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Abstract: The slow progress in the development of the subsector, particularly of alternative feed
sources such as agro-industrial byproducts and unconventional feed resources, has deepened the gap
in the availability of and accessibility to animal feed. Production of animal feed is highly resource
demanding. Recently, it has been shown that increasing climate change, land degradation, and the
recurrence of droughts have worsened the feed gap. In the backdrop of these challenges, there has
been attention to food-not-feed components, which have great potential to substitute human-edible
components in livestock feeding. Chitosan, a non-toxic polyglucosamine, is widely distributed in
nature and used as a feed additive. Chitosan is obtained from the de-acetylation process of the chitin
and is mostly present in shrimp, crabs, and insect exoskeletons, and has antimicrobial and anti-
inflammatory, anti-oxidative, antitumor, and immune-stimulatory hypo-cholesterolemic properties.
This review article discusses the results of recent studies focusing on the effects of chitosan and
chitin on the performance of dairy cows, beef steers, sheep, and goats. In addition, the effects of
chitosan and chitin on feed intake, feed digestibility, rumen fermentation, and microbiota are also
discussed. Available evidence suggests that chitosan and chitin used as a feed additive for ruminants
including dairy cows, beef steers, sheep, goats, and yaks have useful biological effects, including
immune-modulatory, antimicrobial, and other important properties. These properties of chitosan
and chitin are different from the other feed additives and have a positive impact on production
performance, feed digestibility, rumen fermentation, and bacterial population in dairy cows, beef
steers, sheep, goats, and yaks. There is promising evidence that chitosan and chitin can be used as
additives in livestock feed and that well-designed feeding interventions focusing on these compounds
in ruminants are highly encouraged.

Keywords: chitosan; chitin; ruminants; microbiomes; rumen enhancer; methane; fermentation efficiency

1. Introduction

In ruminant nutrition, many types of feed additives are used to improve production
performance and to maintain the good health and metabolic condition of farm animals.
The generally used feed additives are organic acids, feed enzymes pro and prebiotics,
and herb extracts on the other hand, chitosan is a new and relatively less used in the
diet of the animals [1,2]. Chitosan is a nontoxic polyglycosamine and is rarely present
in nature (mushrooms) containing β-(1-4)-2-acetamido-D-glucose and β-(1-4)-2-amino-
D-glucose units. It is a deacetylated to varying degrees form of chitin, widespread in
nature component of the exoskeleton of shrimps, crabs, and insects [3,4]. Different from
chitin, chitosan is soluble in acidic solutions [5,6], and it is moderately digested in the
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gastrointestinal tract of mono-gastric animals [7,8]. Chitosan is commercially obtained
from chitin through the deacetylation process, in this process chitin is treated with a strong
solution of sodium hydroxide at a higher temperature [4]. Chito-oligosaccharides are
produced by chitosan depolymerization using acid hydrolysis, hydrolysis by physical
methods, and enzymatic degradation [9]. Chitosan and its oligosaccharide derivatives have
reactive functional groups, that is, amino acids and hydroxyl groups, unlike chitin they
have antimicrobial [10,11], anti-inflammatory [12,13], anti-oxidative [14], antitumor [15],
immunostimulatory [16,17], and hypocholesterolemic [18] properties.

In the environment, particularly in the agriculture sector, the emission of enteric
methane contributes significantly, and the production of methane by ruminants also char-
acterizes a substantial feed energy loss [19]. Proper provision of forage and choice of feed
supplements can improve the total mixed ration quality and nutrient digestibility and
alternatively improve the production performance of the animals and decrease the methane
emission in an animal farming system [20].

Therefore, the objectives of the current review paper are to review and discuss the
results of different studies which were conducted regarding supplementation of the chitin and
chitosan in ruminants such as dairy and beef cattle, sheep, and goats and to understand the
effects of chitosan and chitin on production yield, growth performance, wool yield, feed intake
and digestibility, rumen fermentation and bacterial community and usage are presented.

2. Chemical Structures of Chitin and Chitosan
2.1. Chitin

In the world, chitin is the second most vital natural polymer and its N-deacetylated
derivative chitosan has been known as a useful biopolymer that is used in the food industry,
medicine, and agriculture. As already discussed, chitin is the second most plentiful natural
polymer having structural polysaccharide [21] [22]. A chief constituent of the carapaces,
crusts, and crustacean shells such as crabs, shrimps, and lobsters, it is also a constituent of
the cell walls in yeast and fungi [23].

The yearly production of chitin is about 1010–1012 tons [21]. Chitin (chemical formula
(C8H13O5N)n) can only be soluble in concentrated mineral acids [24]. The structure of the
chitin is a linear polymer containing mostly β (1→4)- linked 2-acetamido-2-deoxy-β-D-
glucopyranose units and partially β-(1→4)-linked 2-amino-2- deoxy-β-D-glucopyranose.
In this structure, the chitin is insoluble in water and only soluble in common specific
organic solvents such as N, N-dimethylacetamide (DMAc)-LiCl [21], hexafluoroacetone or
hexafluoro-2-propanol and the chemical structure of the chitin is presented in Figure 1 [25].
When the N-acetylation degree is lower than 50%, chitin can be soluble in an acidic solution
having a pH less than 6 and later is called chitosan [26]. Therefore, chitosan is a combined
name of the partially and fully de-acetylated chitin, however, a firm nomenclature concern-
ing the degree of N-deacetylation between chitin and chitosan has not been defined [27].
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In the nomenclature of the European chitin society (EUCHIS), chitosan and chitin
should be divided by the solubility and insolubility in 0.1 M acetic acid [28]. Chitosan is
a soluble material, whereas chitin is insoluble. The molecular weight of the chitin and
chitosan is up to numerous million g/mol. The average molecular weight of commercially
obtainable chitosan ranges between 3800–500,000 g/mol, and it has 2%–40% degree of
N-acetylation [29].

