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Abstract: Red yeasts grow on food wastes, show antagonistic activity against food-spoilage mi-
croorganisms, produce food supplements, and may be utilized as feed-supplements themselves to
positively modulate the quali-quantitative composition of intestinal microbiota. Therefore, they show
a variety of possible biotechnological applications in agri-food-related processes. Here, to further
explore the biotechnological potential of red yeasts, eleven strains ascribed to different species of
the genera Rhodotorula and Sporobolomyces, differing for biomass and carotenoids production, were
characterized in vitro for biofilm formation, invasive growth, and growth at the temperature range of
20–40 ◦C and in vivo for their antagonistic activity against the fungal pathogen and patulin producer
Penicillium expansum. Most of them formed cellular MAT and showed invasive growth as well as
adhesion to plastic materials. Four strains determined a significant reduction of fruit decay caused by
P. expansum on apple fruit while the remaining seven showed different degrees of biocontrol activity.
Finally, none of them grew at body temperature (>37 ◦C). Statistical analyses of both qualitative
and quantitative phenotypic data, including biomass and carotenoids production, gathered further
information on the most interesting strains for the biotechnological exploitation of red yeasts in
agri-food-related process.
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1. Introduction

Red yeasts, mainly ascribed to the genera Rhodotorula and Sporobolomyces within
Pucciniomycotina, are well known producers of microbial oils, surfactants, and enzymes
of interest for chemical and pharmaceutical industries and carotenoids [1–3]. In the food
sector, the growing interest in the biotechnological exploitation of red yeasts is due to their
production of carotenoids. These compounds have important biological properties such as
antioxidant, photoprotective [4,5], and putative antitumor activities [6]. Accordingly, the
demand for carotenoid-containing food products, such as red soy cheese, meat, alcoholic
beverages, and by-products of meat and fish, is globally increasing (https://www.factmr.
com/report/1196/carotenoids-market, accessed on 1 December, 2020).

Even though carotenoids may be chemically synthesized, rising health concerns
against artificial synthetic pigments render their production through microbial-based tech-
nologies particularly attractive. Of particular interest is the possibility to obtain these
metabolites from by-products and wastes, thus increasing the sustainability of their pro-
duction. In this respect, some of the red yeasts grow at high cell density on a plethora of
different carbon and nitrogen sources and they are generally characterized by tolerance
to inhibitory compounds present in growth substrates obtained from wastes of the food
industry [7]. Moreover, red yeasts could be efficiently used for the bio-preservation of
foods during storage. Rhodotorula mucilaginosa counteracts Penicillium expansum and Botry-
tis cinerea on apple [8] and Rhizopus sp. on strawberries [9]. Rhodotorula glutinis presents
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biocontrol activity against B. cinerea [10–12], P. expansum [13], Alternaria alternata [14], and
Rhizopus stolonifer [15]. Similarly, Sporobolomyces roseus and Sporobolomyces kratochvilovae
were described as possible biocontrol agents against B. cinerea and P. expansum, respectively,
on apple fruit [16,17]. The mechanisms involved in yeast biocontrol activity have been
elucidated, at least in part in a number of different species [18,19]. With respect to red
yeasts, S. roseus was shown to antagonize B. cinerea by competing for nutrients [16], while
Rhodosporidium toruloides and R. glutinis biocontrol activity is mediated by their attachment
to B. cinerea through the involvement of cell wall glycoproteins [12,20]. Pandin et al. [21]
indicated biofilm forming ability as one of the characters to be evaluated for a rapid screen-
ing of biocontrol agents. On the other hand, transition to a filamentous form of growth,
which is required for both biofilm formation and invasive growth, has been correlated to
yeast pathogenesis on immune-compromised individuals [22]. Thus, the evaluation of
yeast ability to grow at the body temperature and to switch to an invasive form of growth
is of particular importance given the fact that red yeast species have been proposed directly
as feed supplements [23,24].

Due to their vast biotechnological potential, the molecular tools for heterologous genes
expression in red yeasts were developed and, recently, an extensive study of the codon
bias in these yeasts was carried out in view of the optimization of the heterologous gene
sequences for transgene expression [25].

Here, in order to further explore the biotechnological potential of red yeasts, eleven
Rhodotorula and Sporobolomyces strains already characterized for biomass and carotenoids
production [26] were further characterized in vitro for biofilm forming ability, invasive
growth and growth temperature interval, and in vivo for their antagonistic activity against
P. expansum on apple.

