Emerging Technologies for Enhancing Microalgae Biofuel Production: Recent Progress, Barriers, and Limitations
Abstract
:1. Introduction
2. Methodology
3. Recent Progress in Biofuel Production from Microalgae
3.1. Genetic Engineering for Improved Biofuel Production from Microalgae
3.2. Catalysts
3.2.1. Catalysts for Oil Extraction
Homogeneous Catalysts
Heterogenous Catalysts
3.2.2. Catalysts for Biodiesel Production
3.2.3. Nano-Additives
Microalgae Species | Nanoparticles | Harvesting Efficiency | Findings | Reference |
---|---|---|---|---|
Chlorella ellipsoidea | Iron oxide, Fe3O4 | 97% | The added nanoparticles enhanced the efficiency of harvesting microalgae, enabled fast implementation, and decreased energy and water usage during microalgae harvesting. Hence, magnetic separation appears to be a prevailing technique for optimal microalgae harvesting. | [93] |
Chlorella vulgaris | Iron oxide, Fe3O4 | 91% | The nanoparticles enhanced the microalgae harvesting process due to their prevailing efficiency and stability. | [94] |
Chlorella sp. | Magnetic iron oxide | 95% | A coating of dendrimer nanoparticles significantly enhanced the process of harvesting microalgae. Moreover, a positive correlation between microalgae harvesting and coating thickness was discovered. | [95] |
Chlorella ellipsoidea | Iron oxide, Fe3O4 | >95% | This study involved magnetic flocculant synthesis due to its ability to enhance harvesting efficiency without adversely affecting the environment. | [96] |
Chlorella sp. | Chitosan/magnetic nanoparticles | 99% | Not only did the nanoparticles attain a harvesting efficiency above 99% but they also did not result in any negative impacts on the growth rate of the microalgae. | [97] |
Chlorella vulgaris | Fe3O4 | 99% | Applying nanotechnology enabled the rapid harvesting of microalgae, where, in less than half a minute, about 99% of the microalgae cells were harvested. Additionally, the nanoparticles diminished the impacts of pH levels on the microalgae organic outputs. | [98] |
Nannochloropsis sp. | Fe3O4 | 97.9% | The added iron oxide nanoparticles led to an enhanced microalgal cell magnetophoretic separation. Additionally, there was no need to modify the pH levels, as they did not impact the microalgal harvesting efficiency. | [99] |
Nannochloropsis sp. | Nano-chitosan | 97% | The addition of nanochitosan as the flocculant led to an enhancement of 9% in the biomass recovery and increased the microalgal growth level by 7%. | [100] |
4. Barriers and Limitations
4.1. Techno-Economic Barriers
4.2. Environmental Barriers
5. Future Outlook
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mathimani, T.; Uma, L.; Prabaharan, D. Formulation of low-cost seawater medium for high cell density and high lipid content of Chlorella vulgaris BDUG 91771 using central composite design in biodiesel perspective. J. Clean. Prod. 2018, 198, 575–586. [Google Scholar] [CrossRef]
- Olabi, A.; Wilberforce, T.; Elsaid, K.; Sayed, E.T.; Maghrabie, H.M.; Abdelkareem, M.A. Large scale application of carbon capture to process industries—A review. J. Clean. Prod. 2022, 362, 132300. [Google Scholar] [CrossRef]
- Defying Expectations, CO2 Emissions from Global Fossil Fuel Combustion Are Set to Grow in 2022 by Only a Fraction of Last Year’s Big Increase-News-IEA. 2022. Available online: https://www.iea.org/news/defying-expectations-co2-emissions-from-global-fossil-fuel-combustion-are-set-to-grow-in-2022-by-only-a-fraction-of-last-year-s-big-increase (accessed on 27 September 2022).
- Harun, R.; Danquah, M.K.; Forde, G.M. Microalgal biomass as a fermentation feedstock for bioethanol production. J. Chem. Technol. Biotechnol. 2010, 85, 199–203. [Google Scholar] [CrossRef]
- Ho, S.-H.; Chen, W.-M.; Chang, J.-S. Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production. Bioresour. Technol. 2010, 101, 8725–8730. [Google Scholar] [CrossRef]
- Ghai, H.; Sakhuja, D.; Yadav, S.; Solanki, P.; Putatunda, C.; Bhatia, R.K.; Bhatt, A.K.; Varjani, S.; Yang, Y.-H.; Bhatia, S.K.; et al. An Overview on Co-Pyrolysis of Biodegradable and Non-Biodegradable Wastes. Energies 2022, 15, 4168. [Google Scholar] [CrossRef]
- Malhotra, M.; Aboudi, K.; Pisharody, L.; Singh, A.; Banu, J.R.; Bhatia, S.K.; Varjani, S.; Kumar, S.; González-Fernández, C.; Kumar, S.; et al. Biorefinery of Anaerobic Digestate in a Circular Bioeconomy: Opportunities, Challenges and Perspectives. Renew. Sustain. Energy Rev. 2022, 166, 112642. [Google Scholar] [CrossRef]