Chitosan and chitin have commercial importance because in these two compounds the
nitrogen content is high (6.89%), and these compounds have greater abilities in biocompati-
bility, biodegradability, non-toxicity, and adsorption [30]. In addition, chitin and chitosan
have lower toxicity [31]. Chitosan is highly insoluble and has a lesser chemical reactivity.
The difference between chitin and chitosan depends on the degree of deacetylation. If the
threshold of deacetylation is above 50%, it is referred to as chitosan. The deacetylation
ranges from 44.1% to 98.0%, depending on the species. Grasshoppers, honeybee beetles,
shrimp shells, and blowfly larvae all are examples of the highest deacetylation. In addition,
commercial chitin is obtained from crustaceans and aquatic invertebrates and has similar
products and futures that are in insects produced chitin with like qualities [32].

2.2. Chitosan

Chitosan is composed of two repeated units of D-glucosamine and N-acetyl-D-glucosamine
and these units are linked together by β(1→4) linkage, while chitosan, a linear polysac-
charide composed of two repeated units, D-glucosamine and N-acetyl-D-glucosamine,
linked by β-(1→4) linkages. Chitosan is categorized in terms of intrinsic properties such
as molecular weight, viscosity, and degree of deacetylation, and the chemical structure
of the chitosan is presented in Figure 2 [33]. Chitosan is considered a natural compound,
biocompatible and non-toxic, biodegradable and bioactive mucoadhesive compound, and
is commonly used as a food product in Japan in 1983 and Korea in 1995 and in 2012 food
and in addition drug administration United Stated recommended chitosan as for food
production. The chitosan is fully or partially de-acetylated biopolymer chitin. Chitosan
is the second most polysaccharide in nature having a greater molecular weight and a
polycationic polymer. Normally chitosan is found in the exoskeleton of insects, mollusks,
crustaceans, and some algae, however, a large quantity of chitosan is obtained from marine
crustaceans [34]. In a year, shells of crustacean are generated through the extraction of
chitin (106–107 tons), and from this extraction different protein and chitosan from this
waste has added value [35]. Numerous studies proposed that chitosan has antimicrobial
properties and worked against the killing of the bacteria and different fungi like filamen-
tous fungi and yeast, it also studied that chitosan also has antiviral and anti-inflammatory,
analgesic, anticholesteromic and homeostatic effects [36]. Chitosan can be used directly, or
it can be mixed with other polymers such as inoculants of silage, for food processing and
preservation, biotechnology, water treatment, tissue engineering, the cosmetic industry,
and the pharmaceuticals textile [24]. Nowadays, in ruminants particularly in beef and dairy
cattle chitosan is also used in animal feeding and it improved rumen fermentation and
digestibility [37]. The extraction of chitosan can be done either by biological or chemical
methods. The industrial and chemical process starts with the removal of different minerals
like calcium chloride and known as demineralization followed by deproteinization and
decolorization like carotene and astaxanthin. Lastly, the deacetylation process is carried out
through potassium or sodium hydroxide [38]. While the biological method is considered
environment friendly. In this method demineralization is done by using lactic acid and
protease is used for deproteinization, discoloration acetone or organic solvents are used,
and lastly, bacteria are used for deacetylation. Recently A new method of extraction, also
used known as the microwave irradiation method, has been recently developed [39]. The
raw material (crustaceans species), which is used for chitosan, method of extraction, and
seasonal variation play a crucial role in the quality of the final product [40].
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3. Chitin and Chitosan Sources
3.1. Chitin

The main source of Chitin is the exoskeleton of mollusks, insects, fungi, and crus-
taceans. However, the chief chitin source is the shells of the shrimps and crabs [41]. The
chitin is normally present in two forms (allomorphs) contingent on the source, these two
forms are α and β-forms furthermore in γ-chitin, this form is commonly available in a
combined form with either α or β forms than a different form [21]. From these forms,
α-Chitin is the most plentiful form which is available and is obtained from the crustacean’s
exoskeleton mainly crabs and shrimps. While the β-Chitin and γ-chitin can be received
from the squid pens and yeast respectively [42]. The α-chitin can be obtained from β-Chitin
through an alkaline process followed by passing through water [43]. Numerous methods
and procedures are used to obtain the chitin from different sources and earlier research
published [44]. The composition of the crustacean shells is proteins (30%–40%), calcium
carbonate (30%–50%), chitin (20%–30%), and pigments. The above-mentioned composition
of crustacean shells is varying depends on the different species and also from season to
season [45]. There are various steps like washing, grinding, and sieving followed by the
removal of different minerals like calcium carbonate in dilute acidic acid and known as
demineralization then deproteinization (NaOH or KOH) is used to obtain the chitin from
the crustacean shells chemically and deproteinization process, enzymatic hydrolysis is
used [21]. In addition, it is also reported that different microorganisms are also used for
demineralization and deproteinization [21].

3.2. Chitosan

The chitin is radially converted into chitosan through partial or complete de-acetylation
of the chitin in solid and dissolved under enzymatic hydrolysis (chitin deacetylase) or alka-
line condition in industries. Chitosan is produced from the natural source of chitin, and
it affects the production parameters and preparation. Different studies showed that the
β-chitin form is higher reactive in N-deacetylation compared to α-chitin [46]. The change in
chitin morphology semi-crystalline is due to the chitosan received in a solid-state reaction
having a heterogeneous distribution of N-acetyl groups along the molecular chains [37].
The change in the process of chitosan production like temperature, alkali concentration, and
alkali ratio to shell also means that the production of chitosan contains different chitosan
in molecular weight and N-acetylation degree. Different types of impurities are added in
the preparation of the chitosan from the chitin like heavy metals, protein, acid, and alka-
line residues. Different studies proposed that the impurities content and different factors
like weight-average molecular weight, polydispersity, degree of N-acetylation (DA), and
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pattern of acetylation (PA) in commercially available chitosan are unknown [47]. Chitosan
microstructure knowledge is vital for understanding the structural properties and activity
relationships in them, and distinct importance in this respect is cited in the biomedical
use of chitosan [47]. In addition, the biological, synthesized, active, and water-soluble
derivatives of chitin and chitosan are also essential.

