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Abstract: The world has heavily relied on fossil fuels for decades to supply energy demands. How-
ever, the usage of fossil fuels has been strongly correlated with impactful problems, which lead
to global warming. Moreover, the excessive use of fossil fuels has led to their rapid depletion.
Hence, exploring other renewable and sustainable alternatives to fossil fuels is imperative. One of
the most sustainable fossil fuel alternatives is biofuel. Microalgae-based biofuels are receiving the
attention of researchers due to their numerous advantages compared with those obtained from other
types of feedstocks. Hence, it is essential to explore the recent technologies for biofuel produced
from microalgae species and define the possible challenges that might be faced during this process.
Therefore, this work presents the recent advancements in biofuel production from microalgae, fo-
cusing on emerging technologies such as those using nanomaterials and genetic engineering. This
review focuses on the impact of nanoparticles on the harvesting efficiency of various microalgae
species and the influence of nanoparticles on biofuel production. The genetic screening performed
by genome-scale mutant libraries and their high-throughput screening may assist in developing
effective strategies for enhancing microalgal strains and oil production through the modification
of enzymes. Furthermore, the barriers that limit the production of biofuels from microalgae are
introduced. Even though microalgae-based biofuels are perceived to engage with low negative
impacts on the environment, this review paper touches on several environmental issues associated
with the cultivation and harvesting of microalgae species. Moreover, the economic and technical
feasibility limits the production of microalgae-based biofuels.

Keywords: microalgae; biofuel; fossil fuels; nanotechnology; genetic engineering; barriers and
challenges

1. Introduction

The rapid growth of the global population has inflated energy demand. Thus, the
rigorous usage of fossil fuels has led to their depletion and diminution [1]. The rapid
depletion of fossil fuels can mainly be attributed to their non-sustainable and non-renewable
nature. Furthermore, fossil fuels have a high environmental impact [2], contributing to the
generation of around 2 billion tonnes of CO, in 2021 and about 300 million tonnes of CO, in
2022 [3]. As a result, researchers are intensively searching for novel and viable alternatives
to fossil fuels. Biofuels are now considered an attractive alternative to fossil fuels [4-6].
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Biofuels can be converted from various biomass sources, including fruits or crop wastes,
plants, food crops, algae, and manure [7,8]. Biofuels are converted from biomass sources via
various processes, including pyrolysis [6], anaerobic digestion [7], or dark fermentation [8].
Pyrolysis produces bio-oil from biomass and then utilises it to generate biofuels. However,
this process presents several shortcomings such as increased costs. Hence, co-pyrolysis
technology has been developed to diminish the need for bio-oil modification [6]. Anaerobic
digestion significantly contributes to enabling a circular economy by using a digestate as
a feedstock for nutrients, biofuels, biochar, algal cultivation, and polyhydroxyalkanoates
(PHA) [7]. Dark fermentation produces biofuels without the presence of light by employing
anaerobic bacteria extracted from substrates with high carbohydrate levels [9].

Biofuels are categorised into first-generation, second-generation, third-generation,
and fourth-generation [10]. First-generation biofuel is generated from edible feedstocks,
including sugar cane, vegetable oils, starch, soybean oil, palm oil, and corn oil. Neverthe-
less, using edible feedstocks to produce biofuels has inflated the prices of food items and
increased deforestation [11,12]. To mitigate these issues, second-generation biofuels were
produced from the fats of non-edible feedstocks, including animal fats, wastes, and cooking
oil [13]. Even though second-generation feedstocks are cost-effective, they contain impuri-
ties that hinder the conversion processes required for biofuel production [14]. Moreover,
second-generation lignocellulosic biomass can efficiently produce biofuels; however, the
pretreatment techniques that are employed to convert lignocellulosic biomass into biofuels
result in the production of various compounds that inhibit micro-organisms and enzymes
from production [15]. Hence, microalgae were chosen as the feedstocks for third-generation
biofuels [16]. In both the third- and fourth-generations, the lipids and biomass residuals
found in microalgae and macroalgae species are converted into biofuels [10]. Biofuels are
becoming more attractive energy sources than fossil fuels due to their lower emissions
of pollutants, lower contributions to global warming, and renewability and sustainabil-
ity [17,18]. Fossil fuels are accountable for the release of 29 gigatons per year of CO,. Hence,
the accumulated CO, emissions from fossil fuels are up to 35.3 billion tons [19]. On the
other hand, algae (which are used for biofuel production) release high levels of oxygen
(from 10 to 45%) with significantly low levels of sulphur. Moreover, algae-based biofuels are
sustainable, reliable, non-polluting, and accessible [20]. Algae-based biofuels can generate
up to 25% of the global energy supply [21]. Due to these advantages, there is a focus in
research on producing biofuels from microalgae [22].

Microalgae are unicellular microscopic organisms found in terrestrial and aquatic
ecosystems. Microalgae can flourish in various environments due to their high tolerance
to pH, temperature, light intensities, and salinities. The main components for microalgae
growth are sunlight, CO,, nutrients, and water [23]. Microalgae capture CO, from the
atmosphere and generate oxygen in the air [24]. It has been evident that about 1 kg of
biomass produced by algae can account for 1.83 kg of CO; [20]. Moreover, the biological
system of microalgae enables them to produce organic compounds from sunlight [25].
There are approximately 80,000 microalgae species, and around 40,000 of these species have
been studied on a large scale for commercialization [26].