2. Materials and Methods
2.1. Microorganisms and Culture Media

The Rhodotorula and Sporobolomyces strains utilized and their origins are reported in
Table 1. Strain DiSVAC2.5t1 is deposited at the Industrial Yeast Collection of the University
of Perugia, with accession number DBVPG 10619. DiSVA C71t0 belongs to the Yeast Col-
lection of Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle
Marche. The remaining strains were purchased by Centraalbureau voor Schimmelcultures
and the Industrial Yeast Collection of the University of Perugia. All strains were previously
characterized for the production of biomass and carotenoids [26] and strain DiSVAC2.5t1
was subject to genomic [27,28] and proteomic analyses [29].

Table 1. Yeast strains utilized.

Strain Species

DBVPG6091 Rhodotorula mucilaginosa
DBVPG6094 Rhodotorula mucilaginosa
DiSVAC2.5t1 Rhodotorula mucilaginosa
DBVPG7019 Rhodotorula mucilaginosa
DiSVAC71t0 Rhodotorula mucilaginosa

CBS2366 Rhodotorula glutinis
CBS2367 Rhodotorula glutinis
CBS6016 Rhodotorula toruloides
CBS315 Rhodotorula toruloides

CBS7228 Sporobolomyces oryzicola
CBS7998 Rhodotorula cresolica

DBVPG: Industrial Yeast Collection, University of Perugia, Perugia, Italy; DiSVA: Yeast Collection
of Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona,
Italy; CBS: Centraalbureau voor Schimmelcultures (CBS) Utrecht, The Netherlands.

Media used were YEPD: 1% yeast extract, 2% peptone, 2% glucose; YEPDagar: as
YEPD added with agar at the percentage indicated in subscript; SCD2%: 0.67% Yeast
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Nitrogen Base w/o amino acids, 2% glucose; SCD0.1%: 0.67% Yeast Nitrogen Base w/o
amino acids, 0.1% glucose; SCGly: 0.67% Yeast Nitrogen Base w/o amino acids, 2% glycerol.

2.2. Adhesion to Plastic Materials

Adhesion to plastic material was evaluated as described by [30]. Briefly, yeast strains
were precultured in 50 mL SCD2% within 250 mL baffled flasks at 30 ◦C under shacking con-
ditions (180 rpm). After 12 h cells were centrifuged (3000 rpm), washed and resuspended
in sterile distilled water, and inoculated in SCD0.1% to an OD600 of 1.0. Three replicates
of 100 µL aliquots of cell suspension were deposited in 96 wells microtiter polystyrene,
polypropylene and polyvinyl chloride plates and incubated in static at 30 ◦C. After 12 h,
100 µL of 1% crystal violet was added to each well and after 20 min wells were rinsed
repeatedly with sterile distilled water and dabbed with absorbent paper. A total of 100 µL
0.1 SDS was added to each well and, after 25 min at 25 ◦C, all samples were transferred to a
new microtiter plate to evaluate absorbance at 570 nm (Abs570) and 590 nm (Abs590). Saccha-
romyces cerevisiae strains UNISSM25 (MATa/MATa HO/HO HMRa/HMRa HMLa/HMLa)
and UNISS3238-32∆flo11 (MATα leu2-1 lys2-801 flo11∆::URA3 ura3-52), whose adhesion to
plastic materials had already been described [31,32], were utilized as positive and negative
controls of adhesion, respectively. Both strains belong to the Microbial Culture Collection
of the University of Sassari, Sassari, Italy.

2.3. Cell MAT Formation

Cell MAT formation was evaluated by inoculating 5 µL of cell suspensions (OD600 0.5)
in the center of Petri dishes containing YEPD0.3%, YEPD2%, YEPD4%. At least three repli-
cates for each plate were prepared. The plates were incubated with yeast inoculum side up
for 15 days at 25 ◦C after which cell MATs were photographed with a digital camera.

2.4. Invasive Growth

One-mL aliquots of yeast cultures inoculated in SCD2% and incubated for 12 h at
180 rpm at 30 ◦C were centrifuged at 14,000× g 1 min a 20 ◦C. The cell pellet was resus-
pended in 1 mL sterile distilled water to OD600 of 0.5 and 10 µL aliquots were spotted on
SCD0.1% and incubated at 25 ◦C. After 10 days, each plate was photographed with a digital
camera before and after washing with sterile distilled water.