4. Modes of Actions in the Rumen on Substrates, Microbiomes, Fermentation, Volatile
Fatty Acids, pH, Microbial Protein Synthesis, and Methane Mitigation

Chitin and chitosan use as feed additives in ruminants have been well-illustrated and
are presented as follows.

4.1. Feed Efficiency, Rumen Fermentation, Volatile Fatty Acid, and Milk Composition and Production

Currently, chitosan has attained great attention in the preparation of different medicine
and the preservation of various food items because of its biodegradability, antimicrobial,
and nontoxic qualities [48,49]. As already mentioned, the deacetylation of the chitin
process is used to obtain the chitosan and it is an N-acetyl-D-glucosamine polymer (natural
biopolymer). After cellulose, chitin is the second most plentiful copious organic compound
in the world and originated from the exoskeleton of some arthropods and crustaceans. In
addition, it is also present in the cell wall of plants [50].

Different research studies on dairy cows investigated the impact of chitosan on rumen
fermentation [51,52]. Goiri et al. [53] and Araújo et al. [54] conducted research in sheep,
steers, and dairy cows and concluded that chitosan reduces the acetate-to-propionate
ratio in rumen fluid respectively. In addition, volatile fatty acid production also reduces
biohydrogenation in the rumen [52]. Lately, Del Valle et al. [52] stated that chitosan
increased the unsaturated fatty acid levels in milk and also improved the feed efficiency of
cows fed a soybean-oil-free diet. Though, when chitosan was supplemented with soybean
oil, these researchers stated a negative impact on the milk production of cows. The motives
for the latter impact of the chitosan are not clear due to any change in feed intake and
feed digestibility, and volatile fatty acid levels in the rumen were noticed between cows
provided feed with soybean oil and the diet with soybean oil along with chitosan.

Besides, Zanferari et al. [51] stated that chitosan supplemented with whole raw soy-
bean alters the rumen fermentation and bacterial population in dairy cows and also in-
creased the concentration of the unsaturated fatty acid in milk but reduces the feed intake
and feed digestibility, synthesis of microbial protein and milk production. Nevertheless,
results indicate that supplementation of chitosan in a diet with no lipid supplementation in
dairy cows improves feed efficiency, also increasing the level of the unsaturated fatty acid
in milk and cis-9,trans-11 CLA.

In ruminants, the diet containing chitosan changes rumen fermentation with the chi-
tosan altering pattern of fermentation towards an efficient pathway of energy when added
to in vitro trials [55,56]. Goiri et al. [53] and Dias et al. [57] reported that rumen ammonia
levels were reduced with the addition of chitosan in the diet of sheep and beef steers
diet. In addition, supplementation of chitosan in the diet of dairy cows and beef steers
alters the production of volatile fatty acids of less acetic acid to more propionic acid, thus
reducing the ratio of acetic to propionic acid [58]. Furthermore, few researchers reported
that chitosan inclusion in the diet alters rumen fermentation and upsurges the apparent
digestibility. Furthermore, regarding alters in rumen fermentation, some researchers ob-
served that chitosan increased dry matter apparent digestibility, crude protein, and neutral
detergent fiber, whereas no impact on feed intake [54,58]. Nonetheless, Mingoti et al. [59]
and Dias et al. [57] reported that alike findings were obtained in dry matter apparent
digestibility and crude protein, though concurrently detecting a decrease in dry matter,
crude protein, and NDF intake. So far, the influence of supplementation of chitosan on
rumen fermentation has focused chiefly on a total mixed ration containing corn silage [60].
Jiménez-Ocampo et al. [61] conducted research on chitosan and naringin supplementation
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to cross-bred heifers and concluded that both feed additives had no impacts on ruminal
fermentation and methane production.

In addition, Kirwan et al. [50] reported that there is no effect of chitosan inclusion on
dry matter intake in beef heifers, however, chitosan reduced the total tract digestibility, dry
matter, and crude protein, and no effect was noted in the apparent total tract digestibility
of the NDF. Chitosan inclusion in the diet of the beef heifers increased the rumen pH
and ruminal ammonia concentrations. Supplementation of chitosan had no impact on
the concentration of butyric acid in the rumen. Whereas the addition of chitosan in the
low protein total mixed ration tended to reduce the acetic acid to propionic acid ratio.
Supplementation of chitosan and concentration of crude did not affect the concentrations
of the valeric acid, isovaleric acid, and iso-butyric acid.

The chitosan inclusion in the diet decreased the digestibility of DM, OM, and CP,
but this did not alter the dry matter intake. This decrease in the digestibility of nutrients
was likely because of the antimicrobial quality of chitosan against rumen microbiota [62].
In ruminants, protozoa play a vital role in protein degradation [63], with defaunation
typically ensuing in decreased degradation of protein [64]. Regarding chitosan, numerous
hypotheses have been planned as the mode of action. The chitosan is polycationic and this
is extensively accepted by a different theory, this polycationic nature is because of these
positive charges of the protonated amino groups (NH3

+), which permits it to interconnect
with the negative charge of the outer cell membrane of diverse microbiota, producing
wide changes to the surface of the cell, leading to leakage of intracellular substances,
resulting in the death of cell [50]. The outer peptidoglycan layer is greater reachable in
gram-positive compared to gram-negative bacteria, to which the utmost importance of the
fibrolytic bacteria belongs. Goiri et al. [53] stated the digestibility of OM reduced in vitro
experiment treated with chitosan, indicating activity towards cellulolytic bacteria, though
Belanche et al. [56] reported that chitosan inclusion reduced the activity of protozoa and
cellulolytic bacteria in the rumen [56], accountable for the reduction in degradation of feed
and rumen fermentation rate. Decreasing the solubility of chitosan (<85% deacetylated) and
its addition to the diet, can weaken the negative impact on the digestibility of feed [50,56].

