 81.61 ± 2.61 | 8.55 ± 0.19 | 1043.83 ± 48.74 | 701.42 ± 13.93 |
C4 | 3.64 ± 0.59 | 1.37 ± 0.27 | 124.27 ± 15.13 | 9.34 ± 1.62 | 497.04 ± 86.93 | 749.35 ± 138.98 |
C5 | 2.35 ± 0.35 | 0.86 ± 0.10 | 44.77 ± 1.59 | 5.90 ± 0.72 | 275.42 ± 76.05 | 353.50 ± 63.16 |
C6 | 3.51 ± 0.15 | 1.56 ± 0.05 | 99.16 ± 6.31 | 8.17 ± 0.45 | 620.39 ± 16.40 | 559.29 ± 30.20 |
C7 | 2.91 ± 0.09 | 1.25 ± 0.05 | 116.11 ± 4.44 | 6.52 ± 0.08 | 615.64 ± 35.72 | 501.66 ± 24.11 |
C8 | 2.24 ± 0.12 | 1.46 ± 0.06 | 106.60 ± 2.34 | 6.35 ± 0.06 | 568.82 ± 245.54 | 611.51 ± 26.71 |
C9 | 5.06 ± 0.19 | 0.88 ± 0.18 | 91.04 ± 5.35 | 4.51 ± 0.08 | 903.34 ± 50.73 | 414.66 ± 21.79 |
C10 | 7.19 ± 0.50 | 1.62 ± 0.11 | 120.11 ± 3.51 | 4.05 ± 0.40 | 545.37 ± 222.96 | 264.19 ± 192.70 |
Bovine Colostrum | IgG1 (mg/mL) | Lactoferrin (ug/mL) | Lactoperoxidase (Units/L) | Lysozyme (Units/mL) |
---|---|---|---|---|
C1 | 52.27 ± 2.26 | 222.00 ± 7.07 | 222.00 ± 1.41 | 239,00 ± 4.24 |
C2 | 48.33 ± 0.42 | 490.50 ± 2.83 | 490.50 ± 7.78 | 131,00 ± 5.66 |
C3 | 59.80 ± 0.81 | 122.50 ± 7.78 | 122.50 ± 10.61 | 389,00 ± 4.24 |
C4 | 60.23 ± 1.41 | 234.50 ± 2.83 | 234.50 ± 14.85 | 737,50 ± 12.02 |
C5 | 53.94 ± 3.28 | 548.00 ± 7.78 | 548.00 ± 1.41 | 931,50 ± 13.44 |
C6 | 42.84 ± 0.58 | 687.50 ± 6.36 | 687.50 ± 3.54 | 263,00 ± 2.83 |
C7 | 54.72 ± 2. 92 | 572.00 ± 24.04 | 572.00 ± 16.97 | 638,00 ± 5.66 |
C8 | 50.52 ± 0.34 | 245.50 ± 51.62 | 245.50 ± 7.78 | 631,50 ± 3.54 |
C9 | 52.62 ± 1.19 | 433.00 ± 7.78 | 433.00 ± 4.24 | 341,50 ± 4.95 |
C10 | 50.17 ± 1.50 | 419.50 ± 5.66 | 419.50 ± 2.12 | 859,00 ± 4.24 |
Strains | Lactic Acid (mg/100 mL) | Acetic Acid (mg/100 mL) | Bacterial Growth (CFU/mL) | pH |
---|---|---|---|---|
CCDM 151 | 108.28 ± 34.39 A,B | 12.25 ± 3.35 A | 6.81 ± 1.60 A | 5.55 ± 4.48 A |
DM1 TA6-P | 95.56 ± 32.74 A | 13.43 ± 4.64 A | 6.86 ± 1.39 A | 5.61 ± 0.55 A |
CCDM 66 | 99.93 ± 42.39 A,B | 12.57 ± 4.32 A | 7.28 ± 1.02 A | 5.58 ± 0.62 A |
CCDM 150 | 102.82 ± 37.35 A,B | 12.35 ± 3.82 A | 7.04 ± 1.57 A | 5.57 ± 0.58 A |
RL25 | 112.79 ± 9.19 A,B | 12.04 ± 2.42 A | 7.50 ± 1.10 A | 5.51 ± 0.49 A |
JKM | 128.48 ± 44.47 A–C | 14.04 ± 4.26 A | 7.53 ± 0.50 A | 5.44 ± 0.50 A |
JOV | 132.17 ± 43.55 A–C | 14.72 ± 6.24 A | 7.77 ± 0.49 A | 5.42 ± 0.47 A |
CCDM 229 | 130.54 ± 30.09 A–C | 14.34 ± 2.87 A | 7.52 ± 0.61 A | 5.45 ± 0.51 A |
CCDM 562 | 112.81 ± 47.42 A–C | 11.25 ± 4.29 A | 6.78 ± 1.60 A | 5.59 ± 0.60 A |
AVNB3-P1 | 123.37 ± 46.03 A–C | 15.60 ± 4.98 A | 7.13 ± 1.11 A | 5.58 ± 0.58 A |
Bb12 | 120.71 ± 47.55 A–C | 15.77 ± 6.06 A | 6.76 ± 1.13 A | 5.53 ± 0.56 A |
CCDM 945 | 160.30 ± 33.89 B,C | 13.51 ± 7.10 A | 8.41 ± 0.31 B | 5.26 ± 0.21 A |
CCDM 922 | 170.12 ± 41.57 C | 12.84 ± 4.96 A | 8.33 ± 0.50 B | 5.22 ± 0.16 A |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hyrslova, I.; Krausova, G.; Michlova, T.; Kana, A.; Curda, L. Fermentation Ability of Bovine Colostrum by Different Probiotic Strains. Fermentation 2020, 6, 93. https://doi.org/10.3390/fermentation6030093
Hyrslova I, Krausova G, Michlova T, Kana A, Curda L. Fermentation Ability of Bovine Colostrum by Different Probiotic Strains. Fermentation. 2020; 6(3):93. https://doi.org/10.3390/fermentation6030093
Chicago/Turabian StyleHyrslova, Ivana, Gabriela Krausova, Tereza Michlova, Antonin Kana, and Ladislav Curda. 2020. "Fermentation Ability of Bovine Colostrum by Different Probiotic Strains" Fermentation 6, no. 3: 93. https://doi.org/10.3390/fermentation6030093
APA StyleHyrslova, I., Krausova, G., Michlova, T., Kana, A., & Curda, L. (2020). Fermentation Ability of Bovine Colostrum by Different Probiotic Strains. Fermentation, 6(3), 93. https://doi.org/10.3390/fermentation6030093