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Abstract: Cellulase enzymes attract a lot of research due to their industrial application. Diverse
cellulase-producing organisms and substances that induce cellulase are highly sought after. This
study aimed to evaluate the effect of different inducer sources on cellulase production by white rot
fungi P. ostreatus CGMCC 3.7292 and P. chrysosporium CGMCC 3.7212 under submerged fermentation
employing a completely randomized experimental design. The different inducer sources tested were
nitrogen (yeast, potassium nitrate, sodium nitrate, ammonium sulphate, aqueous ammonia and urea),
carbon (malt extract, glucose, fructose, carboxymethylcellulose, starch and xylose) and agro-biomass
(stevia straw, wheat straw, oat straw, alfalfa straw, corn cobs and corn stover). These inducer sources
strongly impacted enzyme activities by P. ostreatus CGMCC 3.7292 and P. chrysosporium CGMCC
3.7212. The suitable nitrogen and carbon inducer sources for cellulase activity by P. ostreatus and
P. chrysosporium were yeast (1.354 U/mL and 1.154 U/mL) and carboxymethylcellulose (0.976 U/mL
and 0.776 U/mL) while the suitable agro-biomass were wheat straw (6.880 U/mL) and corn stover
(6.525 U/mL), respectively. The least inducer sources in terms of nitrogen, carbon and agro-biomass
for cellulase activity by P. ostreatus and P. chrysosporium were urea (0.213 U/mL and 0.081 U/mL),
glucose (0.042 U/mL and 0.035), xylose (0.042 U/mL and 0.035 U/mL) and stevia straw (1.555 U/mL
and 0.960 U/mL). In submerged fermentation, the cellulase enzyme activity of P. ostreatus in response
to various inducer sources was relatively higher than P. chrysosporium.

Keywords: submerged fermentation; P. ostreatus; P. chrysosporium; inducer sources; agro-biomass;
cellulase enzyme; basidiomycetes

1. Introduction

Cellulase of microbial origin has become a crucial biocatalyst due to its intricate nature
and extensive industrial uses. Cellulases refer to a group of glycosyl hydrolases that
includes endoglucanase, exoglucanase and β-glucosidase, acting in a synergistic way to
promote the hydrolysis of cellulose into glucose [1]. Cellulases are inducible enzymes
synthesized by many microorganisms, including filamentous fungi and bacteria [2,3].
Among microbes, the genera of Clostridium, Cellulomonas, Thermomonospora, Trichoderma and
Aspergillus are the widely considered cellulase producers [4]. White rot basidiomycetes are
a group of wood-decaying fungi that can be exploited as an alternative and safe source for
extracellular cellulolytic enzymes. Production of cellulase by white rot basidiomycetes is
known to be influenced by several factors, such as species [5], the composition of the growth
medium (carbon, nitrogen) [6], type of cultivation (solid state cultivation or submerged
cultivation) [7], culturing condition (pH, temperature, aeration, humidity) [8] and the
nature of the substrate (purified, lignified or non lignified) [9], among others.
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Pleurotus spp. and Phanerochaete spp. are two of the most widely studied basid-
iomycetes species for cellulolytic enzyme assessment under different fermentation pro-
cesses. Submerged fermentation (SmF) is the fancied method of cultivation because it is
currently the most conveniently used in industry for the commercial production of cellulase
enzymes [10]. Moreover, Elisashvili et al. [11] reported that the production of hydrolytic
enzymes is favored by submerged fermentation compared to solid-state fermentation pro-
cesses. Several species of P. ostreatus and P. chrysosporium are distributed across different
geographical regions. Various independent studies have also been conducted to ascer-
tain and verify the factors that affect cellulolytic enzymes production involving several
species of these fungi [12–15]. In China, numerous Pleurotus and Phanerochaete species have
been isolated, characterized and exploited for their potential to produce cellulase, among
other uses. However, a detailed investigation of the existing literature revealed a paucity
of information regarding the cellulase production from P. ostreatus CGMCC 3.7292 and
P. chrysosporium CGMCC 3.7212 in response to different inducer sources.