The environmental pH in the rumen plays a key role in the antibacterial mode of
action of chitosan. Kong et al. [50] reported that when pH is less than molecules pKa
(6.3–6.5), chitosan becomes polycationic, which causes electrostatic interaction between
the chitosan and the anionic components of the microorganism’s surface, though, on the
contrary, hydrophobic and chelating effects are accountable for the antibacterial action of
chitosan when the environment is above the pKa. The pH in the rumen plays a key role in
better performance and stability of the rumen due to its impact on the bacterial population
and rumen fermentation products as well as on the normal physiological function of the
rumen. The change in the pH of the rumen was comparatively less and would likely
not be biologically significant. In the rumen, cellulolytic bacteria are accountable for the
digestion of fiber rumen, and the pH of the rumen starts to go down below 6.2 their action
starts to reduce [65]. In the rumen, the negative correlation between the total volatile
fatty acid level and ruminal pH highlights the pH-decreasing potential of volatile fatty
acid accumulation [66]. Chitosan inclusion in the diet did not significantly affect the
individual concentration of volatile fatty acid or total volatile fatty acid levels. Though, the
digestibility of nutrients was reduced with the addition of chitosan, thus decreasing the
production potential of volatile fatty acids. The ammonia has a greater pKa value (9.21) and
as significance, almost all ammonia is present in the form of NH4

+ in the rumen. In rumen
production of ammonia can assist the pH regulation by the NH4

+ disposal. Consequently,
excessive ammonia supply from the degradation of the amine terminals in chitosan may
elucidate the upsurge in pH of the rumen related to the chitosan addition. In rumen greater
levels of ammonia related to feeding the high protein diet were expected due to increased
dietary percentages of RDP [67]. As CP increases the diet, there is higher deamination of
amino acids released from protein degradation, which increases ammonia. The upsurge in
iso-valeric acid related to the low protein diets is a significance of the deamination process
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and decarboxylation of the branch-chained amino acids [68]. The inclusion of chitosan in
high protein diet upsurged the concentration of ammonia, the similar results were also
reported by Araújo et al. [54], where an upsurge in the concentration of ammonia was
noted in steers supplemented with chitosan. The upsurge in the ammonia concentration in
the rumen with a high protein diet suggests that this was probably due to an extra addition
of ammonia from the amine group degradation in chitosan and a lesser uptake of ammonia
by the microbes of the rumen, rather than upsurge proteolysis [56]. Kang-Meznarich and
Broderick [69] stated that 1.94 to 5 mmol L−1 is the optimum level of ruminal ammonia
level is satisfactory for the synthesis of microbiota and digestion of fiber, portentous the
concentration of ammonia generated in the low protein diets were below the optimum,
which might clarify why no changes were found in a concentration of ruminal ammonia
between the two low protein diets.

Earlier research investigated that chitosan supplementation in ruminant diets upsurges
propionic acid levels in the rumen [58], whereas Araújo et al. [54] reported that chitosan
inclusion in the diet reduces the acetic acid levels in the ruminal coupled with the upsurge of
propionic acid levels as a result of increased feed intake and nutrient digestibility. The change
in the products of the rumen fermentation within the rumen may be a result of the chitosan
degradation in the rumen, with the remaining carbon skeleton used by certain bacteria [70].
While supplementation of chitosan did not affect volatile fatty acid profiles in the rumen, the
negative impact on the digestibility of nutrients may have potentially pretentious production
of volatile fatty acid due to the consequence of inefficient eating and chewing efficiency. On
the other hand, the earlier research stated that the concentration of acetic acid: Propionic acid
was considerably greater, showing the greater contribution of the NDF from the GS offered,
affecting both feeding behavior and volatile fatty acid levels of the animals [71]. Though,
the CP concentration affects the volatile fatty acid profile in the rumen. Providing higher
concentrations of the CP in the diet resulted in lower acetic acid and higher propionic acid
levels in the rumen. Supplementing higher protein diets would provide additional supply
to a higher percentage of RDP [67], which has been shown to upsurge the concentration of
propionic acid and reduces the level of acetic acid in the rumen [72].

Chitosan is a biopolymer (N-acetyl-d-glycosamide) derived from the deacetylation
of chitin—the second most abundant polysaccharide in nature and the major component
of exoskeleton from crustaceans and insects [73]. Chitosan has demonstrated antimicro-
bial activity against several bacteria, fungi, and yeasts [48] and is considered generally
recognized as safe by the US Food and Drug Administration since 2012 (GRN#443; FDA,
2012). Chitosan interrelates with the outer membrane proteins instigating bacterial cell
membrane disturbance and death of cells [74]. While researchers have investigated that
chitosan can be used as a feed additive for silage preservation [37], or to treat metritis [75]
and mastitis in dairy cattle [76], Numerous research studies have investigated the impact
of Chitosan on rumen fermentation in vivo trials, particularly with dairy cows [52]. Lately,
Del Valle et al. [52] demonstrated that chitosan improved the feed intake and upsurge
unsaturated fatty acid concentrations in the milk of dairy cows fed a soybean-oil-free diet.
Though, when chitosan was supplemented in diets with soybean oil, these researchers
reported a negative relative impact on the performance of dairy cows. The motives for the
latter relative impact are not clear due to no change in feed intake and digestibility, and
volatile fatty acid concentration in the rumen was detected between cows supplemented
diet with soybean oil and a diet with soybean oil along with chitosan.