- Narisetty, V.; Zhang, L.; Zhang, J.; Sze Ki Lin, C.; Wah Tong, Y.; Loke Show, P.; Kant Bhatia, S.; Misra, A.; Kumar, V. Fermentative Production of 2,3-Butanediol Using Bread Waste—A Green Approach for Sustainable Management of Food Waste. Bioresour. Technol. 2022, 358, 127381. [Google Scholar] [CrossRef]
- Soares, J.F.; Confortin, T.C.; Todero, I.; Mayer, F.D.; Mazutti, M.A. Dark Fermentative Biohydrogen Production from Lignocellulosic Biomass: Technological Challenges and Future Prospects. Renew. Sustain. Energy Rev. 2020, 117, 109484. [Google Scholar] [CrossRef]
- Vignesh, P.; Jayaseelan, V.; Pugazhendiran, P.; Prakash, M.S.; Sudhakar, K. Nature-inspired nano-additives for Biofuel application—A Review. Chem. Eng. J. Adv. 2022, 12, 100360. [Google Scholar] [CrossRef]
- Dias, J.M.; Alvim-Ferraz, M.C.; Almeida, M.F. Comparison of the performance of different homogeneous alkali catalysts during transesterification of waste and virgin oils and evaluation of biodiesel quality. Fuel 2008, 87, 3572–3578. [Google Scholar] [CrossRef]
- Sakai, T.; Kawashima, A.; Koshikawa, T. Economic assessment of batch biodiesel production processes using homogeneous and heterogeneous alkali catalysts. Bioresour. Technol. 2009, 100, 3268–3276. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Shetti, N.P.; Reddy, K.R.; Nadagouda, M.N.; Park, Y.-K.; Aminabhavi, T.M.; Kwon, E.E. Synthesis of different biofuels from livestock waste materials and their potential as sustainable feedstocks—A review. Energy Convers. Manag. 2021, 236, 114038. [Google Scholar] [CrossRef]
- Kim, J.Y.; Jung, J.-M.; Jung, S.; Park, Y.-K.; Tsang, Y.F.; Lin, K.-Y.A.; Choi, Y.-E.; Kwon, E.E. Biodiesel from microalgae: Recent progress and key challenges. Prog. Energy Combust. Sci. 2022, 93, 101020. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Jagtap, S.S.; Bedekar, A.A.; Bhatia, R.K.; Patel, A.K.; Pant, D.; Rajesh Banu, J.; Rao, C.V.; Kim, Y.-G.; Yang, Y.-H. Recent Developments in Pretreatment Technologies on Lignocellulosic Biomass: Effect of Key Parameters, Technological Improvements, and Challenges. Bioresour. Technol. 2020, 300, 122724. [Google Scholar] [CrossRef]
- Mofijur, M.; Rasul, M.; Hassan, N.; Nabi, M. Recent Development in the Production of Third Generation Biodiesel from Microalgae. Energy Procedia 2019, 156, 53–58. [Google Scholar] [CrossRef]
- Mathimani, T.; Baldinelli, A.; Rajendran, K.; Prabakar, D.; Matheswaran, M.; van Leeuwen, R.P.; Pugazhendhi, A. Review on cultivation and thermochemical conversion of microalgae to fuels and chemicals: Process evaluation and knowledge gaps. J. Clean. Prod. 2018, 208, 1053–1064. [Google Scholar] [CrossRef]
- Saravanan, A.P.; Mathimani, T.; Deviram, G.; Rajendran, K.; Pugazhendhi, A. Biofuel policy in India: A review of policy barriers in sustainable marketing of biofuel. J. Clean. Prod. 2018, 193, 734–747. [Google Scholar] [CrossRef]
- Abishek, M.P.; Patel, J.; Rajan, A.P. Algae Oil: A Sustainable Renewable Fuel of Future. Biotechnol. Res. Int. 2014, 2014, 272814. [Google Scholar] [CrossRef] [Green Version]
- Gendy, T.S.; El-Temtamy, S.A. Commercialization potential aspects of microalgae for biofuel production: An overview. Egypt. J. Pet. 2013, 22, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Christenson, L.; Sims, R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol. Adv. 2011, 29, 686–702. [Google Scholar] [CrossRef]
- Khan, M.I.; Shin, J.H.; Kim, J.D.; Khan, M.I.; Shin, J.H.; Kim, J.D. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. 2018, 17, 36. [Google Scholar] [CrossRef] [PubMed]
- Nigam, P.S.; Singh, A. Production of liquid biofuels from renewable resources. Prog. Energy Combust. Sci. 2011, 37, 52–68. [Google Scholar] [CrossRef]
- Singh, A.; Nigam, P.S.; Murphy, J.D. Mechanism and challenges in commercialisation of algal biofuels. Bioresour. Technol. 2011, 102, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Richmond, A. Biological Principles of Mass Cultivation of Photoautotrophic Microalgae. In Handbook of Microalgal Culture; Wiley Online Library: Hoboken, NJ, USA, 2013; pp. 169–204. [Google Scholar] [CrossRef]
- Olabi, A.; Shehata, N.; Sayed, E.T.; Rodriguez, C.; Anyanwu, R.C.; Russell, C.; Abdelkareem, M.A. Role of microalgae in achieving sustainable development goals and circular economy. Sci. Total Environ. 2022, 854, 158689. [Google Scholar] [CrossRef]
- Gavrilescu, M.; Chisti, Y. Biotechnology—A sustainable alternative for chemical industry. Biotechnol. Adv. 2005, 23, 471–499. [Google Scholar] [CrossRef]