The purpose of this investigation was thus to study the effect of different inducer
sources, i.e., nitrogen (yeast, potassium nitrate, sodium nitrate, ammonium sulphate, aque-
ous ammonia and urea), carbon (malt extract, glucose, fructose, carboxymethyl cellulose,
starch and xylose) and agro-biomass (stevia straw, wheat straw, oat straw, alfalfa straw,
corn cobs and corn stover) under conditions of submerged fermentation (SmF) on cellulase
production by P. ostreatus CGMCC 3.7292 and P. chrysosporium CGMCC 3.7212. This study
sought to fill the existing knowledge gap, and the results obtained would help to identify
suitable inducer sources that favor cellulase production by these fungi species. This would
be the first study on cellulase production by P. ostreatus CGMCC 3.7292 and P. chrysosporium
CGMCC 3.7212 under submerged fermentation in response to different inducer sources.

2. Materials and Methods
2.1. Organisms and Inoculum Preparation

Basidiomycete white-rot fungi, P. ostreatus CGMCC 3.7292 and P. chrysosporium
CGMCC 3.7212 were acquired from the China Agricultural University in Beijing, China.
Fungi culture were maintained on malt extract agar slants at 4 ◦C. Fungal inoculants were
prepared by growing fungi at 24 ± 1 ◦C in 200 mL flasks containing 100 mL of the following
nutrient medium: glucose,10.0 g/L; NH4NO3, 1.0 g/L; KH2PO4, 0.8 g/L; Na2HPO4, 0.2 g/L;
MgSO4·7H2O, 0.5 g/L; yeast extract, 2.0 g/L. The pH of the medium was altered to 6.0
using 2 M NaOH before sterilization for 20 min at 121 ◦C. After culturing fungi for 6 days,
mycelial pellets were harvested and homogenized with a Waring laboratory blender.

2.2. Cultivation Conditions
2.2.1. Enzyme Activities with Carbon Inducer Sources

Submerged fermentation of the fungi was performed in a static condition at 24 ± 1 ◦C
in 200 mL flasks containing 50 mL of standard medium: carbon source 10.0 g/L; NH4NO3,
1.0 g/L; KH2PO4, 0.8 g/L; Na2HPO4, 0.2 g/L; MgSO4·7H2O, 0.5 g/L. The medium was
adjusted to pH 6.0 with 2 M NaOH before sterilization at 121 ◦C for 20 min. To elucidate
the effect of different carbon inducers on enzyme activities, equal amounts (10 g/L) of
malt extract, glucose, fructose, carboxymethylcellulose, starch and xylose procured from
Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China) were used as substitute carbon
sources. About 3 mL of homogenized fungus were inoculated into 200 mL flasks containing
50 mL of standard medium and incubated at 24 ± 1 ◦C for 10 days. Controls without carbon
were run in parallel. All experiments had four replications. After 10 days of incubation,
when the cultures had completed the beginning, middle and end of the logarithmic phase
and at the stationary phase of growth, solid fungal mass was separated by filtration
using Whatman filter paper, followed by centrifugation (14,000× g; 15 min) at 4 ◦C. The
supernatants obtained after fungi mass separations were assayed to determine cellulase
enzyme activity.
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2.2.2. Enzyme Activities with Nitrogen Inducer Sources

Nitrogen inducers were appraised similarly by substituting ammonium nitrate
(NH4NO3) with other nitrogen inducers such as yeast, potassium nitrate (KNO3), sodium
nitrate (NaNO3), ammonium sulphate ((NH4)2SO4), ammonium hydroxide (NH4OH) and
urea (CH4N2O) procured from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).
The medium was supplemented with all nitrogen-containing inorganic and organic sub-
stances at a final concentration of 20 mM. The pH of the medium was altered to 6.0 using
2 M NaOH before sterilization for 20 min at 121 ◦C. About 3 mL of homogenized fungus
mycelium were transferred into 200 mL flasks containing standard medium and incubated
at 24 ±1 ◦C for 10 days. There were parallel runs of controls without nitrogen. All experi-
ments had four replications. After 10 days of incubation, solid fungal mass was separated
by filtration using Whatman filter paper, followed by centrifugation (14,000× g; 15 min)
at 4 ◦C. The supernatants obtained after biomass separations were assayed to determine
cellulase enzyme activity.

