Synergistic Enhancement Effect of Compound Additive of Organic Alcohols and Biosurfactant on Enzymatic Hydrolysis of Lignocellulose
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. BGL Preparation
2.3. Methods
2.3.1. Pretreatment of Poplar
2.3.2. Screening of Different OAs
2.3.3. Synergistic Effect of Different Compound Additives
2.3.4. Enzymatic Hydrolysis Effect of Poplar with Different Compound Additives
2.3.5. Activity and Stability Effect of LLC02 and W63 with or without the Addition of Compound Additives
2.4. Analysis Methods
2.5. Calculation
3. Results and Discussion
3.1. Screening of Different Straight-Chain OAs for Enhancement of Enzymatic Hydrolysis
3.2. Effect of Different OA Isomers on Enzymatic Hydrolysis of Crystalline Cellulose
3.3. Associations between Additives in the Enzymatic Hydrolysis of Crystalline Cellulose
3.4. Synergistic Enhancement of Poplar Enzymatic Hydrolysis by Compound Additives
3.5. Effects of Different Compound Additives on Activity and Stability of LLC02 and W63
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, X.X.; Meng, X.Z.; Ragauskas, A.J.; Lai, C.H.; Ling, Z.; Huang, C.X.; Yong, Q. Unlocking the secret of lignin-enzyme interactions: Recent advances in developing state-of-the-art analytical techniques. Biotechnol. Adv. 2022, 54, 107830. [Google Scholar] [CrossRef] [PubMed]
- Brondi, M.G.; Pinto, A.S.; Farinas, C.S. Combining additives improves sugars release from hydrothermally pretreated sugarcane bagasse in integrated 1G-2G biorefineries. Bioresour. Technol. Rep. 2021, 15, 100819. [Google Scholar] [CrossRef]
- Xu, C.; Alam, M.A.; Wang, Z.M.; Chen, H.G.; Zhang, J.; Huang, S.S.; Zhuang, W.; Xu, J.L. Mechanisms of bio-additives on boosting enzymatic hydrolysis of lignocellulosic biomass. Bioresour. Technol. 2021, 337, 125341. [Google Scholar] [CrossRef] [PubMed]
- Rocha-Martín, J.; Martinez-Bernal, C.; Pérez-Cobas, Y.; Reyes-Sosa, F.M.; García, B.D. Additives enhancing enzymatic hydrolysis of lignocellulosic biomass. Bioresour. Technol. 2017, 244, 48–56. [Google Scholar] [CrossRef]
- Zhang, J.; Li, K.T.; Liu, S.C.; Huang, S.S.; Xu, C. Alkaline hydrogen peroxide pretreatment combined with bio-additives to boost high-solids enzymatic hydrolysis of sugarcane bagasse for succinic acid processing. Bioresour. Technol. 2022, 345, 126550. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sun, Z.; Ge, X.; Zhang, J. Effects of lignin and surfactant on adsorption and hydrolysis of cellulases on cellulose. Biotechnol. Biofuels. 2016, 9, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhagia, S.; Kumar, R.; Wyman, C.E. Effects of dilute acid and flow through pretreatments and BSA supplementation on enzymatic deconstruction of poplar by cellulase and xylanase. Carbohydr. Polym. 2017, 157, 1940–1948. [Google Scholar] [CrossRef] [Green Version]
- Tan, L.; Liu, Z.; Zhang, T.; Wang, Z.; Liu, T. Enhanced enzymatic digestibility of poplar wood by quick hydrothermal treatment. Bioresour. Technol. 2020, 302, 122795. [Google Scholar] [CrossRef]
- Mcintosh, S.; Zhang, Z.; Palmer, J.; Wong, H.H.; Doherty, W.O.S.; Vancov, T. Pilot-scale cellulosic ethanol production using eucalyptus biomass pre-treated by dilute acid and steam explosion. Biofuel. Bioprod. Biorefin. 2016, 10, 346–358. [Google Scholar] [CrossRef]
