Effects of Bacteriocin-Producing Lactiplantibacillus plantarum on Fermentation, Dynamics of Bacterial Community, and Their Functional Shifts of Alfalfa Silage with Different Dry Matters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain Preparation
2.2. Alfalfa Silage Preparation
2.3. Chemical Composition and Fermentation Characteristics Analysis
2.4. DNA Extraction and SMRT Sequencing Analyses
2.5. Statistical Analysis
3. Results
3.1. Chemical Composition of Alfalfa before Ensiling
3.2. Dynamics of Fermentation Characteristics of Ensiled Alfalfa
3.3. Chemical Characteristics of Ensiled Alfalfa
3.4. Dynamics of Bacterial Community of Ensiled Alfalfa
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, D.; Lee, K.D.; Choi, K.C. Role of LAB in silage fermentation: Effect on nutritional quality and organic acid production—An overview. AIMS Agric. Food 2021, 6, 216–234. [Google Scholar] [CrossRef]
- Driehuis, F.; Wilkinson, J.M.; Jiang, Y.; Ogunade, I.; Adesogan, A.T. Silage review: Animal and human health risks from silage. J. Dairy Sci. 2018, 101, 4093–4110. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Ding, Z.; Ke, W.; Xu, D.; Wang, M.; Huang, W.; Zhang, Y.; Liu, F.; Guo, X. Different lactic acid bacteria and their combinations regulated the fermentation process of ensiled alfalfa: Ensiling characteristics, dynamics of bacterial community and their functional shifts. Microb. Biotechnol. 2021, 14, 1171–1182. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Wang, N.; Rinne, M.; Ke, W.; Weinberg, Z.G.; Da, M.; Bai, J.; Zhang, Y.X.; Li, F.H.; Guo, X.S. The bacterial community and metabolome dynamics and their interactions modulate fermentation process of whole crop corn silage prepared with or without inoculants. Microb. Biotechnol. 2021, 14, 561–576. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, O.C.M.; Ogunade, I.M.; Weinberg, Z.; Adesogan, A.T. Silage review: Foodborne pathogens in silage and their mitigation by silage additives. J. Dairy Sci. 2018, 101, 4132–4142. [Google Scholar] [CrossRef]
- Amado, I.R.; Fuciños, C.; Fajardo, P.; Guerra, N.P.; Pastrana, L. Evaluation of two bacteriocin-producing probiotic lactic acid bacteria as inoculants for controlling Listeria monocytogenes in grass and maize silages. Anim. Feed Sci. Technol. 2012, 175, 137–149. [Google Scholar] [CrossRef]
- Amado, I.R.; Fuciños, C.; Fajardo, P.; Pastrana, L. Pediocin SA-1: A selective bacteriocin for controlling Listeria monocytogenes in maize silages. J. Dairy Sci. 2016, 99, 8070–8080. [Google Scholar] [CrossRef] [Green Version]