Zanferari et al. [51] stated that chitosan decreased the feed intake (DM, OM, CP, NDF,
and NFC) and digestibility of nutrients (DM, OM, NDF, and EE) in dairy cows. Chitosan
also upsurges the ruminal pH and propionate molar proportion than cows fed no chitosan.
Though, chitosan reduced acetate and valerate concentrations in the rumen and acetate to
propionate ratio and acetate molar proportion in the rumen. No chitosan by WRS inter-
action effects was observed on ruminal bacterial populations assessed in this experiment.
Chitosan decreased (p = 0.001) the relative population of the Butyrivibrio group in compari-
son with the other treatments. Diets containing WRS negatively affected the rumen bacterial
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populations from the Butyrivibrio group and F. succinogenes; however, WRS increased the
relative rumen bacterial population of S. bovis. The provision of chitosan in a diet with
no WRS and relatively low EE has not altered nutrient intake in ruminants [53,54,58]. On
the other hand, chitosan provision to cows fed a diet containing soybean oil decreases
nutrient intake [52]. In agreement with the latter study, the combination of chitosan and
WRS decreased the intake of nutrients except for EE. In this experiment, the reduced feed
intake of cows fed chitosan + WRS is likely related to changes in ruminal fermentation and
negative effects on nutrient digestibility. Although the exact mechanism of chitosan on the
gastrointestinal tract of cows is not fully understood, changes in ruminal fermentation and
nutrient utilization [54], are very similar to those observed when feeding ionophores [77].
Similar to ionophores and chitosan, unsaturated fatty acid affects ruminal metabolism by
altering the ruminal microbial population [78]. In the results of Zanferari et al. [51], changes
in ruminal fermentation were observed when provided to cows with either chitosan or
WRS including an increase in a ruminal molar proportion of propionate and a reduction
in acetate proportion and acetate to propionate ratio. Changes in rumen microbial pop-
ulation (e.g., decreases in gram-positive bacteria and ciliate protozoa and an increase in
gram-negative bacteria) and decreased OM and NDF digestibility can be observed when
lipid supplementation exceeds 5% of dietary FA. In addition, the inclusion of lipids in
diets increases the release of intestinal peptides regulators that suppress intestinal motility
and feed intake of cows [79]. Although diets did not exceed 5% diet EE, decreases in
digestibility of OM and NDF, and reduced NDF intake was observed in the current experi-
ment. The WRS has a relatively lower ruminal availability of fatty acid [80] but seemed to
affect fiber digestion. According to NRC [81], the adverse effects of oilseeds on ruminal
fermentation depend on diet composition besides the inclusion level, whereas the negative
effects of oilseeds are more evident in corn-silage-based diets with low forage proportions.
Specific PUFA, such as linoleic acid (present in high amounts in WRS), have toxic effects on
cellulolytic and butyrate-producing bacteria [82].

The combination of chitosan and WRS decreased the total tract digestibility of EE.
Earlier studies evaluating CHI dietary supplementation did not report differences in EE
digestibility of lactating cows [52]. Nevertheless, Zhang et al. [83] observed that CHI has
hypolipidemic activity in high-fat diet-fed mice with a reduction in plasmatic and hepatic
levels of lipids and an increase in lipids fecal excretion effects attributed to a decrease in
intestinal fat absorption. Chitosan has high adherence capacity to fat in vitro due to its
polycationic structure [84]. A similar response to chitosan was observed in broilers, which
exhibited lower ileal digestion of fat, and no changes in CP and starch digestibility [85].
Authors from the latter study speculated possible effects of CHI on digestive viscosity that
could impair the activity of intestinal lipases in feed particles or glucosamine groups in
chitosan acting as a chelator of lipid micelles and the mode of action of chitin and chitosan
in ruminants and their sources are mentioned in Figure 3.
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4.2. Bacterial Population and Methane Mitigation

Chitosan decreased or tended to decrease bacterial populations related to ruminal
biohydrogenation (Butyrivibrio group and B. proteoclasticus), whereas WRS supplementation
decreased F. succinogenes and Butyrivibrio group, which corroborates with the decreased
digestibility of NDF in cows fed WRS. Feeding WRS increased the S. bovis population.
Although the latter specie is often associated with lactate production in the rumen, the study
of Hudson et al., 2000 [86] indicated that S. bovis easily hydrate linoleic acid to 13-hydroxy-
9-octadecenoic acid. The FA hydration competes with biohydrogenation processes in the
rumen [86], which could be related to the relatively low concentration of intermediates
of biohydrogenation in the milk of cows fed WRS. Zanferari et al. [51] concluded that the
addition of chitosan in the diet of dairy cows with WRS changes rumen fermentation and
microbiota community, up surging the content of unsaturated fatty acid in milk, however,
reduces feed intake and feed digestibility, milk production, and microbial protein synthesis.
But research also shows that chitosan supplementation in the diet of dairy cows with no
lipid improves feed efficiency, in addition to surging content of unsaturated fatty acid milk
content and cis-9,trans-11 CLA. Supplementing WRS as an alternative to soybean oil as a
fat source did not evade the negative relation impact of chitosan on the milk performance
of dairy cows and the unchanged fatty acid profile in milk.

Belanche et al. [56] reported that in-vitro trial chitosan reduced the methane emission
(42%) however, it changes the mode of action. Chitosan has antimicrobial qualities that
alter the structural bacterial community and transferred the rumen fermentation pattern to
the production of propionate acid which clarified and reduces the emission of methane.
The greater activity of amylase noted in fermenter-supplemented chitosan recommended
chitosan could also be moderately hydrolyzed and used as a bacterial population of the
rumen. In addition, the 5% inclusion of chitosan in dairy cows increased methane pro-
duction and also increased the volatile fatty acid concentration and this was escorted by
reducing ammonia levels and pH. In dairy cows, samples obtained 2 h afterward diet had
greater levels of total lactate, L-lactate, and acetate molar proportion, along with lesser
proportions of propionate and butyrate concentrations. Furthermore, the 5% chitosan
inclusion reduced the molar proportion of the acetate and upsurge the molar proportion
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of the valerate. Furthermore, chitosan increased propionate proportion and reduced the
butyrate, isobutyrate, and isovalerate proportions. The addition of chitosan in the diet
upsurges the concentration of ammonia, mainly at 2 h after feeding.

qPCR results showed that chitosan alters DNA levels of microbiota and methanogens,
and lowest with the lowest levels were noted at 2 h subsequently feeding. However, no
other effect of feed was observed. Furthermore, when compared with the control group
IVY supplemented group reduced levels of anaerobic fungi, whereas relative methanogens
abundance decreased compared to the total population of bacteria when chitosan was
supplemented. The concentration of the protozoa in the fermenters endured below
(500 cells mL−1) and did not influence by the research treatments. The population of
protozoa was chiefly composed of subfamily Entodiniinae 96.1% ± 4.1%, followed by
Diplodiniinae 3.5% ± 4.2% and Holotrichs 0.4% ± 0.7%, and these proportions were not
influenced by the treatment groups.