- Niccolai, A.; Chini Zittelli, G.; Rodolfi, L.; Biondi, N.; Tredici, M.R. Microalgae of Interest as Food Source: Biochemical Composition and Digestibility. Algal Res. 2019, 42, 101617. [Google Scholar] [CrossRef]
- Ferrazzano, G.F.; Papa, C.; Pollio, A.; Ingenito, A.; Sangianantoni, G.; Cantile, T. Cyanobacteria and Microalgae as Sources of Functional Foods to Improve Human General and Oral Health. Molecules 2020, 25, 5164. [Google Scholar] [CrossRef]
- Suganya, T.; Varman, M.; Masjuki, H.H.; Renganathan, S. Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach. Renew. Sustain. Energy Rev. 2016, 55, 909–941. [Google Scholar] [CrossRef]
- Moreno-García, L.; Adjallé, K.; Barnabé, S.; Raghavan, G.S.V. Microalgae biomass production for a biorefinery system: Recent advances and the way towards sustainability. Renew. Sustain. Energy Rev. 2017, 76, 493–506. [Google Scholar] [CrossRef]
- Arora, K.; Kaur, P.; Kumar, P.; Singh, A.; Patel, S.K.S.; Li, X.; Yang, Y.-H.; Bhatia, S.K.; Kulshrestha, S. Valorization of Wastewater Resources into Biofuel and Value-Added Products Using Microalgal System. Front. Energy Res. 2021, 119. [Google Scholar] [CrossRef]
- Chandel, N.; Ahuja, V.; Gurav, R.; Kumar, V.; Tyagi, V.K.; Pugazhendhi, A.; Kumar, G.; Kumar, D.; Yang, Y.H.; Bhatia, S.K. Progress in Microalgal Mediated Bioremediation Systems for the Removal of Antibiotics and Pharmaceuticals from Wastewater. Sci. Total Environ. 2022, 153895. [Google Scholar] [CrossRef] [PubMed]
- Barros, A.I.; Gonçalves, A.L.; Simões, M.; Pires, J.C.M. Harvesting Techniques Applied to Microalgae: A Review. Renew. Sustain. Energy Rev. 2015, 41, 1489–1500. [Google Scholar] [CrossRef] [Green Version]
- Mehariya, S.; Goswami, R.K.; Karthikeysan, O.P.; Verma, P. Microalgae for High-Value Products: A Way towards Green Nutraceutical and Pharmaceutical Compounds. Chemosphere 2021, 280, 130553. [Google Scholar] [CrossRef]
- Rizwan, M.; Mujtaba, G.; Memon, S.A.; Lee, K.; Rashid, N. Exploring the potential of microalgae for new biotechnology applications and beyond: A review. Renew. Sustain. Energy Rev. 2018, 92, 394–404. [Google Scholar] [CrossRef]
- Ganesan, R.; Manigandan, S.; Samuel, M.S.; Shanmuganathan, R.; Brindhadevi, K.; Chi, N.T.L.; Duc, P.A.; Pugazhendhi, A. A review on prospective production of biofuel from microalgae. Biotechnol. Rep. 2020, 27, e00509. [Google Scholar] [CrossRef]
- Nageswara-Rao, M.; Soneji, J.R. Advances in Biofuels and Bioenergy; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Suparmaniam, U.; Lam, M.K.; Uemura, Y.; Lim, J.W.; Lee, K.T.; Shuit, S.H. Insights into the microalgae cultivation technology and harvesting process for biofuel production: A review. Renew. Sustain. Energy Rev. 2019, 115, 109361. [Google Scholar] [CrossRef]
- Mohsenpour, S.F.; Hennige, S.; Willoughby, N.; Adeloye, A.; Gutierrez, T. Integrating micro-algae into wastewater treatment: A review. Sci. Total Environ. 2021, 752, 142168. [Google Scholar] [CrossRef]
- Kong, W.; Shen, B.; Lyu, H.; Kong, J.; Ma, J.; Wang, Z.; Feng, S. Review on carbon dioxide fixation coupled with nutrients removal from wastewater by microalgae. J. Clean. Prod. 2021, 292, 125975. [Google Scholar] [CrossRef]
- Alami, A.H.; Alasad, S.; Ali, M.; Alshamsi, M. Investigating algae for CO2 capture and accumulation and simultaneous production of biomass for biodiesel production. Sci. Total Environ. 2021, 759, 143529. [Google Scholar] [CrossRef]
- Abdelkareem, M.A.; Lootah, M.A.; Sayed, E.T.; Wilberforce, T.; Alawadhi, H.; Yousef, B.A.; Olabi, A. Fuel cells for carbon capture applications. Sci. Total Environ. 2021, 769, 144243. [Google Scholar] [CrossRef]
- Sayed, E.T.; Abdelkareem, M.A.; Obaideen, K.; Elsaid, K.; Wilberforce, T.; Maghrabie, H.M.; Olabi, A. Progress in plant-based bioelectrochemical systems and their connection with sustainable development goals. Carbon Resour. Convers. 2021, 4, 169–183. [Google Scholar] [CrossRef]
- Hupp, B.; Pap, B.; Farkas, A.; Maróti, G. Development of a Microalgae-Based Continuous Starch-to-Hydrogen Conversion Approach. Fermentation 2022, 8, 294. [Google Scholar] [CrossRef]
- Nielsen, B.; Maneein, S.; Farid, A.; Milledge, J. The Effects of Halogenated Compounds on the Anaerobic Digestion of Macroalgae. Fermentation 2020, 6, 85. [Google Scholar] [CrossRef]
- Chye, J.T.T.; Jun, L.Y.; Yon, L.S.; Pan, S.; Danquah, M.K. Biofuel production from algal biomass. In Bioenergy and Biofuels; CRC Press: Boca Raton, FL, USA, 2019; pp. 87–118. [Google Scholar] [CrossRef]
- Sharma, P.K.; Saharia, M.; Srivstava, R.; Kumar, S.; Sahoo, L. Tailoring Microalgae for Efficient Biofuel Production. Front. Mar. Sci. 2018, 5, 382. [Google Scholar] [CrossRef]