- Silva, V.P.; Pereira, O.G.; Leandro, E.S.; Da Silva, T.C.; Ribeiro, K.G.; Mantovani, H.C.; Santos, S.A. Effects of lactic acid bacteria with bacteriocinogenic potential on the fermentation profile and chemical composition of alfalfa silage in tropical conditions. J. Dairy Sci. 2016, 99, 1895–1902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rufino, L.D.D.A.; Pereira, O.G.; Ribeiro, K.G.; Leandro, E.S.; Santos, S.A.; Bernardes, T.F.; de Paula, R.A.; Agarussi, M.C.N. Effects of lactic acid bacteria with bacteriocinogenic potential on the chemical composition and fermentation profile of forage peanut (Arachis pintoi) silage. Anim. Feed Sci. Technol. 2022, 290, 115340. [Google Scholar] [CrossRef]
- Li, F.; Ding, Z.; Adesogan, T.A.; Ke, W.; Jiang, Y.; Bai, J.; Mudassar, S.; Zhang, Y.; Huang, W.; Guo, X. Effects of class IIa bacteriocin-producing Lactobacillus species on fermentation quality and aerobic stability of alfalfa silage. Animals 2020, 10, 1575. [Google Scholar] [CrossRef] [PubMed]
- Allen, H.K.; Levine, U.Y.; Looft, T.; Bandrick, M.; Casey, T.A. Treatment, promotion, commotion: Antibiotic alternatives in food-producing animals. Trends Microbiol. 2013, 21, 114–119. [Google Scholar] [CrossRef] [Green Version]
- Cotter, P.D.; Ross, R.P.; Hill, C. Bacteriocins—A viable alternative to antibiotics? Nat. Rev. Microbiol. 2013, 11, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhang, L.; Yi, H.; Shi, J.; Xue, C.; Li, H.; Jiao, Y.; Shigwedha, N.; Du, M.; Han, X. Qualitative detection of class IIa bacteriocinogenic lactic acid bacteria from traditional Chinese fermented food using a YGNGV-motif-based assay. J. Microbiol. Methods 2014, 100, 121–127. [Google Scholar] [CrossRef]
- Ma, G.; Ma, H.; Lu, X.; Liu, J.; Sun, Y.; Bai, F.; Li, J. Screening for broad-spectrum antagonistic lactic acid bacteria from intestine of turbot and identification of bacteriocin produced by it. Food Sci. 2019, 7, 159–165. [Google Scholar] [CrossRef]
- Yang, F.; Wang, Y.; Zhao, S.; Wang, Y. Lactobacillus plantarum inoculants delay spoilage of high moisture alfalfa silages by regulating bacterial community composition. Front. Microbiol. 2020, 11, 1989. [Google Scholar] [CrossRef] [PubMed]
- Thomas, T.A. An automated procedure for the determination of soluble carbohydrates in herbage. J. Sci. Food Agric. 1977, 28, 639–642. [Google Scholar] [CrossRef]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Du, Z.; Sun, L.; Lin, Y.; Yang, F.; Cai, Y. Using PacBio SMRT Sequencing Technology and Metabolomics to Explore the Microbiota-Metabolome Interaction Related to Silage Fermentation of Woody Plant. Front. Microbiol. 2022, 13, 857431. [Google Scholar] [CrossRef] [PubMed]
- Filya, I.; Ashbell, G.; Hen, Y.; Weinberg, Z.G. The effect of bacterial inoculants on the fermentation and aerobic stability of whole crop wheat silage. Anim. Feed Sci. Technol. 2000, 88, 39–46. [Google Scholar] [CrossRef]
- Hu, W.; Schmidt, R.J.; McDonell, E.E.; Klingerman, C.M.; Kung, L.M. The effect of Lactobacillus buchneri 40788 or Lactobacillus plantarum MTD-1 on the fermentation and aerobic stability of corn silages ensiled at two dry matter contents. J. Dairy Sci. 2009, 92, 3907–3914. [Google Scholar] [CrossRef] [Green Version]