Numerous researchers have studied microalgae, in awe of its multifaceted applica-
tions [27]. Microalgae species can produce various essential biochemicals that can be
utilised as feedstock for multiple products, such as proteins, carbohydrates, and lipids [28].
Nevertheless, innumerable biochemicals produced from microalgae species have still not
been explored [27]. Microalgae applications can mainly be categorised into industrial,
food, environmental, and pharmaceutical applications [29], as shown in Figure 1. Figure 1
displays the main categories of microalgae applications. Microalgae species produce vari-
ous types of carotenoids, enzyme polymers, lipids, peptides, polyunsaturated fatty acids,
antioxidants, and natural dyes, which can be utilised in multiple industrial items. Moreover,
microalgae are commercially employed to produce cosmetics and pigments [30,31]. Mi-
croalgae have vast applications in the food industry: they produce animal and aquatic feed,
nutritional supplements, and functional foods from biomass residuals. Biomass residual
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is high in proteins but low in lignin; thus, it can be utilised for the production of various
biorefinery-based commercial products, including cosmetics, nutritional supplements, and
pharmaceutical products [27] For environmental applications, micmroalgae play an essen-
tial role in wastewater treatment, where they purify the water as they take up the nutrients
found in wastewater, such as phosphates, nitrates, and other organic constituents [32]. The
potential of microalgae-mediated wastewater treatment systems to remove different microp-
ollutants is attracting attention. Pharmaceuticals and antibiotics pollute aquatic systems
and have dangerous consequences for flora, wildlife, and ecosystems. Microalgal systems
are useful because they can break down pharmaceutical and antibiotic contaminants while
recovering nutrients from wastewater. The primary processes for the degradation of or-
ganic pollutants by microalgae are adsorption, degradation, and accumulation. Research
has concentrated on several methods, including improved reactor design, the utilization
of algal-microbial consortia, and combining wastewater treatment systems with resource
recovery and by-product accumulation technology to increase the effectiveness of treating
wastewater [33]. Furthermore, microalgae are used for CO, sequestration and pollutant
reduction [34]. Microalgae species generate bioactive compounds, such as acetylic acids,
vitamin B, and lutein [35], which can be utilised in the pharmaceutical industry to develop
antibiotics and antimicrobial, antiviral, and anti-inflammatory drugs [36].
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Figure 1. A display of the various applications of microalgae.

Biofuel is a type of fuel produced chemically from biomass as opposed to that obtained
through a long geological process. Fuels in their liquid and gaseous forms are typically
referred to as biofuels and are highly useful in the automotive industry. These biofuels are
simple to mix with the currently available liquid fuels, such as gasoline and diesel [37].
Algae have been studied for their extraordinary capacity to produce a wide range of biofuels
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simultaneously with the production of value-added products and wastewater treatment.
Lipids, which are mostly found in thylakoid membranes, can be present at significant levels.
Their biofuels are both highly biodegradable and harmless. There are various forms of algal
biofuels. Figure 2 shows a summary of the various processes for obtaining biofuels from
microalgae. The carbohydrate portion of the biomass is utilised to make bioethanol through
the fermentation process. At the same time, the oil content is used to make biodiesel through
transesterification. The leftover biomass can be used to produce methane, fuel gas, fuel
oil, or directly for electricity and heat [38], which can be accomplished via thermochemical
conversion, biochemical conversion, and direct combustion. The thermochemical process
includes gasification, pyrolysis, and hydrothermal liquefaction (HTL); each is performed
at specified temperatures to produce the fuels. The biochemical process involves using
microorganisms and/or enzymes to extract the organic part from the biomass. Direct
combustion requires air for the direct conversion of algae into electricity /heat.
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Figure 2. The conversion of microalgae into different biofuels.

Several researchers have summarised the progress achieved in the various aspects
related to microalgae, including cultivation [39]; pretreatment methods [40-42]; the ap-
plication of microalgae for wastewater treatments [41], CO, capture [41,42], such as fuel
cells [43]; bio-photovoltaics [44]; and producing chemicals [17], and they have discussed
the role of microalgae in achieving sustainable development goals [26]. Moreover, various
researchers have summarised the progress achieved in the application of the different types
of biofuels in hydrogen production [45] and biogas [46]. However, few works have sum-
marised the progress achieved in using new technologies to improve biofuel production
from microalgae, such as with nanoparticles and genetic engineering, which is the main
target of this work. Furthermore, this work summarises the barriers and challenges facing
biofuel production from microalgae.

2. Methodology

This paper focuses on reviewing the recent advances in the production of biofuels
from microalgae and the challenges faced throughout this process. As a result, the collected
papers were associated with the topic of biofuel production from microalgae species. The
Scopus database was chosen as the main source for data collection. The following keywords
were used to search for published papers related to this topic: “Biofuel” AND “Recent
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Progress” AND “Microalgae” and “Biofuel” AND “Challenges” AND “Microalgae”. After
this search, the first keywords showed 38 papers related to the recent advances in algae-
based biofuels. From these papers, it was evident that the main advancements in the
production of biofuels from microalgae are related to genetic and metabolic engineering,
nano-additives, and catalysts. Thus, a detailed search was initiated to thoroughly analyse
these advancements, where the following keywords were utilised: “Biofuel” AND “Mi-
croalgae” AND (“Genetic” OR “Metabolic” OR “Nano*Additives” OR “Catalyst”). The
search engine presented 1272 published papers related to these advancements, whereas
the keywords associated with the challenges faced during the production of biofuels from
microalgae presented around 829 published papers. After skimming through the papers, it
was found that these challenges could be economical, technical, or environmental. Hence,
another detailed search was initiated to explore all the possible barriers related to the
production of biofuels from microalgae; therefore, the related keywords were: “Biofuel”
AND “Challenge” AND (“Environment*” OR “Economic*” OR “Technic*”). For these
keywords, the search engine showed around 3730 published papers.