2.2.3. Enzyme Activities with Agro-Biomass Inducer Sources

The agro-biomass substrates stevia straw, wheat straw, oat straw, alfalfa, corn cobs
and corn stover were procured from the cereal crop test field of Yangzhou University,
Jiangsu, China. They were firstly dried at 60 ◦C in a drying oven (Shanghai Jinghong
Co., Ltd., Shanghai, China) for 24 h and chopped into miniature pieces using a chopper
(Zhengzhou Yike Heavy Machinery Manufacturing Co., Ltd., Henan, China). The chopped
agro-biomasses were ground into lesser particles in a hammer mill (Shanghai Jinghong
Co., Ltd., Shanghai, China) and separated by a 0.45 mm (40 meshes) sieve. The portion
that made it through the sieve was used for the medium preparation in the submerged
fermentation (SmF). Submerged fermentation of agro-biomass was carried out in a static
condition at 24 ◦C in 200 mL flasks containing 50 mL of the above-mentioned standard
medium with 40 g/L of agro-biomass as carbon substituents. The pH of the medium
was altered to 6.0 using 2 M NaOH before sterilization for 20 min at 121 ◦C. Three mL
of mycelial homogenate was transferred into the flasks containing the media with agro-
biomass. All experiments had four replications. After 10 days of incubation, fungal solid
mass and agro-biomass were separated by filtration through Whatman filter paper. This
was followed by centrifugation (14,000× g; 15 min) at 4 ◦C. The supernatants obtained after
biomass separations were assayed to determine cellulolytic enzyme activity.

2.3. Enzyme Assay

Endoglucanase activity was employed to assess the cellulase enzyme activities. En-
doglucanase activity (carboxymethyl cellulase; CMCase) was measured as described pre-
viously [16] using a reaction mixture having 1 mL of 1% carboxymethyl cellulose (CMC)
in 0.05 M citrate acetate buffer (pH 5.0) and aliquots of appropriately diluted filtrate. The
reaction mixture was incubated at 50 ◦C for 30 min. The reducing sugar produced was
determined by the dinitrosalicylic acid (DNS) method and measuring the absorbance at
540 nm using a Multiskan Go UV-Vis spectrophotometer (Thermo Fisher Scientific Oy,
Ratastie 2, 01620 Vantaa, Finland). Reducing sugar content was determined via a glucose
standard curve. One unit (IU) of endoglucanase activity was defined as the amount of
enzyme releasing one µmole of reducing sugar per min. Enzyme yield was expressed
as U/mL.

2.4. Statistical Analysis

The results of the enzyme activities are the mean ± SD (standard deviation) values of
the four replicates. The means were compared by analysis of variance (ANOVA). One-way
ANOVA followed by the Duncan test was employed to assess the effect of each inducer
source on the enzyme production by each white rot fungi. Differences were considered
significant at p < 0.05. Data analysis was done using GraphPad Prism 5 software (GraphPad
Software, Inc., San Diego, CA, USA). Error bars in all figures referred to the SD of four
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replicates values of each treatment. Prior to conducting the ANOVA, the assumption of
homogeneity of variances was tested and satisfied based on Levene’s test (p > 0.05).