- Ke, W.; Ding, Z.; Li, F.; Xu, D.; Bai, J.; Muhammad, I.; Zhang, Y.; Zhao, L.; Guo, X. The effects of malic or citric acid on the fermentation quality, proteolysis and lipolysis of alfalfa silage ensiled at two dry matter contents. J. Anim. Physiol. Anim. Nutr. 2021, 106, 988–994. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Ke, W.; Ding, W.; Ding, L.; Xu, D.; Wang, W.; Zhang, P.; Yang, F. Profiling of metabolome and bacterial community dynamics in ensiled Medicago sativa inoculated without or with Lactobacillus plantarum or Lactobacillus buchneri. Sci. Rep. 2018, 8, 357. [Google Scholar] [CrossRef] [Green Version]
- Charmley, E. Towards improved silage quality—A review. Can. Vet. J. 2001, 81, 157–168. [Google Scholar] [CrossRef]
- Hafner, S.D.; Howard, C.; Muck, R.E.; Franco, R.B.; Montes, F.; Green, P.G.; Mitloehner, F.; Trabue, S.L.; Rotz, C.A. Emission of volatile organic compounds from silage: Compounds, sources, and implications. Atmos. Environ. 2013, 77, 827–839. [Google Scholar] [CrossRef]
- Carkaci, D.; Dargis, R.; Nielsen, X.C.; Skovgaard, O.; Fuursted, K.; Christensen, J.J. Complete Genome Sequences of Aerococcus christensenii CCUG 28831T, Aerococcus sanguinicola CCUG 43001T, Aerococcus urinae CCUG 36881T, Aerococcus urinaeequi CCUG 28094T, Aerococcus urinaehominis CCUG 42038 BT, and Aerococcus viridans CCUG 4311T. Genome. Announc. 2016, 4, e00302-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Chen, L.; Wang, L.; Zhou, B.; Ye, D.; Zheng, X.; Lin, Y.; Zeng, W.; Zhou, T.; Ye, J. Cluster Differences in Antibiotic Resistance, Biofilm Formation, Mobility, and Virulence of Clinical Enterobacter cloacae Complex. Front. Microbiol. 2022, 13, 814831. [Google Scholar] [CrossRef] [PubMed]
- Agarussi, M.C.N.; Pereira, O.G.; Silva, V.P.; Leandro, E.S.; Ribeiro, K.G.; Santos, S.A. Fermentative profile and lactic acid bacterial dynamics in non-wilted and wilted alfalfa silage in tropical conditions. Mol. Biol. Rep. 2019, 46, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Ni, K.; Wang, F.; Zhu, B.; Yang, J.; Zhou, G.; Pan, Y.; Tao, Y.; Zhong, J. Effects of lactic acid bacteria and molasses additives on the microbial community and fermentation quality of soybean silage. Bioresour. Technol. 2017, 238, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Heron, S.J.; Edwards, R.A.; Phillips, P. Effect of pH on the activity of ryegrass Lolium multiflorum proteases. J. Sci. Food Agric. 1989, 46, 267–277. [Google Scholar] [CrossRef]
- Ding, W.; Guo, X.; Ataku, K. Characterization of peptides in ensiled alfalfa treated with different chemical additives. Anim. Sci. J. 2013, 84, 774–781. [Google Scholar] [CrossRef] [PubMed]
- Kung, L., Jr.; Der Bedrosian, M. How well do we really understand silage fermentation? In Proceedings of the 2010 Cornell Nutrition Conference for Feed Manufacturers, Ithaca, NY, USA, 19–21 October 2010; pp. 87–93. [Google Scholar]