- Radakovits, R.; Jinkerson, R.E.; Darzins, A.; Posewitz, M.C. Genetic Engineering of Algae for Enhanced Biofuel Production. Eukaryot. Cell 2010, 9, 486–501. [Google Scholar] [CrossRef] [Green Version]
- Kumar, G.; Shekh, A.; Jakhu, S.; Sharma, Y.; Kapoor, R.; Sharma, T.R. Bioengineering of Microalgae: Recent Advances, Perspectives, and Regulatory Challenges for Industrial Application. Front. Bioeng. Biotechnol. 2020, 8, 914. [Google Scholar] [CrossRef]
- Roessler, P.G. Purification and Characterization of Acetyl-CoA Carboxylase from the Diatom Cyclotella cryptica. Plant Physiol. 1990, 92, 73–78. [Google Scholar] [CrossRef]
- Sheehan, J.; Dunahay, T.; Benemann, J.; Roessler, P. Look Back at the U. S. Department of Energy’s Aquatic Species Program: Biodiesel from Algae; Close-Out Report; U.S. Department of Energy, National Renewable Energy Laboratory: Golden, CO, USA, 1998. [CrossRef] [Green Version]
- Xue, J.; Niu, Y.-F.; Huang, T.; Yang, W.-D.; Liu, J.-S.; Li, H.-Y. Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation. Metab. Eng. 2015, 27, 1–9. [Google Scholar] [CrossRef]
- Rawat, J.; Gupta, P.K.; Pandit, S.; Priya, K.; Agarwal, D.; Pant, M.; Thakur, V.K.; Pande, V. Latest Expansions in Lipid Enhancement of Microalgae for Biodiesel Production: An Update. Energies 2022, 15, 1550. [Google Scholar] [CrossRef]
- Wang, H.; Gao, L.; Shao, H.; Zhou, W.; Liu, T. Lipid Accumulation and Metabolic Analysis Based on Transcriptome Sequencing of Filamentous Oleaginous Microalgae Tribonema Minus at Different Growth Phases. Bioprocess Biosyst. Eng. 2017, 40, 1327–1335. [Google Scholar] [CrossRef]
- Rismani-Yazdi, H.; Haznedaroglu, B.Z.; Bibby, K.; Peccia, J. Transcriptome Sequencing and Annotation of the Microalgae Dunaliella Tertiolecta: Pathway Description and Gene Discovery for Production of next-Generation Biofuels. BMC Genom. 2011, 12, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, L.L.; Han, J.; Sang, M.; Li, A.F.; Wu, H.; Yin, S.J.; Zhang, C.W. De Novo Transcriptomic Analysis of an Oleaginous Microalga: Pathway Description and Gene Discovery for Production of next-Generation Biofuels. PLoS ONE 2012, 7, e35142. [Google Scholar] [CrossRef] [PubMed]
- Ponnusamy, S.; Reddy, H.K.; Muppaneni, T.; Downes, C.M.; Deng, S. Life cycle assessment of biodiesel production from algal bio-crude oils extracted under subcritical water conditions. Bioresour. Technol. 2014, 170, 454–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebhodaghe, S.O.; Imanah, O.E.; Ndibe, H. Biofuels from microalgae biomass: A review of conversion processes and procedures. Arab. J. Chem. 2022, 15, 103591. [Google Scholar] [CrossRef]
- Nam, H.; Kim, C.; Capareda, S.C.; Adhikari, S. Catalytic upgrading of fractionated microalgae bio-oil (Nannochloropsis oculata) using a noble metal (Pd/C) catalyst. Algal Res. 2017, 24, 188–198. [Google Scholar] [CrossRef]
- Zuorro, A.; García-Martínez, J.; Barajas-Solano, A. The Application of Catalytic Processes on the Production of Algae-Based Biofuels: A Review. Catalysts 2021, 11, 22. [Google Scholar] [CrossRef]
- Yang, W.; Li, X.; Liu, S.; Feng, L. Direct hydrothermal liquefaction of undried macroalgae Enteromorpha prolifera using acid catalysts. Energy Convers. Manag. 2014, 87, 938–945. [Google Scholar] [CrossRef]
- Xu, Y.; Zheng, X.; Yu, H.; Hu, X. Hydrothermal liquefaction of Chlorella pyrenoidosa for bio-oil production over Ce/HZSM-5. Bioresour. Technol. 2014, 156, 1–5. [Google Scholar] [CrossRef]
- Gohain, M.; Hasin, M.; Eldiehy, K.S.; Bardhan, P.; Laskar, K.; Phukon, H.; Mandal, M.; Kalita, D.; Deka, D. Bio-ethanol production: A route to sustainability of fuels using bio-based heterogeneous catalyst derived from waste. Process Saf. Environ. Prot. 2021, 146, 190–200. [Google Scholar] [CrossRef]
- Faruque, M.O.; Razzak, S.A.; Hossain, M.M. Application of Heterogeneous Catalysts for Biodiesel Production from Microalgal Oil—A Review. Catalysts 2020, 10, 1025. [Google Scholar] [CrossRef]
- Cheng, J.; Guo, H.; Yang, X.; Mao, Y.; Qian, L.; Zhu, Y.; Yang, W. Phosphotungstic Acid-Modified Zeolite Imidazolate Framework (ZIF-67) as an Acid-Base Bifunctional Heterogeneous Catalyst for Biodiesel Production from Microalgal Lipids. Energy Convers. Manag. 2021, 113872. [Google Scholar] [CrossRef]
- Guo, H.; Cheng, J.; Mao, Y.; Qian, L.; Shao, Y.; Yang, W. Fabricating Different Coordination States of Cobalt as Magnetic Acid-Base Bifunctional Catalyst for Biodiesel Production from Microalgal Lipid. Fuel 2022, 322, 124172. [Google Scholar] [CrossRef]