In terms of bacterial diversity, chitosan did not affect the Good’s coverage and Chao
index, representing that the depth of sequencing was similar in all groups. Chitosan
reduced indexes of the Shannon and Simpson showing a reduction in the diversity of
bacteria. Furthermore, the lesser Evenness values in chitosan feed showed the availability
of very plentiful species together with few species, though in control and there was a higher
resemblance in the abundance across bacterial species. At the family level in the phylum
Firmicutes supplementation of chitosan increased the family Veillonellaceae abundance and
included the Mistsuokella, Schwartzia, and Megasphaera generaas. The Escherichia coli species
were not affected by supplementation of the chitosan which has antimicrobial properties
meanwhile levels of the post-inoculation pathogen in the vessels followed the same decay
pattern to all feeds [56].

The activities of chitosanase and chitinase have been defined in some ruminal protozoa
and bacteria [87]. Especially, for the degradation of the chitosan, Clostridium tertium ChK5
two strains of the bacteria in the rumen have been recognized as the utmost active species
of bacteria [88].

Moreover, Kong et al. [48] reported that chitosan and chitooligosaccharides have vital
antimicrobial properties. Because of these properties, chitosan is not recommended in high
doses in order to avoid any side effects on the normal function of the rumen [55].

In rumen fermentation chitosan upsurge the concentration of the lactate and the bac-
teria which utilize the lactate including Veillonella, Selenomonas, and Magasphaera genus
could elucidate a certain degree of upsurge propionate production as a fermentation prod-
uct. Therefore, chitosan did not change the production of total volatile fatty acid but
considerably transferred the pattern of fermentation from acetate to propionate [89]. This
fermentation change pattern was the chief anti-methanogenic motorist for chitosan am-
plifying 2/3 of the noted reduction in methanogenesis. Consequently, chitosan reduced
the methane and volatile fatty acid ration showing that high energy was taken for prod-
ucts of fermentation. Araujo et al. [54] concluded that up surging of chitosan addition
(150 mg/g/BW) in steer’s feed diet stimulated a linear upsurge in propionate production
in the rumen, glucose level in blood and digestibility of dry matter excluding dry matter
intake. However, it has been reported that intraruminal infusion of propionate can harm
feed intake and milk fat concentration [90].

Belanche et al. [56] stated that chitosan addition to the diet did not affect the population
of bacteria, protozoa, and methanogens. In addition, no impact of the chitosan was observed
on the volatile fatty acid production and the activity of different enzymes, proposing
that rumen fermentation was not affected by the inclusion of the chitosan in feed. The
chitosan polymers which have a chief antimicrobial mode of action are defined due to
their effect on the cell permeability because of the interaction between the polycationic
chitosan (R-NH3

+), and the electronegative charges on the microbial surfaces when the
pH of the rumen is below the molecule’s pKa (6.3–6.5) [48]. These electrostatic relations
endorse peptidoglycan hydrolysis in the wall of the microorganism and eventually cell
lysis [91]. Subsequently, the layer of the peptidoglycan is more reachable in gram-positive
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than in gram-negative bacteria, chitosan microbial property tended to cause a reduction
in the abundance of the former bacterial group courtesy of the latter one. Consequently,
chitosan alters important shifts in the bacterial community structure, encouraging a less
diverse community. Certainly, chitosan reduced the abundance of Fibrobacter and Firmicutes,
however, upsurge in Proteobacteria (+0.71 log) and Bacteroidetes (+0.14 log) abundances, such
as most of the bacteria belonging to amylolytic bacteria. The change of amylolytic bacteria
to fibrolytic bacteria could elucidate the higher activity of amylase noted in vessels fed
chitosan feed, and therefore, the greater production of the abundance of propionate and
lactate. Furthermore, the results showed that variations in bacterial community structure
persuaded by chitosan were positively associated with upsurging lactate levels and low
pH, proposing that the chitosan mode of action depends on pH. The characteristics of
hydrophobic and chelating reactions have been defined as key facets of the antimicrobial
activity of chitosan when pH is higher than pKa [48].

Earlier research concluded that chitosan (136 mg/kg-1BW in vitro experiment forage
diet) inclusion in the diet has a negative impact on the total tract NDF and dry matter
digestibility in sheep [53,62]. The main cause could be an adverse effect of chitosan
on protozoa in the rumen [62]. Belanche et al. [56] further stated that chitosan has also a
negative effect on the abundance of cellulolytic bacteria in the rumen, including Butyrivibrio,
Ruminococcus and Fibrobacter, and hemicellulolytic bacteria including Eubacterium. The
finding stated that this change in the bacterial community tended to be positively related to
the level of total bacteria and could recompense the lower abundance of fibrolytic bacteria.
So, the noted reduction of gram-positive bacteria and upsurge in the gram-negative belongs
to fibrolytic bacteria and amylase activity appears to support the idea that the mode of
action of chitosan depends on electrostatic interaction with the cell wall of bacterial [91].
Otherwise, the potential chitosan hydrolysis occurred by amylases [92] could also favor the
proliferation of those bacteria able to use chitosan as an energy source leading to alter in
rumen fermentation product and bacterial community structure. Therefore, more research
is required to investigate which bacteria species in the rumen are efficiently capable of
utilizing chitosan as an energy source.