Item 1 | Alfalfa 2 | |
---|---|---|
M | H | |
DM, g/kg FM | 355 | 428 |
WSC, g/kg DM | 31.5 | 36.7 |
CP, g/kg DM | 177 | 172 |
aNDF, g/kg DM | 366 | 391 |
ADF, g/kg DM | 283 | 294 |
pH | 6.17 | 6.49 |
Iterms 1 | Additives 2 | M | H | Mean | SEM 3 | Effects 4 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 d | 7 d | 14 d | 60 d | 90 d | Mean | 3 d | 7 d | 14 d | 60 d | 90 d | A | D | T | A × D | A × T | D × T | A × D × T | ||||
pH, g/kg DM | Control | 5.87 aA | 5.46 aB | 5.31 aC | 4.78 aD | 4.56 aE | 5.19 | 6.04 aA | 5.70 aB | 5.48 aC | 4.62 bD | 4.59 aD | 5.28 | 0.005 | <0.001 | 0.24 | <0.001 | 0.102 | <0.001 | 0.062 | <0.001 |
MTD/1 | 4.33 dC | 4.39 cAB | 4.35 cC | 4.52 bA | 4.41 cAB | 4.40 | 5.31 cA | 4.92 cB | 4.71 cC | 4.45 cD | 4.47 AbD | 4.77 | |||||||||
ATCC14917 | 4.50 cA | 4.45 cA | 4.34 cAB | 4.39 bA | 4.22 dB | 4.39 | 5.20 cA | 4.80 cB | 4.60 dC | 4.42 cD | 4.44 bD | 4.69 | |||||||||
LP1-4 | 5.35 bA | 5.01 bB | 5.01 bB | 4.55 bC | 4.46 bC | 4.88 | 5.83 bA | 5.50 bB | 5.31 bC | 4.79 aD | 4.63 aE | 5.21 | |||||||||
LA, g/kg DM | Control | 0.00 cD | 7.56 cC | 11.7 bC | 34.7 aA | 21.3 bB | 15.22 | 0.00 bC | 13.9 cB | 14.4 AbB | 19.8 bA | 21.5 abA | 13.92 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
MTD/1 | 16.5 bC | 27.3 abAB | 29.4 aAB | 33.9 aA | 27.5 abB | 26.72 | 16.9 aB | 22.7 abA | 19.0 abAB | 22.3 aAB | 19.8 bcAB | 20.13 | |||||||||
ATCC14917 | 31.1 a | 31.3 a | 34.0 a | 23.6 b | 30.7 a | 30.08 | 18.3 a | 26.2 a | 25.1 a | 22.1 a | 23.2 a | 22.99 | |||||||||
LP1-4 | 16.5 bC | 21.4 bBC | 18.1 bC | 28.4 abA | 25.0 abAB | 21.90 | 19.5 a | 17.1 bc | 16.6 b | 20.3 ab | 17.7 c | 18.24 | |||||||||
AA, g/kg DM | Control | 0.00 cD | 0.00 bD | 4.34 aC | 26.5 aA | 12.0 aB | 8.56 | 0.00 cD | 0.00 bD | 3.38 bC | 10.9 aA | 7.81 bB | 4.42 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
MTD/1 | 2.19 aB | 3.70 aB | 4.06 aB | 7.91 bcA | 9.47 abA | 5.46 | 1.17 bC | 3.57 aC | 6.87 abB | 10.6 aA | 8.53 abAB | 6.15 | |||||||||
ATCC14917 | 2.37 a | 4.16 a | 4.36 a | 4.96 Bc | 6.56 Bb | 4.65 | 2.49 aC | 3.48 aC | 8.91 aA | 8.51 abA | 9.62 aA | 6.60 | |||||||||
LP1-4 | 1.73 bC | 3.52 aC | 1.66 bC | 9.34 bB | 11.5 aA | 5.56 | 2.75 aC | 2.50 aC | 4.31 abBC | 6.69 bAB | 7.45 bA | 4.74 | |||||||||
PA, g/kg DM | Control | 0.00 bD | 2.35 bCD | 4.05 bC | 19.5 aA | 13.0 aB | 7.78 | 0.00 cD | 1.73 bC | 3.22 bB | 9.76 aA | 9.42 aA | 4.83 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
MTD/1 | 1.88 aB | 2.04 bB | 3.51 bB | 11.1 bA | 12.2 aA | 6.14 | 1.47 bC | 1.84 bC | 4.08 abB | 8.49 aA | 8.71 abA | 4.92 | |||||||||
ATCC14917 | 1.70 a | 1.94 b | 3.81 b | 6.22 c | 8.58 b | 4.77 | 1.96 abC | 1.83 bC | 4.35 aB | 6.56 bA | 8.45 abA | 4.63 | |||||||||
LP1-4 | 1.50 aD | 2.95 aC | 6.35 aB | 11.5 bA | 12.0 aA | 6.88 | 3.13 aCD | 2.55 aD | 4.24 abC | 8.57 aA | 6.65 bB | 5.03 |