3. Results
3.1. Cellulase Activity of White Rot Fungus P. ostreatus and P. chrysosporium under Submerged
Fermentation on Different Nitrogen Inducer Sources

Significant differences were recorded in the cellulase activity of P. ostreatus on the
different nitrogen inducers observed in the present study, as shown in Figure 1A. Yeast
recorded significantly the highest cellulase activity (1.354 U/mL), while CH4N2O recorded
the least cellulase activity (0.213 U/mL). Even though there was no significant difference
between KNO3 and NaNO3, they did record comparatively a higher cellulase activity
(0.756 U/mL and 0.757 U/mL), respectively, compared to the (NH4)2SO4 (0.571 U/mL) and
NH4OH (0.444 U/mL). The cellulase activity of NH4OH (0.444 U/mL) was comparatively
lower compared to that of (NH4)2SO4 (0.571 U/mL). Significant differences were recorded
in the cellulase activity of P. chrysosporium on the different nitrogen inducers observed in
the study, as shown in Figure 1B. Yeast recorded significantly the highest cellulase activity
(1.154 U/mL), while CH4N2O, on the other hand, recorded the least cellulase activity
(0.081 U/mL) in the current study. Much as there was no significant difference between
the KNO3 and the NaNO3, they did record comparatively a higher cellulase activity
(0.557 U/mL and 0.556 U/mL, respectively) compared to the (NH4)2SO4 (0.371 U/mL) and
NH4OH (0.144 U/mL). The cellulase activity of NH4OH (0.144 U/mL) was comparatively
lower compared to that of (NH4)2SO4 (0.371 U/mL).
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Figure 1. (A) Cellulase activity of white rot fungus P. ostreatus under submerged fermentation on
different nitrogen inducers. Bars with different letters (a–e) are significantly different at p < 0.05.
(B) Cellulase activity of white rot fungus P. chrysosporium under submerged fermentation on different
nitrogen inducers. Bars with different letters (a–e) are significantly different at p < 0.05.

3.2. Cellulase Activity of White Rot Fungus P. ostreatus and P. chrysosporium under Submerged
Fermentation on Different Carbon Inducer Sources

As shown in Figure 2A, with the exception of glucose and xylose, which did not record
any significant differences in the activity of cellulase (0.042 U/mL and 0.042 U/mL), all the
other carbon inducers (fructose, 0.211 U/mL; malt extract, 0.694 U/mL; starch, 0.824 U/mL
and carboxymethylcellulose, 0.976 U/mL) considered in the study recorded significant
differences in cellulase activity of P. ostreatus with the carboxymethylcellulose recording the
highest cellulase activity. The cellulase activity of P. ostreatus on starch (0.824 U/mL) was
significantly higher compared to malt extract (0.694 U/mL) and fructose (0.211 U/mL). Fruc-
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tose, however, recorded significantly lower cellulase activity (0.211 U/mL) compared to the
malt extract (0.694 U/mL). With the exception of glucose and xylose, which did not record
any significant differences and the least cellulase activity (0.035 U/mL and 0.035 U/mL),
all the other carbon sources (fructose, 0.181 U/mL; malt extract, 0.536 U/mL; starch,
0.624 U/mL and carboxymethylcellulose, 0.776 U/mL) considered in the study recorded
significant differences in cellulase activity of P. chrysosporium, with the carboxymethylcellu-
lose recording the highest cellulase activity, as shown in Figure 2B. The cellulase activity
of P. chrysosporium on the fructose was significantly lower (0.181 U/mL) compared to the
starch (0.6204 U/mL) and malt extract (0.536 U/mL). On the other hand, starch recorded a
significantly higher cellulase activity (0.624 U/mL) than malt extract (0.536 U/mL).
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Figure 2. (A) Cellulase activity of white rot fungus P. ostreatus under submerged fermentation on
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(B) Cellulase activity of white rot fungus P. chrysosporium under submerged fermentation on different
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3.3. Cellulase Activity of White Rot Fungus P. ostreatus and P. chrysosporium under Submerged
Fermentation on Different Agro-Biomass