- Loy, A.C.M.; Quitain, A.T.; Lam, M.K.; Yusup, S.; Sasaki, M.; Kida, T. Development of High Microwave-Absorptive Bifunctional Graphene Oxide-Based Catalyst for Biodiesel Production. Energy Convers. Manag. 2019, 180, 1013–1025. [Google Scholar] [CrossRef]
- Singh, R.; Kumar, A.; Chandra Sharma, Y. Biodiesel Production from Microalgal Oil Using Barium-Calcium-Zinc Mixed Oxide Base Catalyst: Optimization and Kinetic Studies. Energy Fuels 2019, 32, 1175–1184. [Google Scholar] [CrossRef]
- Rahman, N.J.A.; Ramli, A.; Jumbri, K.; Uemura, Y. Tailoring the Surface Area and the Acid–Base Properties of ZrO2 for Biodiesel Production from Nannochloropsis Sp. Sci. Rep. 2019, 9, 16223. [Google Scholar] [CrossRef] [Green Version]
- Nur Syazwani, O.; Rashid, U.; Taufiq Yap, Y.H. Low-Cost Solid Catalyst Derived from Waste Cyrtopleura Costata (Angel Wing Shell) for Biodiesel Production Using Microalgae Oil. Energy Convers. Manag. 2015, 101, 749–756. [Google Scholar] [CrossRef]
- Ghedini, E.; Taghavi, S.; Menegazzo, F.; Signoretto, M. A Review on the Efficient Catalysts for Algae Transesterification to Biodiesel. Sustainability 2021, 13, 10479. [Google Scholar] [CrossRef]
- Cao, X.; Sun, S.; Sun, R. Application of Biochar-Based Catalysts in Biomass Upgrading: A Review. RSC Adv. 2017, 7, 48793–48805. [Google Scholar] [CrossRef] [Green Version]
- Behera, B.; Selvam, S.M.; Dey, B.; Balasubramanian, P. Algal Biodiesel Production with Engineered Biochar as a Heterogeneous Solid Acid Catalyst. Bioresour. Technol. 2020, 123392. [Google Scholar] [CrossRef]
- Akubude, V.; Nwaigwe, K.; Dintwa, E. Production of biodiesel from microalgae via nanocatalyzed transesterification process: A review. Mater. Sci. Energy Technol. 2019, 2, 216–225. [Google Scholar] [CrossRef]
- Booth, T.; Baker, M. Nanotechnology. Chapter 32—Nanotechnology: Building and Observing at the Nanometer Scale. In Pharmacognosy; Badal, S., Delgoda, R.B.T.-P., Eds.; Academic Press: Boston, MA, USA, 2017; pp. 633–643. [Google Scholar] [CrossRef]
- Palaniappan, K. An overview of applications of nanotechnology in biofuel production. World Appl. Sci. J. 2017, 35, 1305–1311. [Google Scholar]
- Nizami, A.-S.; Rehan, M. Towards nanotechnology-based biofuel industry. Biofuel Res. J. 2018, 5, 798–799. [Google Scholar] [CrossRef] [Green Version]
- Hasannuddin, A.K.; Yahya, W.J.; Sarah, S.; Ithnin, A.M.; Syahrullail, S.; Sidik, N.A.C.; Kassim, K.A.A.; Ahmad, Y.; Hirofumi, N.; Ahmad, M.A.; et al. Nano-additives incorporated water in diesel emulsion fuel: Fuel properties, performance and emission characteristics assessment. Energy Convers. Manag. 2018, 169, 291–314. [Google Scholar] [CrossRef]
- Karthikeyan, S.; Prathima, A. Microalgae biofuel with CeO2 nano additives as an eco-friendly fuel for CI engine. Energy Sources Part A Recover. Util. Environ. Eff. 2017, 39, 1332–1338. [Google Scholar] [CrossRef]
- Pattarkine, M.V.; Pattarkine, V.M. Nanotechnology for Algal Biofuels. In The Science of Algal Fuels; Springer: Berlin/Heidelberg, Germany, 2012; pp. 147–163. [Google Scholar] [CrossRef]
- Kim, J.; Jia, H.; Wang, P. Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnol. Adv. 2006, 24, 296–308. [Google Scholar] [CrossRef]
- Duraiarasan, S.; Razack, S.A.; Manickam, A.; Munusamy, A.; Syed, M.B.; Ali, M.Y.; Ahmed, G.M.; Mohiuddin, S. Direct conversion of lipids from marine microalga C. salina to biodiesel with immobilised enzymes using magnetic nanoparticle. J. Environ. Chem. Eng. 2016, 4, 1393–1398. [Google Scholar] [CrossRef]
- Zaidi, A.A.; Feng, R.; Malik, A.; Khan, S.Z.; Shi, Y.; Bhutta, A.J.; Shah, A.H. Combining Microwave Pretreatment with Iron Oxide Nanoparticles Enhanced Biogas and Hydrogen Yield from Green Algae. Processes 2019, 7, 24. [Google Scholar] [CrossRef] [Green Version]
- Khoo, K.S.; Chia, W.Y.; Tang, D.Y.Y.; Show, P.L.; Chew, K.W.; Chen, W.-H. Nanomaterials Utilization in Biomass for Biofuel and Bioenergy Production. Energies 2020, 13, 892. [Google Scholar] [CrossRef] [Green Version]
- Safarik, I.; Prochazkova, G.; Pospiskova, K.; Branyik, T. Magnetically modified microalgae and their applications. Crit. Rev. Biotechnol. 2016, 36, 931–941. [Google Scholar] [CrossRef]
- Hossain, N.; Mahlia, T.M.I.; Saidur, R. Latest development in microalgae-biofuel production with nano-additives. Biotechnol. Biofuels 2019, 12, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Steele, J.; Grady, N.; Nordlander, P.; Halas, N. Plasmon hybridization in complex nanostructures. In Surface Plasmon Nanophotonics; Springer: Dordrecht, The Netherlands, 2007; pp. 183–196. [Google Scholar] [CrossRef]