Based on the obtained papers, an increasing trend in the number of published papers
discussing the production of biofuels from microalgae was spotted. As shown in Figure 3,
the number of published papers on this topic has been increasing since 2006. At first,
the increase in the number of papers was small; however, since 2010, there has been a
significant increase in the number of published papers. This increasing trend hints at the
importance of the production of biofuels from various microalgae species. The importance
of this topic is also reflected in Figure 4, which demonstrates that around 68.8% of the
published papers are research papers that focus on studying the production of biofuels
from microalgae.
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Figure 3. The number of published papers discussing the production of biofuels from microalgae
from 2006 to 2022.

After determining the papers that are related to the production of biofuels from
microalgae, the VOSviewer® software was employed to analyse these papers. Figure 5 was
produced via the VOSviewer software to present a network visualization of the keyword co-
occurrence in the selected papers. Each node presented in the network signifies a keyword.
The node size designates the number of times the keyword was repeated. The connections
between the nodes show the co-occurrence between the keywords, while the thickness
of the connections between the nodes represents the number of times the keywords co-
occurred together. The figure demonstrates an overall view of the co-occurrences between
the keywords, where microalgae, genetic engineering, biomass, biosynthesis, and carbon
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dioxide seem to be the most dominant keywords that are most widely repeated by authors
throughout the selected research papers.
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Figure 4. The type of published paper.
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Figure 5. Visual demonstration of the network of keywords co-occurrences and connections obtained
via the VOSviewer software.

3. Recent Progress in Biofuel Production from Microalgae
3.1. Genetic Engineering for Improved Biofuel Production from Microalgae

Technological advancements using genetic engineering and metabolic engineering can
be performed to increase the yields from algal biomass. Oil production from microalgae
can be improved by the modification of lipid synthesis enzymes, or other competing
alternative routes, to direct the transport of carbon and reductive equivalents away from
other pathways. The most popular method is the modification of certain genes that are
responsible for different phases in a metabolic process. However, due to the complex
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control of lipid production in microalgae, this approach resulted in varying degrees of
success [47,48]. Chlamydomonas reinhardtii is a green alga that has attracted attention for
genetics research. Hence, the majority of the techniques for gene knockdown have been
created for this species. However, diatoms and other algae that are more important and
can be utilised for industrial purposes are now being increasingly developed as tools.
Controlling the lipid synthesis for a specific strain can strongly affect the amount and
quality of biofuel produced (biodiesel) [49]. The creation of effective tactics for improving
microalgal strains may be aided by the genetic screening carried out by genome-scale
mutant libraries and their high-throughput screening. As a result, such knowledge is
absolutely necessary for microalgae strain bioengineering. Figure 6 shows the usual
strategic flow from the combination of various datasets to the enhancement of the microalgal
strain. The molecular technologies for stable transformation, selective screening, and
accurate gene targeting are crucial for carrying out genetic manipulation in the process of
strain enhancement with genetic engineering [50].
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Figure 6. (A) Creation and enrichment of resources: High-quality curated data can be produced
through high-throughput technologies, intensive bioinformatic analysis and computation, and sub-
stantial scientific interest in microalgae. (B) The development of microalgae strains can be aided by
the application of cutting-edge technologies such as genome editing and high-throughput variant
selection, as well as findings from metabolic models. The metabolic flux changes in mutants fre-
quently imply that an organism evolved to optimise flux reconfiguration. The increased production of
desired products may be the goal of the shift in the flux balance. Additionally, the knowledge gained
through refined modelling and genomic-editing studies opens up new research opportunities [50],
open access.

In microalgae, lipid production commences with acetyl-CoA carboxylase (ACC). Ac-
cording to Roessler’s study, the enzyme activity increased by 2-3 times when the ACC
gene from Cyclotella cryptic microalgae was overexpressed [51]. Sheehan et al. [52] came to
the conclusion that increasing the expression of just the ACC gene might not be enough
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to improve the entire lipid production process. Enhancing lipid production might also
result from blocking competing processes. An increase in lipid content was achieved by
inactivating genes directly involved in fatty acid oxidation as well as those involved in
triacylglyceride (TAG) and free fatty acid activation. Gene inactivation would have to be
accomplished either through mutation or through the use of RNA silencing. In addition
to possibly increasing fat storage, knocking down lipid catabolism genes may potentially
negatively impact cell development and division [49].

Many microalgae commence TAG storage during the day and drain those stores at
night to sustain cellular ATP requirements and/or cell division during diel light-dark
cycles. Therefore, preventing oxidation would stop TAG from being lost throughout the
night, but most likely at the expense of slower growth. Therefore, this approach might
not be helpful for microalgae cultivated in outside open ponds, but it might be a good
way to boost lipid production in microalgae grown in photobioreactors with continuous
light and/or external carbon sources [49]. A study also reported the overexpression of
malic enzyme (ME), which was identified previously for its role in metabolic pathways,
such as lipogenesis, energy metabolism, and photosynthesis, resulting in enhanced lipid
accumulation and a successful biodiesel provider [53]. Table 1 shows the improvement in
lipids due to gene overexpression in several microalgal species.

Table 1. Lipid improvement due to gene overexpression in several microalgal species [54].