2.5. Growth at Different Temperatures

Growth at different temperatures was evaluated by means of spot assay on YEPD2%,
incubated at 20, 25, 30, 35, and 37 ◦C. Briefly, yeast strains were precultured in YEPD2%
and a small aliquot of cell biomass was diluted in sterile distilled water to OD600 of 5. Cell
suspensions were serially diluted (10−1, 10−2, 10−3, 10−4) and 4 µL of each dilution were
seeded on agar medium. Yeast growth was evaluated after 48 h.

2.6. Biocontrol In Vivo

Apple fruits (Malus domestica Borkh. cvs Golden Delicious) were washed with sodium
hypochlorite (0.8% as chlorine), rinsed with tap water, and air dried. Three wounds
(3 mm depth) were engraved with a sterile micropipette tip at the equatorial region of each
fruit and 1 × 106 yeast cells were inoculated into each wound. After 2 h at 26 ◦C, each
wound was inoculated with by pipetting 10 µL of a conidial suspension of P. expansum
(1 × 106 conidia/mL). A negative control of infection was set by pipetting 20 µL of sterile
Ringer solution into each wound. To confirm the pathogenicity of the fungal strain, a
positive control was obtained by pipetting 10 µL of Ringer solution and after 2 h 10 µL of
a conidial suspension of P. expansum. Upon air drying, the fruits were placed in plastic
holders (60 cm × 40 cm × 15 cm, one layer), wrapped in transparent polyethylene bags
to prevent evaporation, and stored in the dark at 26 ◦C and 85 ± 5% relative humidity.
The diameter of decayed tissue around each wound was measured at 48 h intervals to
evaluate the incidence of P. expansum infection. There were 9 apples per treatment, the
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treatments were arranged in a completely randomized block design, and each experiment
was repeated three times. Results are expressed as percentage of decay reduction (means
± standard deviation of three independent replicates of three biological samples) with
respect to the inoculated control after 7 days of incubation.

2.7. Statistical Analysis

The significance of differences among quantitative phenotypic data was assessed
using one-way ANOVA, followed by multiple comparison by Dunnett’s test (p < 0.05),
using Minitab® for Windows release 12.1 (Minitab LLC, State College, Pennsylvania, USA).
For each yeast strain, the significance of difference in the diameter of decayed tissue of the
inoculated sample with respect to the control, was assessed by t-test (p < 0.05). To analyze
the similarity between the tested yeast strains, a factor analysis of mixed data (FAMD) was
carried out by taking into account both qualitative and quantitative phenotypic variables.
To get further insights into the similarities between observations, the factors derived out of
FAMD where used to conduct a k-means cluster analysis. All the calculations were carried
out using the R software ver. 3.6.3 (The R Foundation for Statistical Computing, Vienna,
Austria) and the R-packages “FactoMineR” [33] and “factoextra” [34].

3. Results and Discussion
3.1. Biofilm Forming Ability

The ability of yeast to form biofilm on biotic and abiotic surfaces is a phenotypic
character with both negative and positive implications. It is undesired within the clinical
realm [35–37] but also in food processing and drinking water distribution systems [38–40].
In contrast, biofilm formation is required in some food processes including the maturation
of cheeses and sausages [41–43] and the biological aging of wine [44]. In addition, biofilm
forming ability is required for the cleaning up of hazardous waste sites [45] and for heavy
metal removal [46].