- Torkamani, S.; Wani, S.N.; Tang, Y.J.; Sureshkumar, R. Plasmon-enhanced microalgal growth in miniphotobioreactors. Appl. Phys. Lett. 2010, 97, 043703. [Google Scholar] [CrossRef]
- Sinha, V.K. Sharlin. A review approach on exhaust emission reduction by nanoparticle additives in diesel engine. Int. J. Innov. Res. Sci. Eng. Technol. 2017, 6, 15046–15050. [Google Scholar]
- Silitonga, A.; Masjuki, H.; Ong, H.C.; Sebayang, A.; Dharma, S.; Kusumo, F.; Siswantoro, J.; Milano, J.; Daud, K.; Mahlia, T.; et al. Evaluation of the engine performance and exhaust emissions of biodiesel-bioethanol-diesel blends using kernel-based extreme learning machine. Energy 2018, 159, 1075–1087. [Google Scholar] [CrossRef]
- Damanik, N.; Ong, H.C.; Tong, C.W.; Mahlia, T.M.I.; Silitonga, A.S. A review on the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends. Environ. Sci. Pollut. Res. 2018, 25, 15307–15325. [Google Scholar] [CrossRef]
- Hu, Y.-R.; Guo, C.; Wang, F.; Wang, S.-K.; Pan, F.; Liu, C.-Z. Improvement of microalgae harvesting by magnetic nanocomposites coated with polyethylenimine. Chem. Eng. J. 2014, 242, 341–347. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, X.; Jiang, X.; Fan, Q.; Li, X.; Jiao, L.; Liang, W. Harvesting of Chlorella vulgaris using Fe3O4 coated with modified plant polyphenol. Environ. Sci. Pollut. Res. 2018, 25, 26246–26258. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Yang, W.-L.; Hong, Y.; Hou, Y.-L. Magnetic nanoparticles grafted with amino-riched dendrimer as magnetic flocculant for efficient harvesting of oleaginous microalgae. Chem. Eng. J. 2016, 297, 304–314. [Google Scholar] [CrossRef]
- Wang, S.-K.; Wang, F.; Hu, Y.-R.; Stiles, A.R.; Guo, C.; Liu, C.-Z. Magnetic Flocculant for High Efficiency Harvesting of Microalgal Cells. ACS Appl. Mater. Interfaces 2014, 6, 109–115. [Google Scholar] [CrossRef]
- Lee, K.; Lee, S.Y.; Na, J.-G.; Jeon, S.G.; Praveenkumar, R.; Kim, D.-M.; Chang, W.-S.; Oh, Y.-K. Magnetophoretic harvesting of oleaginous Chlorella sp. by using biocompatible chitosan/magnetic nanoparticle composites. Bioresour. Technol. 2013, 149, 575–578. [Google Scholar] [CrossRef]
- Zhao, Y.; Liang, W.; Liu, L.; Li, F.; Fan, Q.; Sun, X. Harvesting Chlorella vulgaris by magnetic flocculation using Fe3O4 coating with polyaluminium chloride and polyacrylamide. Bioresour. Technol. 2015, 198, 789–796. [Google Scholar] [CrossRef]
- Toh, P.Y.; Ng, B.W.; Ahmad, A.L.; Chieh, D.C.J.; Lim, J. The Role of Particle-to-Cell Interactions in Dictating Nanoparticle Aided Magnetophoretic Separation of Microalgal Cells. Nanoscale 2014, 6, 12838–12848. [Google Scholar] [CrossRef] [PubMed]
- Farid, M.S.; Shariati, A.; Badakhshan, A.; Anvaripour, B. Using Nano-Chitosan for Harvesting Microalga Nannochloropsis Sp. Bioresour. Technol. 2013, 131, 555–559. [Google Scholar] [CrossRef] [PubMed]
- Olabi, A.; Abdelkareem, M.A. Renewable energy and climate change. Renew. Sustain. Energy Rev. 2022, 158, 112111. [Google Scholar] [CrossRef]
- Subhash, G.V.; Rajvanshi, M.; Kumar, G.R.K.; Sagaram, U.S.; Prasad, V.; Govindachary, S.; Dasgupta, S. Challenges in microalgal biofuel production: A perspective on techno economic feasibility under biorefinery stratagem. Bioresour. Technol. 2022, 343, 126155. [Google Scholar] [CrossRef]
- Veeramuthu, A.; Ngamcharussrivichai, C. Potential of Microalgal Biodiesel: Challenges and Applications. In Renewable Energy—Technologies and Applications; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Chen, M.; Chen, Y.; Zhang, Q. A Review of Energy Consumption in the Acquisition of Bio-Feedstock for Microalgae Biofuel Production. Sustainability 2021, 13, 8873. [Google Scholar] [CrossRef]
- Stephens-Camacho, B.E.; Sauceda-Carvajal, D.; Sánchez-Saavedra, M. Growth, Proximate Composition, and Photosynthesis of Chlorella vulgaris Cultures Between a Photobioreactor Based in a Compound Parabolic Concentrator and a Plain Tubular System for a Biorefinery. BioEnergy Res. 2022, 15, 230–241. [Google Scholar] [CrossRef]
- Chakravorty, U.; Hubert, M.H.; Moreaux, M.; Nøstbakken, L. Do Biofuel Mandates Raise Food Prices. In Proceedings of the AERE Annual Meeting, Ashville, NC, USA, 3–5 June 2012. [Google Scholar]
- U.S. Fossil Fuel Costs for Electricity Generation 2020|Statista. 2020. Available online: https://www.statista.com/statistics/183992/average-costs-of-fossil-fuels-for-us-electricity-generation-from-2005/ (accessed on 27 September 2022).