Species Genes Overexpression Lipid Increase
Chlamydomonas reinhardtii ACCase TAGs increase by 2.4 times
Phaeodactylum tricornutum G6PD Lipids increase by 55.7%
Phaeodactylum tricornutum GPAT1; LPAT1 TAGs 1nc‘rease by 2.3 tlr.nes due to

nitrogen depletion
Phaeodactylum tricornutum G3PDH Lipids increase by 129 times with a
small decrease in growth
Phaeodactylum tricornutum G6PD Lipids increase by 2.7 times
Chlorella protothecoides ME Lipids increase by 2.8 times
Chlamydomonas reinhardtii PSR1 Starch gr'anu.les.lrpp rovement,
reduction in lipid amount
Nannochloropsis salina bZIP Enhancement in growth and lipid
Chlamydomonas reinhardtii DGTA Increased saturated fatty acids
Chlorella minutissima GPAT; LPAAT; DGAT A 2-time increase in lipid amount
Nannochloropsis oceanica NoDGAT1A A 2.4-time enhancement in TAGs
Chlorella pyrenoidosa NAD(H) kinase A 1.6—t1m§ enhancement in
lipid amount
Chlamydomonas reinhardtii LPAAT A 20% enhancement in TAGs
Nannochloropsis oceanica DGAT A 69% enhancement in lipids

To better understand the genetic structure and metabolites of microalgae, researchers
can capture and annotate any coding or non-coding RNA using transcriptome assessment
with next-generation sequencing (NGS) [55]. The ability to uncover interesting metabolic
pathways and possible targets for metabolic engineering in microalgae, as well as to
facilitate functional genomic research for next-generation biofuel production, was proven
by utilising transcriptome data from next-generation sequencing. The gene encoding for
important enzymes responsible for the production and catabolism of fatty acids in Dunaliella
tertiolecta (D. tertiolecta) were effectively identified based on the functional annotation of
the transcriptome. The majority of the enzymes needed for the biosynthesis, elongation,
and metabolism of fatty acids are present in the D. tertiolecta transcriptome. These results
add to the biochemical and molecular knowledge required for the metabolic engineering of
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microalgal fatty acid production. Transcripts for enzymes involved in the degradation of
TAG were also found. The TAG content can possibly increase because of the suppression
of TAGL and other TAG-degrading enzymes. In addition, a large number of transcripts
that encode enzymes involved in the biosynthesis and catabolism of starch were found in
D. tertiolecta. Accumulated starch represents a desirable source for the ethanol, butanol, and
hydrogen generation of a number of biofuels. The environmental and pretreatment process
drawbacks associated with employing plant-based starch and lignocellulosic materials
for ethanol production may be solved by producing biofuel from starch obtained from
microalgae [56]. The sequencing and de novo transcriptome assembly for the microalga
Eustigmatos cf. polyphem have also been also carried out. Metabolic pathways responsible
for the biosynthesis and metabolism of carbohydrates, fatty acids, TAGs, and carotenoids
have been rebuilt, and transcripts encoding important enzymes have been effectively
identified. The significant number of transcripts identified offers a solid foundation for
future genomic studies on oleaginous microalgae and supports comprehensive genome
annotation. These discoveries make a significant contribution to the genetic engineering
of this organism to increase the supply of feedstock for industrial microalgae biofuel
production [57].

3.2. Catalysts
3.2.1. Catalysts for Oil Extraction

Recent studies have concentrated on catalytically improving the oil extraction process
from algae. Ponnusamy et al. [58] investigated the photocatalysis process to extract bio-oil
from Nannochloropsis oculata microalgal biomass, utilising solar radiation and nanoparticle
catalysts to eliminate the dewatering and drying processes while obtaining the oil from
algae, which saves money and energy. Furthermore, titanium dioxide photocatalysts are
chemically and thermally stable, show attractive photoactivity characteristics in wet envi-
ronments using solar energy, are affordable, and are less toxic [59]. In most cases, catalytic
upgrading occurs between bio-oil and hydrogen gas reactions under conditions of high
pressure, temperature, and reaction time. Distilled microalgae particles were catalytically
upgraded using a Pd/C noble metal catalyst. The upgrading after the distillation process
provided better quality for the produced biofuel [60].

Homogeneous Catalysts

Homogeneous catalysts are soluble in water at normal temperatures. By accelerat-
ing the water—gas shift reaction, the reaction prevents the production of char/tar while
increasing the product yield. Na,COj is the most widely used catalyst, and it can increase
BTEX (benzene, toluene, ethylbenzene, and xylene) production and change C5 into C18
aliphatic hydrocarbons; they are important components for gasoline and diesel fuels [61].
Generally, the working temperature mostly affects alkali catalyst performance regardless
of the species assessed. Organic (HCOOH and CH3COOH) and inorganic acid (HySO4)
catalysts have also been deployed [61]. Yang et al. [62] used H,SO4 and CH3;COOH in the
catalytic process of HTL for Enteromorpha prolifera algae, which resulted in a maximum
yield of 28% bio-oil. The possibility of using homogeneous catalysts on HTL in industrial
settings is hampered by a few obstacles. Decarboxylation, isomeration, and fatty acid
aromatization can be accomplished with relatively little efficiency using carbonate-based
catalysts [61].

Heterogenous Catalysts

Heterogeneous catalysts are insoluble in water and can be recovered. They are pre-
ferred over homogeneous catalysts due to a smaller corrosion rate and better catalytic
activity under harsh working circumstances, which frequently result in damage to the
homogeneous catalysts. Despite their advantages, some circumstances can limit their
effectiveness [61]. Xu et al. [63] revealed that the catalyst can be deactivated by the pres-
ence of impurities, including ash and excessive amounts of nutrients, after a given period
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of time during operation. Increased levels of S, N, and O derivatives result in deacti-
vating the catalyst. A recent study investigated the use of waste-derived heterogeneous
catalysts (which are calcined Musa balbisiana colla peel (CBPA)), calcined water hyacinth
(CWH), calcined Carica papaya stem (CCPS), calcined Tectona grandis leaves (CTGL),
and potassium-impregnated Rhodotorula mucilaginosa de-oiled biomass-activated carbon
(K-RAC) for bio-ethanol production from algal biomass. The highest ethanol yield was
68.32%, which was successfully obtained using a CTGL catalyst as a base [64].