Significant differences were recorded in the cellulase activity of P. ostreatus on all the
agro-biomass observed in the study under submerged fermentation, as shown in Figure 3A.
Wheat straw recorded significantly the highest cellulase activity (6.880 U/mL), while stevia
straw recorded the least cellulase activity (1.555 U/mL) in the current study. Corn stover
did record comparatively a higher cellulase activity (6.342 U/mL) compared to the oat straw
(5.247 U/mL) and alfalfa straw (3.172 U/mL). Although the cellulase activity of the alfalfa
straw (3.172 U/mL) was significantly higher than that of the corn cob (2.037 U/mL), it was
not comparable to that of the oat straw (5.247 U/mL). Significant differences were recorded
in the cellulase activity of P. chrysosporium on all the agro-biomass observed in the study
under submerged fermentation, as shown in Figure 3B. Corn stover recorded significantly
the highest cellulase activity (6.525 U/mL), while stevia straw recorded the least cellulase
activity (0.960 U/mL). Wheat straw recorded comparatively a higher cellulase activity
(5.550 U/mL) compared to the oat straw (4.240 U/mL), alfalfa straw (2.025 U/mL), and
corn cob (1.617 U/mL). Although the cellulase activity of the alfalfa straw (2.02 U/mL) was
significantly higher than that of the corn cob (1.617 U/mL), it was not comparable to that
of the oat straw (4.240 U/mL).
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4. Discussion

Naturally, nitrogen stimulates fungal cell growth, enhancing biomass formation and
cellulase enzyme expression [11]. P. ostreatus and P. chrysosporium fungi used in the current
study showed a similar response to different nitrogen sources with respect to cellulase
activity. The highest enzyme activity from the nitrogen sources considered in the study was
recorded in the yeast extract. Yeast extract is the sole complex source of nitrogen among
those tested. This observation is coherent with the findings of Chuwech et al. [17] and
Jonathan and Adeoyo [18]. The enhanced enzyme production by yeast extract, according to
Jonathan and Fasidi [19], could be attributed to its chemical composition: high amino acid
and vitamin. That is, nitrogen sources: nitrate-based vis-à-vis ammonium-based equally
has influence on the cellulase enzyme activity. This gives a basis for the observed higher
cellulase activity of the nitrate-based compound (potassium nitrate and sodium nitrate)
compared with the ammonium-based compounds (ammonium sulphate, ammonium
hydroxide, and urea). Similarly, Rajmane and Korekar [20] indicated that nitrogen sources
like sodium nitrate stimulated higher cellulase activity while phosphate and sulphate
ammonium-based nitrogen were proven to hamper cellulase activities. This may be due to
the tendency of the mycelium to absorb the ammonium ions, which resulted in the lowering
of the pH, which subsequently reduced the production of cellulase enzymes [21]. Potassium
nitrate and sodium nitrate enhancing cellulase activity could be due to the simplicity of
the nitrogen sources utilized for the biosynthesis of cellulase enzymes. Though adding
yeast as the sole organic nitrogen source resulted in increased cellulase enzyme activity
in this study, the authors share the same view with Hammad et al. [22], who explained
that organic nitrogen sources are not effective substituents for inorganic nitrogen sources
because they are costly. The cellulase activity of both fungi on urea which recorded the
least cellulase activity is similar to the reports of both Elsebaay et al. [23] and Sethi and
Gupta [24].

Much as carbon is known to have a positive effect on cellulase production [25], the
selection of carbon-based materials/substrates from plant polymers and their degraded
products/derivatives in the assessment of enzymatic activity was attributed to their abun-
dance or availability and cost-effectiveness compared to other sources. Therefore, carbon
sources such as malt extract, glucose, fructose, carboxymethylcellulose, starch and xy-
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lose used in the current study were intentional. Among the carbon sources tested in the
study, carboxymethylcellulose produced the highest cellulase activity. This observation
agrees with the study of Niranjane et al. [26], in which carboxymethylcellulose as a carbon
substrate proved to be the strongest inducer of cellulase activity. Similarly, crystalline
cellulose was noted to be the best carbon source and to have the highest cellulase activity
among the three substrates evaluated among all filamentous fungi [27]. The observed high
performance of fungi on carboxymethylcellulose, according to Kobakhidze et al. [28], may
be due to the presence of several inducers capable of initiating cellulase production and
catalyzing the hydrolysis of cellulose to simple assimilable sugars.