Since in S. cerevisiae biofilm forming ability is investigated through the evaluation
of cellular MAT formation and adhesion to plastic materials [30], these phenotypes were
analyzed in 11 red yeasts of different origins (Table 1). Cellular MAT formation, which
refers to the production of large colonies on the surface of low density agar [47], was
evaluated onto YEPD0.3%, YEPD2%, and YEPD4% [48]. According to [48], on YEPD0.3%,
it is possible to observe colony spreading and the formation of the radial spoke pattern.
On YEPD2%, the architecture of MAT is revealed while on YEPD4%, dense and complex
MAT with ruffling morphology may appear. With the exception of R. glutinis CBS2367, all
strains produced cellular MAT on YEPD0.3% (Figure 1) with variable colony expansion and
architecture. In particular, R. mucilaginosa DBVPG6091, DiSVAC71t0, and DiSVAC2.5t1,
S. oryzicola CBS7228 and R. cresolica CBS7998 formed wide MATs (diameter ≥ 4 cm) with a
smooth hub and a peripheral smooth ring. R. mucilaginosa DBVPG7019 and R. toruloides
CBS315 produced smaller MATs (diameter 3.71 ± 0.43 and 3.24 ± 0.34 cm, respectively)
but these were characterized by a more complex architecture. That of DBVPG7019 showed
a ruffed central hub surrounded by irregular radial spoke pattern and peripheral ring.
That of R. toruloides CBS315 was characterized by a small elevated central hub, an evident
radial spoke pattern and an irregular peripheral ring. R. mucilaginosa DBVPG6094 and
R. toruloides CBS6016 produced MATs with diameter ≤ 3 cm with ruffled hub, radial spoke
patterns, and jagged peripheral ring. R. glutinis CBS2366 MAT measured about 2 cm and
was smooth. At higher agar percentages in YEPD, MAT size decreased while their density
increased [48]. Thus, similar to S. cerevisiae, moisture and strength of the substrate affected
MAT size and density.
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Figure 1. MAT morphology on YEPD0.3%. Cells growing in YEPD were washed, resuspended in
sterile distilled water, and 5 µL of each cell suspension were spotted on YEPD0.3%. After 15 days of
incubation at 25 ◦C, plates were photographed with a digital camera. Results are representative of
three independent replicates.

Cellular MAT formation involves cell–cell adhesion and adhesion to the surface of
the growth medium. In S. cerevisiae, Flo11p is among the factors responsible for MATs
formation [49] and architecture [50,51] but it is involved also in the adhesion to plastic
surfaces [49]. The mechanisms implicated in adhesion to solid surfaces are scarcely charac-
terized in Rhodotorula and Sporobolomyces. Buck and Andrews [20] reported that adhesion
to polystyrene (PS) is mediated by the production of a thick layer of mucilage positively
charged and localized over developing buds in R. toruloides.

Here, to gather further information on red yeast biodiversity in terms of biofilm
forming ability, adhesion was evaluated on: polystyrene (PS), polypropylene (PP), and
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polyvinyl chloride (PVC). These three plastic materials are utilized for different purposes.
PS is used mainly for foodservice containers; PP, which is characterized by high mechanical
strength, is utilized in the production of laboratory (test tubes, beaker, centrifuge tubes)
and medical devices (cannulas, syringes, oxygenators, hoses); and PVC is used for medical
devices (catheters, prostheses, etc.) and for plumbing water systems. Thus, the 11 yeasts
were grown in low glucose containing medium and adherence was tested on PS, PP, and
PVC microplates. For this experiment, two strains of S. cerevisiae, namely UNISSM25
and UNISS3238-32∆flo11, were utilized as positive and negative controls of adhesion,
respectively (Table 2). UNISSM25 is a wild flor strain, widely characterized for its biofilm
forming ability [31], while UNISS3238-32∆flo11 is a non-biofilm-forming mutant [32,52].

Table 2. Adhesion to plastic materials.

Strain
Abs570 (Mean ± Std)

PS PP PVC

DBVPG6091 2.67 ± 0.32 3.43 ± 0.10 0.82 ± 0.13
DBVPG6094 1.21 ± 0.05 1.32 ± 0.07 1.64 ± 0.21
DBVPG7019 2.10 ± 0.47 0.88 ± 0.13 2.30 ± 0.56
DiSVAC2.5t1 2.75 ± 0.13 2.93 ± 0.32 2.56 ± 0.12
DiSVAC71t0 3.16 ± 0.13 3.17 ± 0.06 3.08 ± 0.28

CBS2366 1.26 ± 0.12 1.47 ± 0.15 1.57 ± 0.14
CBS2367 1.50 ± 0.63 2.55 ± 0.30 1.77 ± 0.15
CBS6016 3.44 ± 0.04 3.40 ± 0.04 3.50 ± 0.00
CBS315 2.18 ± 0.33 2.05 ± 0.18 1.85 ± 0.13

CBS7228 2.11 ± 0.14 2.23 ± 0.40 2.14 ± 0.32
CBS7998 0.88 ± 0.32 1.21 ± 0.09 1.70 ± 0.35

UNISSM25 2.68 ± 0.06 2.71 ± 0.12 3.21 ± 0.21
UNISS3238-32 ∆flo11 0.48 ± 0.03 1.02 ± 0.12 1.11 ± 0.19

Notes: Data are mean ± standard deviation of three independent experiments. UNISSM25 and
UNISS3238-32∆flo11 were utilized as positive and negative controls of adhesion, respectively.