- Rafa, N.; Ahmed, S.F.; Badruddin, I.A.; Mofijur, M.; Kamangar, S. Strategies to Produce Cost-Effective Third-Generation Biofuel From Microalgae. Front. Energy Res. 2021, 9, 749968. [Google Scholar] [CrossRef]
- Hannon, M.; Gimpel, J.; Tran, M.; Rasala, B.; Mayfield, S. Biofuels from algae: Challenges and potential. Biofuels 2010, 1, 763–784. [Google Scholar] [CrossRef]
- Jeswani, H.K.; Chilvers, A.; Azapagic, A. Environmental sustainability of biofuels: A review. Proc. R. Soc. A Math. Phys. Eng. Sci. 2020, 476, 20200351. [Google Scholar] [CrossRef]
- PGerbens-Leenes, W.; Xu, L.; de Vries, G.J.; Hoekstra, A.Y. The blue water footprint and land use of biofuels from algae. Water Resour. Res. 2014, 50, 8549–8563. [Google Scholar] [CrossRef]
- Yang, J.; Xu, M.; Zhang, X.; Hu, Q.; Sommerfeld, M.; Chen, Y. Life-cycle analysis on biodiesel production from microalgae: Water footprint and nutrients balance. Bioresour. Technol. 2011, 102, 159–165. [Google Scholar] [CrossRef]
- Batan, L.; Quinn, J.C.; Bradley, T.H. Analysis of water footprint of a photobioreactor microalgae biofuel production system from blue, green and lifecycle perspectives. Algal Res. 2013, 2, 196–203. [Google Scholar] [CrossRef]
- Richardson, J.; Johnson, M.; Joe, L. Economic Comparison of Open Pond Raceways to Photo Bio-Reactors for Profitable Production of Algae for Transportation Fuels in the Southwest. Algal Res. 2012, 1, 93–100. [Google Scholar] [CrossRef]
- U.S. Energy Information Administration—EIA. Independent Statistics and Analysis. Available online: https://www.eia.gov/environment/emissions/co2_vol_mass.php (accessed on 26 September 2022).
- Haas, M.J.; McAloon, A.J.; Yee, W.C.; Foglia, T.A. A Process Model to Estimate Biodiesel Production Costs. Bioresour. Technol. 2006, 97, 671–678. [Google Scholar] [CrossRef]
- Shapouri, H.; Salassi, M. The Economic Feasibility of Ethanol Production from Sugar in the United States; United States Department of Agriculture, Economic Research Service: Washington, DC, USA, 2006.
- Mu, D.; Min, M.; Krohn, B.; Mullins, K.A.; Ruan, R.; Hill, J. Life Cycle Environmental Impacts of Wastewater-Based Algal Biofuels. Environ. Sci. Technol. 2014, 48, 11696–11704. [Google Scholar] [CrossRef] [Green Version]
- Pragya, N.; Pandey, K.K. Life cycle assessment of green diesel production from microalgae. Renew. Energy 2015, 86, 623–632. [Google Scholar] [CrossRef]
- Yuan, J.; Kendall, A.; Zhang, Y. Mass balance and life cycle assessment of biodiesel from microalgae incorporated with nutrient recycling options and technology uncertainties. GCB Bioenergy 2015, 7, 1245–1259. [Google Scholar] [CrossRef]
- Zaimes, G.G.; Khanna, V. Assessing the critical role of ecological goods and services in microalgal biofuel life cycles. RSC Adv. 2014, 4, 44980–44990. [Google Scholar] [CrossRef]
- Slade, R.; Bauen, A. Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy 2013, 53, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Usher, P.K.; Ross, A.B.; Camargo-Valero, M.A.; Tomlin, A.; Gale, W.F. An overview of the potential environmental impacts of large-scale microalgae cultivation. Biofuels 2014, 5, 331–349. [Google Scholar] [CrossRef]
- Ashworth, D.J.; Luo, L.; Yates, S.R. Pesticide Emissions from Soil—Fate and Predictability. Outlooks Pest Manag. 2013, 24, 4–7. [Google Scholar] [CrossRef]
- Belarbi, E.H.; Molina, E.; Chisti, Y. A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Enzym. Microb. Technol. 2000, 26, 516–529. [Google Scholar] [CrossRef]
- Thanigaivel, S.; Priya, A.; Dutta, K.; Rajendran, S.; Vasseghian, Y. Engineering strategies and opportunities of next generation biofuel from microalgae: A perspective review on the potential bioenergy feedstock. Fuel 2022, 312, 122827. [Google Scholar] [CrossRef]
- Mayol, A.P.; Juan, J.L.G.S.; Sybingco, E.; Bandala, A.; Dadios, E.; Ubando, A.T.; Culaba, A.B.; Chen, W.H.; Chang, J.S. Environmental impact prediction of microalgae to biofuels chains using artificial intelligence: A life cycle perspective. IOP Conf. Ser. Earth Environ. Sci. 2020, 463, 12011. [Google Scholar] [CrossRef]
- Kamilli, K.; Ofner, J.; Zetzsch, C.; Held, A. Formation of halogen-induced secondary organic aerosol (XOA). In Proceedings of the EGU General Assembly 2013, Vienna, Austria, 7–12 April 2013; p. EGU2013-11969. [Google Scholar]
- Committee, I.S.A. Biofuels: Cultivating Energy, Not Invasive Species; Natl. Invasive Species Counc.: Washington, DC, USA, 2009.