- Su, Y.; Huang, C.X.; Lai, C.H.; Yong, Q. Green solvent pretreatment for enhanced production of sugars and antioxidative lignin from poplar. Bioresour. Technol. 2021, 321, 124471. [Google Scholar] [CrossRef]
- Ying, W.J.; Xu, Y.; Zhang, J.H. Effect of sulfuric acid on production of xylooligosaccharides and monosaccharides from hydrogen peroxide-acetic acid-pretreated poplar. Bioresour. Technol. 2021, 321, 124472. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liu, Y.Y.; Zhang, Y.; Chen, Y.; Feng, Q.F.; Wang, W.; Liang, C.Y.; Hu, Y.Z.; Qi, W. Enhanced enzymatic hydrolysis of poplar cellulosic residue fractionated by a magnetic carbon-based solid-acid catalyst in the γ-valerolactone–water system. Ind. Crops Prod. 2022, 176, 114397. [Google Scholar] [CrossRef]
- Abdella, A.; Mazeed, T.E.-S.; El-Baz, A.F.; Yang, S.T. Production of β-glucosidase from wheat bran and glycerol by Aspergillus niger in stirred tank and rotating fibrous bed bioreactors. Process Biochem. 2016, 51, 1331–1337. [Google Scholar] [CrossRef]
- Bai, A.; Zhao, X.; Jin, Y.; Yang, G.; Feng, Y. A novel thermophilic β-glucosidase from Caldicellulosiruptor bescii: Characterization and its synergistic catalysis with other cellulases. J. Mol. Catal B Enzym. 2013, 85, 248–256. [Google Scholar] [CrossRef]
- Kalim, B.; Böhringer, N.; Ali, N.; Schäberle, T.F. Xylanases from microbial origin to industrial application. Br. Biotechnol. J. 2015, 7, 1–20. [Google Scholar] [CrossRef]
- Olsen, S.N.; Bohlin, C.; Murphya, L.; Borch, K.; McFarland, K.C.; Sweeny, M.D.; Westh, P. Effects of non-ionic surfactants on the interactions between cellulases and tannic acid: A model system for cellulase–poly-phenol interactions. Enzyme. Microb. Technol. 2011, 49, 353–359. [Google Scholar] [CrossRef]
- Wang, S.W.; Liu, G.; Wang, J.; Yu, J.T.; Huang, B.Q.; Xing, M. Enhancing cellulase production in Trichoder mareesei RUT C30 through combining manipulation of activating and repressing genes. J. Ind. Microbiol. Biotechnol. 2013, 40, 633–641. [Google Scholar] [CrossRef]
- Park, S.; Kazlauskas, R.J. Biocatalysis in ionic liquids-advantages beyond green technology. Curr. Opin. Biotech. 2003, 14, 432–437. [Google Scholar] [CrossRef]
- Xu, W.J.; Huang, Y.K.; Li, F.; Wang, D.D.; Yin, M.N.; Wang, M.; Xia, Z.N. Improving β-glucosidase biocatalysis with deep eutectic solvents based on choline chloride. Biochem. Eng. J. 2018, 138, 37–46. [Google Scholar] [CrossRef]
- Liang, C.Y.; Xu, Z.H.; Wang, Q.; Wang, W.; Xu, H.J.; Guo, Y.; Qi, W.; Wang, Z.M. Improving β-glucosidase and xylanase production in a combination of waste substrate from domestic wastewater treatment system and agriculture residues. Bioresour. Technol. 2020, 318, 124019. [Google Scholar] [CrossRef]
- Wen, P.Y.; Chu, J.; Zhu, J.J.; Xu, Y.; Zhang, J.H. Highly selective delignification of poplar by hydrogen peroxide-ethylacetate pretreatment at room temp. Renew. Energ. 2022, 188, 1022–1028. [Google Scholar] [CrossRef]
- Hsieh, C.W.C.; Cannella, D.; Jørgensen, H.; Felby, C.; Thygesen, L.G. Cellobiohydrolase and endoglucanase respond differently to surfactants during the hydrolysis of cellulose. Biotechnol. Biofuels. 2015, 8, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lou, H.M.; Yuan, L.; Qiu, X.Q.; Qiu, K.X.; Fu, J.G.; Pang, Y.X.; Huang, J.H. Enhancing enzymatic hydrolysis of xylan by adding sodium lignosulfonate and long-chain fatty alcohols. Bioresour. Technol. 2016, 200, 48–54. [Google Scholar] [CrossRef]