Results, reported in Table 2, show that some of the strains, although differing in the
degree of adhesion, presented a consistent phenotype on the three plastic materials. Among
these, R. mucilaginosa DiSVAC71t0 and R. toruloides CBS6016 showed the overall strongest
adhesion with Abs570 > 3. This was higher than that of the positive control S. cerevisiae M25.
R. mucilaginosa DiSVAC2.5t1 and S. oryzicola CBS7228, which displayed adhesion values
in the range of those expressed by M25 (Abs570 > 2), were followed by R. mucilaginosa
DBVPG6094 and R. glutinis CBS2366 (Abs570 < 2). The remaining strains presented a
variable phenotype, depending on the plastic material. In particular, R. mucilaginosa
DBVPG6091 proved strongly adhesive to PP, but it showed lower adhesion to PS and very
weak adhesion to PVC. R. glutinis CBS2367 showed stronger adhesion to PP than to PS and
PVC and R. glutinis CBS7998 showed very weak adhesion to PS. R. mucilaginosa DBVPG7019
showed Abs570 > 2 on PS and PVC and very low adhesion to PP while R. toruloides CBS315
was characterized by Abs570 around 2 on the three plastic materials.

3.2. Invasive Growth and Temperature Growth Interval

Invasive growth is described as the production of filaments that penetrate the surface
of agar plates and resist to washing of the agar medium surface. This phenotype was
evaluated in vitro on low glucose containing medium (SCD0.1%) as suggested by [48]. On
this medium, all strains, with the exception of CBS7228 and DiSVAC71t0, showed invasive
growth with CBS6016 showing the strongest phenotype (Figure 2). Invasive growth has
been associated with fruit decay in Pichia fermentans, thus raising the problem of the biolog-
ical risk associated with the use of dimorphic yeasts as biocontrol agents [53]. Moreover,
it is considered a putative virulence character in clinically relevant yeast [54,55]. Thus,
while evaluating the growth temperature interval of these red yeasts, also temperatures
compatible with human body infections were considered and the 11 yeast strains were



Fermentation 2021, 7, 2 7 of 13

tested for growth at 20, 25, 30, 37, and 40 ◦C. R. mucilaginosa DBVPG7019, DiSVAC71t0,
DiSVAC2.5t1, R. toruloides CBS6016, CBS315, S. oryzicola CBS7228 grew at 20 ◦C and all
strains grew easily at 25 ◦C. CBS2366 and CBS2367 failed to grow at 30 ◦C and none of
them grew at 37 and 40 ◦C (Table 3), thus suggesting the incapability of these strains to
infect humans [56].
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Figure 2. Invasive growth of strains representative of different phenotypes. Cells exponentially growing in SCD2% were
washed, resuspended in sterile distilled water, spotted on SCD0.1%, and incubated at 25 ◦C per 10 days. Petri dishes
were photographed with a digital camera before and after washing with sterile distilled water. Results presented are
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Table 3. Temperature growth interval.

Strain
Temperature (◦C)

20 25 30 37 40

DBVPG7019 + + + - -

CBS7228 + + + - -

CBS315 + + + - -

CBS2366 - + - - -

DBVPG6094 - + w - -
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Table 3. Cont.

Strain
Temperature (◦C)

20 25 30 37 40

DBVPG6091 - + + - -

CBS7899 - + + - -

CBS2367 - + - - -

CBS6016 + + w - -

DiSVAC71t0 + + + - -

DiSVAC2.5t1 + + + - -
Notes: +, growth; -, no growth; w, weak growth.