3.2.2. Catalysts for Biodiesel Production

For biodiesel production, acid-base catalysts are among the best candidates as a result
of their capability to simultaneously catalyse the esterification of free fatty acids (FFAs)
and the transesterification of triglycerides (TG) [65]. Catalysts, including basic and acidic
homogeneous and heterogeneous catalysts, as well as biocatalysts, have been reported in
the literature. Table 2 shows various basic and acidic catalysts used for biodiesel production
from microalgae.

Table 2. Basic and acidic catalysts used for biodiesel production from microalgae.

Catalyst Optimum Conditions Microalgae Species Conversion Efficiency (%) Reference
Phosphotunestic acid HPW /ZIF-67 weight ratio = 0.25. Oil:
I—IIDPW & MeOH molar ratio of 1:20, 1 wt% catalyst Chlorella vulgaris 98.5 [66]
/ ZIF-67 . 5 .
concentration, 200 °C for 90 min.
MeOH:lipids ratio of 20:1, 3 wt% catalyst
Co-based ZIF-67 concentration, 550 °C for 30 min. N/A % 1671
. 13:1 weight ratio of SiC/NaOH to GO, .
SiC/NaOH-GO 5 wt% of catalyst loading, 65 °C for 6 min. Chlorella vulgaris % [68]
1:18 MeOH:oil molar ratio, with 2.5 wt % Lo . o
BaO/CaO-ZnO catalyst, 65 °C for 120 min. Spirulina platensis 69.56% FAME [69]
. Lipid:MeOH ratio of 1:90 (g/mL), catalyst . o
Biy03/ZrOyctaB) loading of 20 wt.%, 80 °C for 6 h. Nannochloropsis 73.21% FAME [70]
CaO Oil:MeOH molar ratio of 1:150, catalyst Nannochloropsis oculata 84.11% FAME [71]

loading of 9 wt.% for 1 h.

Each proposed catalyst has pros and cons of its own. For example, basic and acidic
homogeneous catalysts are cheaper and provide competent mass transfer; however, cor-
rosion, nonrecovery, and the creation of soap are the main drawbacks affecting its use for
mass production. While acidic and basic heterogeneous catalysts can be used to overcome
these issues, they still have limited mass transfer, are expensive, and are weaker in FFA
esterification and lipid transesterification. Bio-catalysis is an expensive process but can
produce a pure product that eliminates side reactions [72]. Biochars have various benefits
when employed as catalysts or catalyst supports, including low cost, a high surface area,
and the ability to alter surface functional groups. Biochars can be utilised as effective
heterogeneous acid or base catalysts to produce biodiesel after activation or modification.
Sulphonated biochars are the most widely utilised heterogeneous catalysts for making
biodiesel. It is simple to sulphonate biochar by impregnating it with concentrated H,SO4
under high temperatures or by subjecting it to gaseous SO3, which results in the immo-
bilization of -SO3H groups on the biochar’s surface. Free fatty acid (FFA) esterification
or the transesterification of triglycerides with alcohols to produce biodiesel can both be
catalysed by these -SO3H groups [73]. Recently, the catalytic activity of biochar produced
from sugarcane bagasse, coconut shell, corncob, and peanut shell was assessed after surface
functionalization. For effective catalysis, peanut shell that had been pyrolysed at 400 °C
and had a sulphonic acid density of 0.837 mmol/g and 6.616 m?/g of surface area was
chosen. The effectiveness of transesterification was assessed using a catalyst loading of
1-7 wt% and a methanol-oil ratio of 6-30:1 at temperatures between 55 and 85 °C for 2-8 h.
With a catalyst concentration of five weight percent and a MeOH:oil ratio of 20:1 at 65 °C
after 4 h, a 94.91% biodiesel yield was produced [74].
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Nano-catalysts are now being used in transesterification due to their advantages
over currently employed conventional approaches. The CaO nanoparticle exhibited an
improvement in biodiesel yield from 93 to 96%. Furthermore, a study reported the use of
nano-catalysts for biodiesel production from algae, and with a 30:1 methanol to oil molar
ratio and a reaction period of 3 h at 80 °C, the greatest possible fatty acid methyl ester
(FAME) yield of 99.0% was obtained over a 3 wt% of Ca (OCHj3); (nano-calcium methoxide)
catalyst [75].