Moreover, Yoav et al. [29] and Suzuki et al. [30], respectively, stated that the cellulases
of P. ostreatus and P. chrysosporium are inducible enzymes. According to Elisashvili et al. [31],
these filamentous white rot basidiomycetes secrete cellulases with high efficiency upon
cultivation in the presence of carboxymethylcelluloses. Most studies also have appreciated
cellobiose as a primary product of cellulose degradation that considerably induces cellulase
production in most filamentous fungi [6]. On a transcriptional level, cellobiose is known
to induce transcriptional factor Clr-Clr1which subsequently induces the expression of the
transcriptional factor Clr-2 responsible for the expression of significant cellulase genes [32].

Cellulase enzyme activity of the starch was higher than fructose, glucose, and xy-
lose. Filamentous fungi possess starch-active enzymes [33] whose expression is known to
be induced by starch as well as its intermediary metabolite maltose [34,35]. This, there-
fore, might explain the enhanced cellulase activity observed with starch. Cellulase from
filamentous basidiomycetes fungi is induced by cellulose/polysaccharide-containing mate-
rials [28,36]. Thus, since malt extracts are heterogeneous polysaccharides [37], their ability
to elicit increased cellulase activity compared to fructose¸ glucose, and xylose may originate
from several cellulase-inducing metabolites generated during its degradation. In various
metabolic processes, glucose serves as a significant energy. However, the efficiency of
filamentous white rot fungi to secrete cellulase is informed by the presence of a cellulase
intermediary metabolite like cellobiose. In this study, glucose and xylose demonstrated
the least cellulase activity. Similarly, Elisashvili, Khardziani, Tsiklauri and Kachlishvili [31],
Kobakhidze et al. [38], and Cai et al. [39] reported the least cellulase activity when white
rot fungi were cultured on glucose as the sole carbon source. Similarly, Salmon, et al. [40]
analyzed the effect of different carbon sources, including xylose, as inducers of cellulase
activity by the filamentous basidiomycete fungi Ganoderma applanatum mr-56 and reported
that xylose has the least cellulase activity, which is coherent with the observation made in
this study. According to Lynd et al. [41] and Suzuki et al. [42] readily, metabolizable carbon
sources turn to lower/suppress cellulase synthesis. Thus, the comparatively reduced cellu-
lase activity in the presence of glucose and xylose in the current study could be attributed
to the repression of the filamentous white rot fungi due to the glucose concentration in the
extracellular media [6,43] since the readily available glucose is utilized by the fungi to meet
its energy requirement and not an intermediary metabolite.

From a genetic perspective, glucose, in the presence of filamentous fungi, usually
serves as a repressor of cellulolytic genes [44]. That is, the cellulase regulatory mechanism
is influenced by the presence of glucose as it acts as a negative feedback mechanism which
suppresses cellulase induction [32]. Aslam et al. [45] monitored cellulase activity in the
culture filtrate, which had only glucose as a carbon source in the medium and witnessed
very low levels to almost zero activity. Muthuvelayudham and Viruthagiri [46] explained
that glucose is the end product of carbohydrate hydrolysis by cellulases, and glucose in
the medium shows the end product inhibition. In other words, although glucose may
promote mycelia growth, it is not a good inducer of cellulase enzyme. Cellulase enzyme
activity on fructose by both fungi was thus higher than glucose and xylose. Similarly,
Mehboob et al. [47] observed an increased cellulase enzyme activity when filamentous
fungi were grown in a wheat straw-based medium with additional fructose than glucose.
Although glucose, xylose, and fructose are easily metabolizable sugar, the cellulase activity
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of fructose being higher than glucose and xylose suggests the absence or low levels of
repressors during fructose metabolism.