5. Supplementation of Chitin and Chitosan and Its Impact on Performance
of Ruminants

In dairy cows, higher milk production depends on the energy requirement of dairy
cows and proper energy requirement is among the greatest challenge [52]. To overcome this
challenge most of the studies suggested using dietary additives supplementation, to im-
prove the rumen digestion process. The most abundant used feed additives in animal diets
are primary substances with antimicrobial activity, mainly ionophore, which has been suc-
cessful in surging protein efficiency and energy utilization [93]. The use of antibiotics in the
diet of the animal, however, is facing decreased social acceptance due to possible residues
in animal products and the development of resistant strains of bacteria [94]. Goiri et al. [55]
stated that chitosan can be used as a rumen fermentation modulator and digestion process.
In addition, chitosan is mostly used in medicine and for the preservation of food due to its
antimicrobial activity and is also a non-toxic and biodegradable biopolymer. Chitosan is
obtained by the deacetylation of chitin, the most plentiful biopolymer in the world after
cellulose, and it is a key component of the exoskeleton of crustaceans and insects [48].
Goiri et al. [53] stated that the inclusion of chitosan prevents in vitro bio-hydrogenation,
and upsurges unsaturated fatty acids levels in Rusitec® assay though in their other study
Goiri et al. [53] showed that the concentration of propionate in rumen increased, the con-
centration of ammonium reduced and no impact of chitosan inclusion was observed on
feed intake and total tract digestibility in sheep. An alternative approach to overcome the
energy requirements of the animals producing high milk is to use feeds with high energy
density, such as those rich in lipids. Jenkins et al. [95] stated that in animals feed lipids
have higher energy density and may influence the rumen fermentation, changing the fatty
acid profile in milk.
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Chitosan is obtained from chitin (a by-product of the fishing industry, especially
from shrimp, lobster, krill, and crab) through deacetylation, the second most plentiful
biopolymer in nature. Furthermore, Dias et al. [57] reported that chitosan is non-toxic,
biodegradable, and has been recognized by US Food and Drug Administration (2012) to
use in food. Numerous chitosan applications were reviewed by Senel and Mcclure [73];
lately, chitosan can be used in silage preparation as an inoculant due to its antimicrobial
property [37] and provided as a rumen modulator to confined beef cattle [54] and dairy
cows [58] with promising results. Though the antimicrobial mechanism of chitosan is not
fully explicated, the intracellular leakage mechanism is the most accepted theory by the
scientific community [48]. Dias et al. 2017 [57] reported that positively charged chitosan
attaches to the negatively charged bacterial surface, changing the permeability of the
membrane (hydrolysis of peptidoglycans), resulting in intercellular component leakage
and thus cell death. Henry et al. [96] investigated that chitosan supplementation to beef
cattle with a most-forage diet improved the digestibility of neutral detergent fiber, acid
detergent fiber, and DM. These authors evaluated the influence of chitosan on in vitro
batch cultures and also defined higher production of total volatile fatty acid for batches
with chitosan compared to those with monensin. Furthermore, Belanche et al. [56] stated
that in a rumen that chitosan transferred the fermentation pattern from the production of
acetate towards propionate. Therefore, it is predicted that the supplementation of chitosan
to grazing cattle should be beneficial for the digestibility of fiber, pasture intake, and rumen
fermentation. Furthermore, the speed of concentrate intake of grazing cattle may change
rumen fermentation by suddenly reducing the pH of the rumen and therefore impairing
rumen fermentation. Goiri et al. [55] investigated upsurging different concentrations of
chitosan in vitro trials and observed that chitosan up surged pH in fermentation batches
having concentrate to forage mixture of 20:80. This study was conducted to study the effect
of higher doses of chitosan feed intake, rumen fermentation, total apparent digestibility
microbial protein synthesis, nitrogen utilization. and urea and creatine metabolism of
grazing beef cattle (Table 1).

Table 1. Effects of the chitosan/chitin inclusion in diets of ruminants on dry matter intake, digestibil-
ity, and rumen fermentation.

Chitosan/Chitin
Trial Animal
Model and
Duration

Dose Substrate/Feed Results Reference

Chitosan Sheep lambs Santa 0, 136, and
272 mg/kg of BW Diet

No effect on feed
intake, BW, and FC.
Improved pH and

fatty acid composition
in meat, improved

meat quality

[97]

90% deacetylation Dairy cows 0 and 2% TMR

No effect on nutrient
digestibility, affect

rumen fermentation
pattern, reduced

methane production

[98]

Chitosan Balady male goats
(120 days)

0.2% (2 kg/ton
concentrate)

Concentrate diet
3%

Chitosan increases
ruminal ammonia

nitrogen, no effect on
VFA levels, no effect

on total protozoal
count

[99]
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Table 1. Cont.

Chitosan/Chitin
Trial Animal
Model and
Duration

Dose Substrate/Feed Results Reference

Chitosan sucinate
deac.75%

black and white
breed dairy cow 0% and 2% Feed

Improved blood
physiological
condition and
metabolism

[100]

Chitosan Deac.
85% Dairy cows 0.500, 1000, 1500,

2000 mg/kg TMR
Improved DMI intake,

milk production,
antioxidant capacity,

[101]

Chitosan Sheep (45 days) 0 and 136 mg/kg
of BW

Alfalfa hay and
concentrate at

50:50

Chitosan reduce NDF
apparent digestibility,

ruminal NH3-N
concentration and
modulates ruminal

and fecal fermentative
activity

[52]

Chitosan

Feedlot lambs
Santa Inês

crossbred sheep
(90 days)

136 mg and 272 mg
chitosan/kg BW

Roughage to
concentrate ratio at

50:50

Chitosan did not affect
the DM intake,

improved digestibility.
No effect was

observed on weight
gain, carcass weight

not influenced

[102]

Chitosan dairy cow
(84 days)

0, 50, 100 and
150 mg/kg BW

Corn
Silage-concentrate

60:40

Chitosan shifted
rumen fermentation,
improved nutrient

digestibility
andpropionate
concentrations

[53]