3.2.3. Nano-Additives

Nanotechnology is a notable research field with various applications in the energy
sector, specifically in the bioenergy sector. Nanotechnology has induced revolutionary
modifications to biofuel transformation and enhancement processes [10]. Nanotechnology
is described as the creation and usage of devices and materials at the nanoscale, 1072 m[76].
Nano-additives, including nanocrystals, nanomagnets, nanofibers, and nanodroplets, have
been developed based on nanotechnology to enhance biofuel production and increase
the efficiency of biofuel usage [77,78]. The traditional methods of generating biofuels via
microalgae have posed several issues associated with the costs of cultivation and harvest-
ing, land for large-scale microalgae cultivation, energy utilization for generating biofuels,
and the environmental impacts of cultivating microalgae and producing biofuels. Conse-
quently, nanotechnology has been integrated into the biofuel industry to remove some of
the former limitations [79]. Nanotechnology can be applied to various stages of microalgae
cultivation and produce biofuels due to its economic benefits, technical advantages, and
positive environmental impacts. Based on the previous literature, nanotechnology has
improved the cultivation process of microalgae and produced maximum biofuel yields.
Different nanostructures and materials, including nanoparticles, nanosheets, nanotubes,
and nanofibers, have been studied as efficient and productive nano-catalysts to directly and
indirectly increase biofuel production [80,81]. Moreover, nanomagnets can be employed
as an enzyme immobilization carrier, producing biodiesel, bioethanol, and biomethane
due to their high resistance to magnetization and enhanced magnetic characteristics [82].
Moreover, immobilising cellulase on magnetic nanoparticles can be utilised for microalgae
cell wall hydrolysis and lipid extraction. In a study carried out by Duraiarasan et al. [83],
magnetic nanoparticles were employed to hydrolyse microalgae polysaccharide-walled
cells for lipid extraction. The authors were able to hydrolyse the cell walls after exposing
the immobilised cellulase to the added magnetic nanoparticles. The results of this study
indicated that biodiesel production was optimised by 93.56% due to the added nanoparti-
cles. Meanwhile, Zaidi et al. [84] studied the impact of microwaved magnetic nanoparticles
on biohydrogen and biogas yields. The authors reported that the microwaved magnetic
nanoparticles enhanced the production of biohydrogen and biogas, where biohydrogen pro-
duction was 51.5%, and biogas yield was 328 mL. Apart from these significant advantages
of magnetic nanoparticles in biofuel production, Khoo et al. [85] reported that prelimi-
nary studies are exploring the economic side and the applicability of integrating magnetic
nanoparticles for large-scale biofuel production. Nanomagnetic powder can also be utilised
to suspend microalgae cells in the photobioreactor cultivation process to group cells to
uniformly distribute nutrients and lights in the reactor. Additionally, for easier accessibility
to light, silver nanoparticles have been coated onto the surface of a photobioreactor [86].
On a similar note, nanospheres have been integrated by ultrasonication and irradiation
techniques into the culture and harvesting processes, including lipid removal, hydrolysis,
biofuel purification, and transesterification, to enhance biofuel production [87].

In general, nano-additive applications for enhancing the biofuel yield from microalgae
species are classified into applications of nano-additives for cultivating microalgae, appli-
cations of nano-additives for converting biomass extracted from microalgae into biofuels,
and applications of nano-additives for biofuel production from microalgae. The main goal
of applying nano-additives for cultivating microalgae is to enhance biomass yield while
substantially decreasing the required area for cultivation. Nanotechnology has also been
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pragmatic in immobilising enzymes to enhance the production yield. Additionally, the ad-
dition of nanoparticles to the harvesting process of microalgae has led to remarkable results,
where all the harvesting efficiencies of the microalgae species surpassed 90%, and, in one
case, modified Chu 13 nanoparticles were added to botryococcus braunii microalgae species,
and the microalgae exhibited a harvesting efficiency of 100% [86]. Table 3 demonstrates the
impact of various nanoparticles on the harvesting efficiency of different microalgae species.
In addition to that, nanoparticles, such as optical fibres, can enhance the light conversion
efficiencies in photobioreactors. Optical fibres lower the energy utilization for cultivating
microalgae, decrease the costs associated with the need for additional lighting, and enhance
the efficiency of microalgae [79]. Based on a study conducted by [88], the application of
metal nanoparticles to localised surface plasmon resonance enhances the distribution of
light at specific wavelengths. Torkamani et al. [89] validated this by suspending silver
nanoparticles in plasmon photobioreactors and concluded that the metal nanoparticles
had effectively scattered the blue light. In return, the light enhanced the photosynthetic
processes of green and blue-green microalgae species. As a result, a noticeable increase of
30% in the biomass yield from the microalgae was reported. The benefits of nanoparticles
are not limited to enhanced light distribution; they also increase the CO; intake yield and
the CO, sequestration, which enhances biomass yields.

Biodiesel is one of the most widely utilised and known types of biofuels. Hence,
various nanoparticles have been applied to the conversion processes of biodiesel for fur-
ther enhancements in biodiesel yield and conversion efficiency [87]. Other nanoparticles,
including nanofluids, solid nanoparticles, and nanodroplets, have displayed tremendous
enhancements in the lubricity, catalytic performance, and heat transfer and mass transfer
efficiencies of biofuels [90,91]. These enhancements boost the combustion of microalgae-
based biofuel in the applications of various engines. As a result, it has been shown that
nanotechnology has boosted the combustion efficiency of microalgae-based biofuel and
lowered pollutants and greenhouse gas emissions by 72% [90,92].

Table 3. A summary of the impacts of various nanoparticles on the harvesting efficiency of different
microalgae species.

Microalgae Species

Nanoparticles Harvesting Efficiency Findings Reference

Chlorella ellipsoidea

Iron oxide, Fe30y4 97%

The added nanoparticles enhanced the efficiency of
harvesting microalgae, enabled fast
implementation, and decreased energy and water
usage during microalgae harvesting. Hence,
magnetic separation appears to be a prevailing
technique for optimal microalgae harvesting.

[93]

Chlorella vulgaris

The nanoparticles enhanced the microalgae

Iron oxide, Fe304 91% harvesting process due to their prevailing efficiency [94]

and stability.

Chlorella sp.

A coating of dendrimer nanoparticles significantly
enhanced the process of harvesting microalgae.

Magnetic iron oxide 95% Moreover, a positive correlation between [95]

microalgae harvesting and coating thickness was
discovered.

Chlorella ellipsoidea

This study involved magnetic flocculant synthesis

Iron oxide, Fe304 >95% due to its ability to enhance harvesting efficiency [96]

without adversely affecting the environment.

Chlorella sp.

Chitosan/magnetic
nanoparticles any negative impacts on the growth rate of the

Not only did the nanoparticles attain a harvesting

efficiency above 99% but they also did not result in

99% [97]

microalgae.
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Table 3. Cont.