- Handler, R.M.; Canter, C.E.; Kalnes, T.N.; Lupton, F.S.; Kholiqov, O.; Shonnard, D.R.; Blowers, P. Evaluation of environmental impacts from microalgae cultivation in open-air raceway ponds: Analysis of the prior literature and investigation of wide variance in predicted impacts. Algal Res. 2012, 1, 83–92. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, Y.; Zhang, F.; Yun, J.; Shen, Z. The impact of biofuel plantation on biodiversity: A review. Chin. Sci. Bull. 2014, 59, 4639–4651. [Google Scholar] [CrossRef]
- Webb, A.; Coates, D. Biofuels and biodiversity. In Secretariat of the Convention on Biological Diversity. Montreal, Technical Series; Wiley Online Library: Montreal, QC, Canada, 2012; Volume 65. [Google Scholar]
Species | Genes Overexpression | Lipid Increase |
---|---|---|
Chlamydomonas reinhardtii | ACCase | TAGs increase by 2.4 times |
Phaeodactylum tricornutum | G6PD | Lipids increase by 55.7% |
Phaeodactylum tricornutum | GPAT1; LPAT1 | TAGs increase by 2.3 times due to nitrogen depletion |
Phaeodactylum tricornutum | G3PDH | Lipids increase by 1.9 times with a small decrease in growth |
Phaeodactylum tricornutum | G6PD | Lipids increase by 2.7 times |
Chlorella protothecoides | ME | Lipids increase by 2.8 times |
Chlamydomonas reinhardtii | PSR1 | Starch granules improvement, reduction in lipid amount |
Nannochloropsis salina | bZIP | Enhancement in growth and lipid |
Chlamydomonas reinhardtii | DGTA | Increased saturated fatty acids |
Chlorella minutissima | GPAT; LPAAT; DGAT | A 2-time increase in lipid amount |
Nannochloropsis oceanica | NoDGAT1A | A 2.4-time enhancement in TAGs |
Chlorella pyrenoidosa | NAD(H) kinase | A 1.6-time enhancement in lipid amount |
Chlamydomonas reinhardtii | LPAAT | A 20% enhancement in TAGs |
Nannochloropsis oceanica | DGAT | A 69% enhancement in lipids |
Catalyst | Optimum Conditions | Microalgae Species | Conversion Efficiency (%) | Reference |
---|---|---|---|---|
Phosphotungstic acid HPW/ZIF-67 | HPW/ZIF-67 weight ratio = 0.25. Oil: MeOH molar ratio of 1:20, 1 wt% catalyst concentration, 200 °C for 90 min. | Chlorella vulgaris | 98.5 | [66] |
Co-based ZIF-67 | MeOH:lipids ratio of 20:1, 3 wt% catalyst concentration, 550 °C for 30 min. | N/A | 96 | [67] |
SiC/NaOH-GO | 13:1 weight ratio of SiC/NaOH to GO, 5 wt% of catalyst loading, 65 °C for 6 min. | Chlorella vulgaris | 96 | [68] |
BaO/CaO–ZnO | 1:18 MeOH:oil molar ratio, with 2.5 wt % catalyst, 65 °C for 120 min. | Spirulina platensis | 69.56% FAME | [69] |
Bi2O3/ZrO2(CTAB) | Lipid:MeOH ratio of 1:90 (g/mL), catalyst loading of 20 wt.%, 80 °C for 6 h. | Nannochloropsis | 73.21% FAME | [70] |
CaO | Oil:MeOH molar ratio of 1:150, catalyst loading of 9 wt.% for 1 h. | Nannochloropsis oculata | 84.11% FAME | [71] |
Fuel Sources | Average Annual Water Footprint (m3/GJ) | Cost ($/Gallon) | Reference |
---|---|---|---|
Microalgae-based biodiesel (open raceway) | From 14 to 87 | 3.50 | [112,113,114] |
Microalgae-based biodiesel (bioreactor) | From 1 to 2 | 3.50 | [113,114] |
Natural gas | 0.11 | 0.6825 | [109,115] |
Soybean-based biodiesel | 287 | 2.00 | [113,116] |
Petroleum-based diesel | From 0.04 to 0.08 | 5.34 | [112,115] |
Sugarcane ethanol | From 85 to 139 | 2.40 | [113,117] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olabi, A.G.; Alami, A.H.; Alasad, S.; Aljaghoub, H.; Sayed, E.T.; Shehata, N.; Rezk, H.; Abdelkareem, M.A. Emerging Technologies for Enhancing Microalgae Biofuel Production: Recent Progress, Barriers, and Limitations. Fermentation 2022, 8, 649. https://doi.org/10.3390/fermentation8110649
Olabi AG, Alami AH, Alasad S, Aljaghoub H, Sayed ET, Shehata N, Rezk H, Abdelkareem MA. Emerging Technologies for Enhancing Microalgae Biofuel Production: Recent Progress, Barriers, and Limitations. Fermentation. 2022; 8(11):649. https://doi.org/10.3390/fermentation8110649
Chicago/Turabian StyleOlabi, A. G., Abdul Hai Alami, Shamma Alasad, Haya Aljaghoub, Enas Taha Sayed, Nabila Shehata, Hegazy Rezk, and Mohammad Ali Abdelkareem. 2022. "Emerging Technologies for Enhancing Microalgae Biofuel Production: Recent Progress, Barriers, and Limitations" Fermentation 8, no. 11: 649. https://doi.org/10.3390/fermentation8110649
APA StyleOlabi, A. G., Alami, A. H., Alasad, S., Aljaghoub, H., Sayed, E. T., Shehata, N., Rezk, H., & Abdelkareem, M. A. (2022). Emerging Technologies for Enhancing Microalgae Biofuel Production: Recent Progress, Barriers, and Limitations. Fermentation, 8(11), 649. https://doi.org/10.3390/fermentation8110649