3.3. Biocontrol Activity on Apple Fruit

Once inoculated into wounds artificially inflicted to apple fruit and infected with
P. expansum, the 11 strains proved highly diverse in terms of biocontrol activity. With
the only exception of CBS2366, all the other strains presented significant reductions of
the diameter of the lesions in respect to the control (p < 0.05). The most promising were
R. mucilaginosa DiSVAC71t0 and S. oryzicola CBS7228 which determined more than >50% re-
duction of P. expansum decay on apple. These were followed by R. mucilaginosa DBVPG6094
and DiSVAC2.5t1 which caused a decay reduction ≥ 40%. R. mucilaginosa DBVPG6091
and DBVPG7019 and R. toruloides CBS6016 and CBS315 showed a percentage of decay
reduction >20 <40 and the remaining strains showed less than 20% reduction of P. expansum
lesions on apple fruit (Figure 3). Other red yeasts reduced significantly the incidence of
plant pathogenic fungi. For example, R. glutinis proved effective against Botrytis cinerea on
strawberries and apples (US patent US5525132A) [57,58] possibly due to the attachment
capability of the antagonistic R. glutinis to B. cinerea [59]. R. glutinis was also applied in
combination with rhamnolipids to be more efficacious against A. alternata infection in
cherry tomato fruit than either agent alone [60].
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inoculated with yeast cells and P. expansum, and stored in the dark at 26 ◦C and 85 ± 5% relative humidity for up to 7 days.
The diameter of decayed tissue around each wound was measured at 48 h intervals to evaluate the incidence of P. expansum
infection. Results are expressed as percentage of decay reduction (means ± standard deviation of three independent
replicates of three biological samples) with respect to the inoculated control. Same superscript letters indicate results not
significantly different among strains (p < 0.05).
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3.4. FAMD and Cluster Analysis of Phenotypic Data

To summarize the information about the phenotypes studied and to allow the iden-
tification of red yeast strains and/or phenotypes for future works aimed at red yeasts
exploitation in food biotechnological processes, FAMD followed by k-means cluster analy-
ses were carried out (Figure 4A). Variables analyzed also included biomass and carotenoids
production [26]. The average silhouette approach estimated the presence of 5 optimal
clusters. Of these, cluster 4 aggregates most of the strains, while clusters 2 and 3 are
each constituted by only one strain. In accordance with the contribution of the pheno-
typic variables to the first and second dimension (Figure 4B), strains grouped in cluster
5 (S. oryzicola CBS7228 and R. mucilaginosa DiSVAC2.5t1 and DiSVAC71t0) displayed the
highest biocontrol activity (≥40% blue mold reduction) and among the strongest adhesion
phenotypes on plastic materials (particularly on PVC), hence suggesting a possible means
of high throughput in vitro selection for potentially effective biocontrol agents.Fermentation 2020, 6, x FOR PEER REVIEW  10 of 13 
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the same color, as determined after k-means clustering. (B): Plot of variables on the first two dimension (total explained
variance equal to 57%).
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As recently reviewed by [40], yeast biofilm formation in food and food processing
plants could be considered as a positive or negative phenotype. Here, the high biofilm
forming ability coupled with the high carotenoid content of the strains in cluster 5 suggests
their possible utilization for the continuous production of carotenoids in bioreactors where
yeast cells are immobilized on inert surfaces [61]. In addition, the high biomass obtained
by growing these strains on glycerol suggests the use of these strains for the valorization
of such by-products, thus increasing the sustainability of carotenoid production [26]. In
this respect, the lack of invasiveness of CBS7228, together with its biocontrol activity and
adhesion to plastic materials, makes this strain the most interesting for future analyses.
Indeed, as already reported, invasiveness has been thought to contribute to yeast virulence
and fruit decay [19]. Strain CBS6016 (cluster 2), while sharing many of the properties of
the yeasts included in cluster 5, shows a higher invasiveness and is, thus, less suitable for
the food sector. In cases such as those in which biocontrol activity should be associated to
low biofilm forming ability and scarce invasiveness, strain DBVPG7019 (cluster 3) should
be preferred for further characterizations. Finally, strains included in cluster 1 appear
as the less interesting for biotechnological applications, given their inability to grow at
20 and 30 ◦C, and their reduced production of carotenoids and scarce biocontrol activity.
Similarly, strains in cluster 4 seem to have a limited biotechnological potential as they
show average values for what concerns MAT formation, adhesion on PVC, invasiveness,
biocontrol activity, and carotenoid production.

4. Conclusions

Phenotypic analyses of eleven red yeasts of different origins suggested that a compre-
hensive characterization of these yeasts is mandatory to assess their potential use in food
processes. Besides carotenoids production and biocontrol activities, also phenotypes not
previously evaluated on red yeast are indeed essential for the identification of the most
suitable biotechnological process for their exploitation. Particularly, biofilm formation
and invasiveness should be carefully evaluated before selecting strains for continuous
production of carotenoids or as biocontrol agents and feed supplements, respectively. In
addition, the inability of strains to grow at a temperature compatible with human infection
should be carefully determined. Finally, statistical analyses allowed the selection of yeast
strains with interesting phenotypes for their further characterization and application in
agri-food-related processes.
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