Microalgae Species

Nanoparticles Harvesting Efficiency Findings Reference

Chlorella vulgaris

Applying nanotechnology enabled the rapid
harvesting of microalgae, where, in less than half a
minute, about 99% of the microalgae cells were
harvested. Additionally, the nanoparticles
diminished the impacts of pH levels on the
microalgae organic outputs.

F63 04 99% [98]

Nannochloropsis sp.

The added iron oxide nanoparticles led to an
enhanced microalgal cell magnetophoretic
Fe3z04 97.9% separation. Additionally, there was no need to [99]
modify the pH levels, as they did not impact the
microalgal harvesting efficiency.

Nannochloropsis sp.

The addition of nanochitosan as the flocculant led

Nano-chitosan 97% to an enhancement of 9% in the biomass recovery [100]

and increased the microalgal growth level by 7%.

4. Barriers and Limitations

Despite the numerous advantages algae-based biofuels present, there are still several
challenges faced for their broad commercialization. These challenges are categorised into
techno-economic and environmental restrictions [101]. Environmental challenges can be
further classified into land and water usage, greenhouse gas emissions, other pollutant
emissions, and biodiversity loss.

4.1. Techno-Economic Barriers

Although biofuel production from microalgae technologies is promising, the asso-
ciated high costs prevent the commercialisation of these technologies. Figure 7 depicts
the economic differences between biofuel production from the first-, second-, and third-
generations and fossil fuel production. The development of technological innovations that
are economically viable, such as microalgal strain enhancement for enhanced oil output, is
needed [48]. Moreover, research may not advance as fast it could due to methodological
restrictions such as high equipment costs for scaling up [59].

Before biofuel production, the harvesting and dewatering of microalgal cells rep-
resent another barrier. Dewatering diluted cell suspensions is extremely difficult and
time-consuming; some technologies are also costly [102]. According to studies, biomass
harvesting costs between 20 and 30 percent of the cost of microalgal downstream opera-
tions. The technology gap is still one of the main challenges facing the commercialization of
biofuel from microalgae. In addition, high water, nitrogen, and phosphorus consumption
in large-scale biomass production are another challenge. When using wastewater as a
source of nutrients, pollution from bacteria, pathogens, and chemical compounds present
in wastewater is a rising concern [103]. Microalgal dewatering, drying, oil extraction, and
free fatty acid and inorganic contaminant removal are energy-intensive and costly, and they
provide the biggest technological obstacles in producing biodiesel from microalgae [14].
Additionally, comparing the energy consumption of the open pond, column photobioreac-
tor (PBR), and tubular PBR throughout their respective life cycles, it was found that open
ponds consume the least energy, while tubular PBRs consume the most during the culture
phase. Although PBRs consume more electricity, which adds to the costs, they are still
favourable and often achieve higher biomass concentrations [104]. One of the elements
that should be optimised is the cost of utilising lamps to illuminate microalgae cells and
deliver a sufficient quantity of light. Compound parabolic concentrators are one method of
enhancing the illumination of microalgae. When Chlorella vulgaris was cultivated using a
glass tube and a plain tube without a compound parabolic concentrator (CPC), the system
with a concentrator was compared with the system with a plain tube. The system with a
concentrator improved the irradiance level of the culture by 351% and the average light
intensity of the cells by 462%. During the exponential phase, C. vulgaris grew more quickly
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in the tube system (1.14 div/day) than in the concentrator system (0.98 div/day); however,
its cells were larger in the concentrator system (11.23 m) than in the tube system (6.28 m),
and between days 2 to 4 of the cultivation, the CPC system produced more biomass than
the tube system did in terms of organic dry weight and proteins, lipids, and carbs [105].

MW 1st generation (corn oil) ®2nd generation (cooking oil)

® 3rd generation (microalgae) w Fossil Fuel

Figure 7. Economic comparison between first-, second-, and third-generations of biofuels and fossil
fuels (data obtained from [106-108]).

4.2. Environmental Barriers

Globally, fossil fuels are intensively utilised as the prime source of energy. Hence,
alternative energy sources must be adequate to meet global fuel demands. In 2008, in the
United States, around 19 million barrels of oil were required daily. For biofuel feedstock
such as microalgae to meet this demand, about 30 million acres of land must be available
for microalgae cultivation [109]. Nevertheless, as third-generation biofuels, microalgae
have fewer issues related to land use than first-generation and second-generation biofuels,
as they can grow and reproduce on non-arable land, using wastewater and brackish
water [110]. On the other hand, water is a significant limiting factor for utilising microalgae
in biofuel production. For large-scale microalgae cultivation, it is essential to consider water
utilization to prevent trade-offs between water and fuel [109]. The main factors impacting
microalgae’s water usage for biofuel production are the geographical location, conversion
routes, and production systems. For instance, in the Netherlands, the water utilization of
microalgae in a closed photo reactor was projected at 8 m3 GJ~!. In contrast, in Hawaii,
the water utilization of microalgae cultivated in open pond systems was estimated at
193 m3 GJ 7! [111]. Table 4 presents the average annual water footprint and cost of several
fuel sources.
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Table 4. Average annual water footprint and costs of several fuel sources.