Chitosan dairy cow
(84 days) 0 and 4 g/kg ofDM Corn silage-to con-

centrateratio50:50

Improved feed e
ciency, increased milk

UFAconcentration
[51]

Chitosan Cattle (25 days)

0, 2.0 g/kg
chitosan (CH)of
DM. Wholeraw
soybean(WRS)

163.0 g/kg DM;
andCH + WRS

Corn silage
toconcentrate

ratio50:50

Chitosan improved
nutrient digestion

anddecrease DMI and
reduce nitrogen
excreted infeces

[26]

Chitosan Cattle (105 days) 0, 400, 800, 1200 or
1600 mg/kg DM

Grazing
Urochloabrizantha
andconcentrate at
150 g/100 kg of

LW

Chitosan increased
DMI and digestibility,

propionate
concentration and

microbial crudeprotein

[56]

Chitosan Dairy cow
(84 days)

50, 100 and
150 mg/kg BW

Corn silage
toconcentrate

ratio50:50

Improved nutrient
digestibility

withoutaltering
productive

performance of dairy
cows

[58]

Chitosan dairy cow
(98 days)

0, 75, 150,
225 mg/kg BW

Corn silage
toconcentrate

ratio63:37

In dairy cattle works
like a modulator

ofrumen fermentation,
increasing milk yield,

propionate and
nitrogen utilization

[51]
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Table 1. Cont.

Chitosan/Chitin
Trial Animal
Model and
Duration

Dose Substrate/Feed Results Reference

Chitosan Cattle (21 days) 0.0, 0.5, and 1.0%
of DM

High-concentrate
(85%)

Lowconcentrate
(36%)

In vivo: No effect on
enteric

methaneemissions.
In vitro: Low
concentrate

substrateincreased
methane production

[95]

Chitosan deace.
95% HF cross 10 days 10 g kg−1 DM TMR

No effect on nitrogen
excretion, reduced

nutrient digestibility
[50]

Chitosan deace
92%

Cross breed
Heifers 0, 1.5, 3 g/kg DMI TMR

No effect on rumen
fermentation, methane

production
[61]

Chitosan Cattle (84 days) 150 mg/kg BW
Maize

silage:concentrate
ratio50:50

Chitosan increase the
digestibility and
reduceacetate to

propionate relation

[59]

Chitosan Dairy cow
(92 days)

0 or
4 g/kgchitosan
(CH)or Whole

RawSoy-
bean(WRS) of

DM

Corn
silage:concentrate

ratio50:50

Improved ruminal
fermentation,

increased milk content
of UFA,

decreasesnutrient
intake, digestibility,

microbial
proteinsynthesis, and
milk yield. CH in diets

with nolipid
supplementation

improves
feedefficiency of
lactating cows

[50]

DM: Dry matter; DMI: Dry matter intake; OM: Organic matter; BW: Body weight; UFA: Unsaturated fatty acids;
IVDMD: In vitro dry matter digestibility.

6. Advantages of supplementing chitin and chitosan in ruminant diets

Different research studies revealed that supplementation of both chitin and chitosan
enhanced the production performance of dairy cows, and also improved the feed intake
and digestibility, rumen fermentation as well as a bacterial community [51,52]. In addition,
Abd- Elkader et al. [99] reported that chitosan supplementation in the diet of goats did not
affect the total ruminal protozoa count and motility, and no significant effect of chitosan
was found on the volatile fatty acid production in the rumen of goat. On the contrary,
Wencelova et al. [62] reported that the inclusion of chitosan in the diet of sheep decreased the
total ruminal protozoa and improved the rumen fermentation. Zhang et al. [102] concluded
that the inclusion of seleno-chitosan increased the growth rate, and wool production and
improved the blood parameters of the Chinese Marino sheep. Chitosan supplementation
to lambs improved the feed intake, digestibility of neutral detergent fiber, dry matter,
and crude protein and upsurged nitrogen balance and production of microbial protein.
However, no significant effect was observed on the production performance of the feedlot
lambs [103]. In vitro study conducted by Jayanegara et al. [104] showed that the use of
chitin from black soldier flies decreased methane emission. Nevertheless, different results
obtained could be attributed to the feeding systems, physiological conditions, as well as
ruminant species.
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7. Future applications of chitin and chitosan in ruminant feeding

Earlier studies showed that chitin and chitosan were mainly used in the diet of the
different ruminants to improve the dry matter intake, feed digestibility, rumen fermentation,
bacterial community, production performance, body weight gain, and other production
parameters. However, there is still ample information required to study the effects of
chitosan and chitin, particularly on the starved yaks, and to investigate the influence of
these additives on blood biochemistry hormones feed intake, feed digestibility, rumen
fermentation, microbiota, milk, meat production and growth rate and meat quality of the
yaks. In addition, different doses of diets may be used in different ruminants to study the
influence of chitin and chitosan on carbohydrate, lipid, and protein metabolism. Even with
full findings, furthermore, to the best of our knowledge, no study is conducted to study the
supplementation of chitin or chitosan on metabolomics in dairy cows, beef steers, sheep,
goats, and yaks.

8. Conclusions

Based on available evidence, there is a strong impression that the inclusion of chitin
and chitosan in diets of ruminants including dairy cows, beef cattle, goats, and sheep
has a beneficial effect on meat and milk production, feed intake, and digestibility, rumen
fermentation, rumen pH, bacterial diversity, growth rate, and wool yield. Their effects can
be remarkable from a nutritional point of view, especially their ability to protect against
degradation in the rumen, production of less ammonia nitrogen, and greater ability to
bypass protein to the lower-gut. These qualities add to improved fermentation in the
rumen by producing more propionic acid and less methane. Most importantly, enhancing
ruminant production i.e., meat, milk, as well as wool yield in small ruminants. Besides,
chitin and chitosan have immune-modulatory and antimicrobial properties when used as
feed additives.

There is promising evidence that chitosan and chitin can be used as additives in
livestock feed and that well-designed feeding interventions focusing on these compounds
in ruminants are highly encouraged.
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