The suitability of common agricultural biomass wastes as carbon sources for cellulase
production by P. ostreatus and P. chrysosporium revealed that cellulase activity levels varied
among the substrates, suggesting that the composition of these substrates induces different
quantities (levels) of enzymes. In accordance with the general observations [7,48–50],
P. ostreatus and P. chrysosporium produced cellulases when grown on different lignocellulose
agro-biomass. The capacity of these basidiomycetes filamentous fungi to produce these
enzymes is vital in furnishing the growing cultures with a carbon source essential for their
biosynthetic activity. The substrate not only provides a supply of carbon but also generates
the required inducing compounds for the filamentous fungi [51].

In the present study, cellulase activity by P. ostreatus and P. chrysosporium on wheat
straw, oat straw, and corn stover were generally high. The corn stover used in this study
referred to the above-ground structure; the stalk with its leaves after harvesting of the main
crop. Similarly, among the several agro-biomass tested, wheat straw, corn stover, and oat
straw exhibited enhanced cellulase activity by filamentous fungi Morchella spongiola [52],
Aspergillus terreus [25], and T. reeesi [53], respectively. The variation in terms of the level
of cellulase activity observed in the present study may be due to the variation in agro-
biomass compositions. These findings were in agreement with Elisashvili et al. [54], who
mentioned that the nature of the lignocellulosic biomass substrate had a positive impact on
enzyme secretion. The level of cellulase activity of the corn cob was lower compared to the
alfalfa, oat straw, wheat straw, and corn stover. Similarly, among several agro-biomasses,
Reddy et al. [55], Ganash et al. [56], and Govumoni et al. [57], respectively, reported the
least cellulase activity when Aspergillus niger, P. ostreatus, and Phanerochaete chrysosporeum
(MTCC 787) were grown on corn cobs. Corn cob’s inability to produce higher cellulase
compared to the other agro-biomass is due to its structural nature. Corn cob has a dense or
compact micro-structural carbohydrate configuration [58]. As such, compared to the other
agro-biomass, the fungi mycelium could not easily penetrate and access the hydrolyzable
fibers, which are essential for cellulase enzyme biosynthesis. Furthermore, Reyes et al. [59]
stated that better contact with the cellulosic material could initiate improved enzyme
production associated with cellulose hydrolysis.

Among the agro-biomasses considered in the study, the cellulase activity of stevia
was the least. The logical explanation is that stevia biomass mainly consists of soluble sug-
ars [60,61]. According to Amore et al. [62], genes encoding hydrolytic enzymes, including
cellulase implicated in plant cell wall breakdown in filamentous fungi, can be repressed
during the growth period in the presence of easily utilizable carbon substrate sources but
are induced/stimulated in the presence of cellulosic substrates (or product thereof) [63].
Authors, therefore, concur that besides stevia having a poly-carbohydrate composition,
it still has more easily assimilable sugars compared to other agro-biomass that would
serve as a carbon source and possibly repress cellulase activity. In general, the cellulase
enzyme activity of P. ostreatus in response to various inducers was relatively higher than
P. chrysosporium in submerged fermentation. The genomes of P. ostreatus are known to
encode more glycoside hydrolase family cellulase genes compared to P. chrysosporium [64].

5. Conclusions

It is clear from the present study that yeast and carboxymethylcellulose are suitable
nitrogen and carbon inducer sources of cellulase activity by P. ostreatus and the reference
culture P. chrysosporium under submerged fermentation, while the most suitable agro-
biomasses are wheat straw and corn stover, respectively. The least inducer sources in
terms of nitrogen, carbon, and agro-biomass for cellulase activity by both P. ostreatus and
P. chrysosporium were urea, glucose, xylose, and stevia straw, respectively. Further research
could focus on optimizing the various inducers aiming at higher enzyme activities by
P. ostreatus and P. chrysosporium.
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