Fuel Sources Average Annual Water Footprint (m3/GJ) Cost ($/Gallon) Reference
Microalgae-based biodiesel (open raceway) From 14 to 87 3.50 [112-114]
Microalgae-based biodiesel (bioreactor) From 1 to 2 3.50 [113,114]
Natural gas 0.11 0.6825 [109,115]
Soybean-based biodiesel 287 2.00 [113,116]
Petroleum-based diesel From 0.04 to 0.08 5.34 [112,115]
Sugarcane ethanol From 85 to 139 2.40 [113,117]

Microalgae-based biofuels are considered renewable and clean alternatives to fossil
fuels. Nevertheless, multiple research studies have been conducted to assess the impact of
microalgal biofuels (most specifically, biodiesel) on greenhouse gas emissions. Most studies
have indicated that, currently, microalgae-based biodiesel results in higher greenhouse
gas emissions than fossil diesel. This is due to the small microalgal harvest [118] and high
energy utilization required for cultivating, harvesting, and drying microalgae [119,120].
Several studies have indicated that microalgae-based biofuels require abundant energy
for several processes, including pumping, lipid extraction, dewatering, and thermal dry-
ing [119,121]. Nevertheless, the energy requirements for cultivating microalgae in raceway
ponds are lower than 1 MJ MJ~!, which is much lower than the energy requirements for
photobioreactors [122]. In addition to greenhouse gas emissions, microalgae emit methane
gas, nitrogen gas, biogenic halogenated, biogenic sulphur, isoprene, and volatile organic
carbon [123]. Moreover, applying pesticides, such as herbicides and insecticides, leads
to the release of organochlorine compounds, which result in ozone depletion [124]. In
addition to pesticides, fertilisers used for optimum microalgal growth contribute to green-
house gas emissions. Microalgae require nutrients, fertilisers, or supplements for optimal
growth. Nevertheless, fertilisers are made of components extracted from fossil fuels and are
non-renewable [125]. Other biofuel production processes, such as transesterification, har-
vesting, and drying, contribute to pollutant emissions [126]. The transesterification process
is an energy-intensive process that requires chemicals for its operations. Mayol et al. [127]
assessed the impact of several processes for cultivating microalgae by using artificial in-
telligence technologies. The authors reported that the transesterification process had the
highest environmental impacts, with 19.40 million points. In comparison, the dewatering
process showed the least environmental problems, with a score of 0.267 million points.

The impacts of microalgae are not limited to natural resources but also biodiversity.
Microalgae cultivation poses a threat to biodiversity and the ecosystem. Deploying mi-
croalgae on a large scale requires the proper control and management of the cultivation
process [128]. Hence, it may be a better choice to rely on native plant species for biofuel pro-
duction rather than cultivating invasive species that might endanger biodiversity [129]. The
mass cultivation of microalgae is also known as the controlled eutrophication process [128].
Nevertheless, the mass cultivation of microalgae can lead to the excessive richness of nu-
trients in the aquatic body, thus threatening biodiversity. As microalgal biomasses wither,
their decomposed bodies take up oxygen from the aquatic body. This, in turn, leads to
the asphyxiation of aquatic creatures and organisms that require oxygen for survival [130].
The mass cultivation of microalgae poses a significant risk to coastal biodiversity due to
the over-exploitation of the microalgal species of coastal ecosystems [131]. Hence, eu-
trophication threatens biodiversity because of water toxicity, oxygen level reduction, and
the opacity of water bodies [130]. As a result, microalgae-based biofuels lead to a loss of
biodiversity because of the utilization and degradation of the habitats of many aquatic
and non-aquatic creatures and the polluted land water from the extra nutrient load [132].
The cultivation of genetically modified microalgae has not been documented yet, most
likely because of the numerous known and unknown dangers involved with cultivating
it outdoors in open systems. There are a number of dangers associated with growing
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genetically modified microalgae, including the possibility of uncontrollable leaks. Upon
proliferating, these algae may stop the growth of normal species and begin to compete
with them. The dangers of toxic algal blooms, adverse effects on ecosystems, gene transfer,
health and environmental effects, management control issues, and ethical issues are also
the main issues with growing genetically modified microalgae [50].

5. Future Outlook

An ideal mix of technological advancements in systems, processes, and economic via-
bility in practical implementation is required for commercial biofuel production. According
to a previous study, algal biofuels are theoretically feasible, but more long-term (around
10 years) R&D is needed to obtain the desired high productivity. Additionally, it is thought
that only open ponds can produce biofuels at the low cost required [20]. According to
Belarbi et al. [125], biofuels from algae are promising, with the commercialization of algae
fuels being attempted by a variety of new businesses. Transportation fuels made from algae
could replace petroleum-based ones, significantly reducing carbon dioxide emissions. A
few US businesses have recently been attempting to reduce the cost of photobioreactors
(PBRs) to practically the same level as open ponds [20]. The most prevalent biofuel today is
bioethanol, typically made from corn and sugarcane sugars. In just a few years, the amount
of bioethanol produced worldwide has rapidly expanded from 1 billion to 39 billion litres,
and it will soon surpass 100 billion litres. With the use of engineering techniques, efforts to
create microalgae strains high in carbohydrates are growing. Numerous transformation
techniques are now feasible because of genetics” quick advancement, and experiments
support the use of genetic tools for various applications. Algal bioethanol technology has
not advanced sufficiently as of now, but expectations for the near future are strong [22].

6. Conclusions

This review focused on recent advances in enhancing the biomass yield of biofuel
extracted from microalgae as well as the barriers and limitations of applying these tech-
nologies. It is evident that biofuel productivity could be significantly increased with the
incorporation of enabling technologies such as genetic engineering and the incorporation
of nanomaterials. The application of the latter has a tangible effect on the yield of biofuel
generation from microalgae. Various microalgal species were studied, and the addition of
nanoparticles improved harvesting efficiency and biofuel production. In addition, transcrip-
tome analyses were introduced for their role in the production of metabolites for microalgal
species. The barriers concerning biofuel production are mainly techno-economic, as well as
environmental. While the environmental challenges can be mitigated by growing algae in
a protected environment, the energy and cost breakeven points of pretreatment procedures
are far from ideal and need to be reduced. Overcoming these barriers is possible with more
research and development, starting with microalgae cultivation and the biofuel production
process, to reach a cost-effective solution to be adapted commercially.
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