Iterms 1 | Additives 2 | M | H | SEM 3 | Effects 4 | ||
---|---|---|---|---|---|---|---|
A | D | A × D | |||||
DM loss, g/kg DM | Control | 83.2 Aa | 69.0 Ba | 1.267 | < 0.001 | < 0.001 | 0.006 |
MTD/1 | 68.7 b | 63.7 a | |||||
ATCC14917 | 51.9 Ac | 19.0 Bc | |||||
LP1-4 | 62.0 Abc | 44.8 Bb | |||||
DM g/kg, FM | Control | 337 Bc | 409 Ac | 0.11 | <0.001 | <0.001 | <0.001 |
MTD/1 | 341 Bbc | 418 Abc | |||||
ATCC14917 | 349 Aa | 442 Ba | |||||
LP1-4 | 346 Bab | 426 Ab | |||||
WSC, g/kg DM | Control | 5.43 Ac | 4.76 Bd | 0.126 | 0.007 | <0.001 | <0.001 |
MTD/1 | 7.95 b | 7.32 c | |||||
ATCC14917 | 11.4 a | 12.9 a | |||||
LP1-4 | 7.19 Bb | 9.95 Ab | |||||
CP, g/kg DM | Control | 163 b | 168 c | 0.481 | 0.002 | <0.001 | 0.036 |
MTD/1 | 170 a | 169 bc | |||||
ATCC14917 | 171 a | 176 ab | |||||
LP1-4 | 171 Ba | 177 Aa | |||||
NPN, g/kg DM | Control | 581 Aa | 592 Ba | 6.734 | 0.028 | <0.001 | 0.299 |
MTD/1 | 409 b | 379 b | |||||
ATCC14917 | 316 Ac | 260 Bc | |||||
LP1-4 | 347 Abc | 295 Bc | |||||
NH3-N, g/kg DM | Control | 67.3 a | 56.7 a | 0.216 | 0.012 | <0.001 | 0.299 |
MTD/1 | 45.0 Bc | 47.6 Ab | |||||
ATCC14917 | 28.7 Bd | 39.5 Ac | |||||
LP1-4 | 54.7 Ab | 47.2 Bb | |||||
aNDF, g/kg DM | Control | 415 Aa | 400 Ba | 1.302 | <0.001 | 0.031 | 0.127 |
MTD/1 | 386 b | 383 b | |||||
ATCC14917 | 390 b | 382 b | |||||
LP1-4 | 383 b | 385 b | |||||
ADF, g/kg DM | Control | 355 a | 353 a | 1.226 | < 0.001 | 0.942 | 0.001 |
MTD/1 | 346 ab | 330 b | |||||
ATCC14917 | 335 b | 334 b | |||||
LP1-4 | 334 Bb | 352 Aa |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Li, F.; Xie, D.; Zhang, B.; Kharazian, Z.A.; Guo, X. Effects of Bacteriocin-Producing Lactiplantibacillus plantarum on Fermentation, Dynamics of Bacterial Community, and Their Functional Shifts of Alfalfa Silage with Different Dry Matters. Fermentation 2022, 8, 690. https://doi.org/10.3390/fermentation8120690
Li Z, Li F, Xie D, Zhang B, Kharazian ZA, Guo X. Effects of Bacteriocin-Producing Lactiplantibacillus plantarum on Fermentation, Dynamics of Bacterial Community, and Their Functional Shifts of Alfalfa Silage with Different Dry Matters. Fermentation. 2022; 8(12):690. https://doi.org/10.3390/fermentation8120690
Chicago/Turabian StyleLi, Ziqian, Fuhou Li, Dongmei Xie, Baibing Zhang, Zohreh Akhavan Kharazian, and Xusheng Guo. 2022. "Effects of Bacteriocin-Producing Lactiplantibacillus plantarum on Fermentation, Dynamics of Bacterial Community, and Their Functional Shifts of Alfalfa Silage with Different Dry Matters" Fermentation 8, no. 12: 690. https://doi.org/10.3390/fermentation8120690
APA StyleLi, Z., Li, F., Xie, D., Zhang, B., Kharazian, Z. A., & Guo, X. (2022). Effects of Bacteriocin-Producing Lactiplantibacillus plantarum on Fermentation, Dynamics of Bacterial Community, and Their Functional Shifts of Alfalfa Silage with Different Dry Matters. Fermentation, 8(12), 690. https://doi.org/10.3390/fermentation8120690