- Wei, W.Q.; Jin, Y.C.; Wu, S.B.; Yuan, Z.Y. Improving corn stover enzymatic saccharification via ferric chloride catalyzed dimethyl sulfoxide pretreatment and various additives. Ind. Crops Prod. 2019, 140, 111663. [Google Scholar] [CrossRef]
- Guo, Z.W.; Zhang, L.M.; Zhang, L.; Yang, G.H.; Xu, F. Enhanced enzymatic hydrolysis by adding long-chain fatty alcohols using film as a structure model. Bioresour. Technol. 2018, 249, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Mesquita, R.; Hallwass, F.; Santana, A.; Baudel, H.; Ribeiro, E. Influence of dirhamnolipids on the enzymatic hydrolysis of steam-pretreated eucalyptus wastes. Ind. Crops Prod. 2019, 141, 111835. [Google Scholar] [CrossRef]
- Sha, R.Y.; Yu, Z.; Wang, Z.Z.; Gbor, E.M.; Jiang, L.G.; Bi, Y.X.; Fang, S.; Meng, Q.; Mao, J.W. Effects of Rhamnolipids on Enzymatic Hydrolysis on Bamboo Biomass and Mechanism. J. Biobased. Mater. Bio. 2020, 14, 453–460. [Google Scholar] [CrossRef]
- Rose, M.M.; Hu, J.; Zhao, X.; Sun, S.F.; Pascal, K.; Ren, H.; Zhang, J.; Sun, F.F.; Pascal, K.; Ren, H.; et al. Enhanced high-solids fed-batch enzymatic hydrolysis of sugar cane bagasse with accessory enzymes and additives at low cellulase loading. ACS Sustain. Chem. Eng. 2018, 6, 12787–12796. [Google Scholar]
- Sluiter, A.; Hanmes, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass. Golden: Laboratory Analytical Procedure of National Renewable Energy Laboratory (NREL). 2012. Available online: https://www.nrel.gov/docs/gen/fy13/42618.pdf (accessed on 14 October 2022).
- Ghose, T.K. Measurement of cellulase activities. Pure Appl. Chem. 1987, 59, 257–268. [Google Scholar] [CrossRef]
- Sarsaiya, S.; Awasthi, S.K.; Awasthi, M.K.; Mishra, S.; Chen, J.S. The dynamic of cellulase activity of fungi inhabiting organic municipal solid waste. Bioresour. Technol. 2018, 251, 411–415. [Google Scholar] [CrossRef]
- Sharma, B.; Agrawal, R.; Singhania, R.R.; Satlewal, A.; Mathur, A.; Tuli, D.; Adsul, M. Untreated wheat straw: Potential source for diverse cellulolytic enzyme secretion by Penicillium janthinellum EMS-UV-8 mutant. Bioresour. Technol. 2015, 196, 518–524. [Google Scholar] [CrossRef] [PubMed]
- Qi, W.; Liu, G.F.; He, C.; Liu, S.N.; Lu, S.; Yue, J.; Wang, Q.; Wang, Z.M.; Yuan, Z.H.; Hu, J.H. An efficient magnetic carbon-based solid acid treatment for corncob saccharification with high selectivity for xylose and enhanced enzymatic digestibility. Green Chem. 2019, 21, 1292. [Google Scholar] [CrossRef]
- Nakagame, S.; Chandra, R.P.; Kadla, J.F.; Saddler, J.N. Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin. Biotechnol. Bioeng. 2011, 108, 538–548. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, T.; Börjesson, J.; Tjerneld, F. Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme Microb. Technol. 2002, 31, 353–364. [Google Scholar] [CrossRef]
- Ko, J.K.; Ximenes, E.; Kim, Y.; Ladisch, M.R. Adsorption of enzyme onto lignins of liquid hot water pretreated hardwoods. Biotechnol. Bioeng. 2015, 112, 447–456. [Google Scholar] [CrossRef]
- Okino, S.; Ikeo, M.; Ueno, Y.; Taneda, D. Effects of Tween 80 on cellulase stability under agitated conditions. Bioresour. Technol. 2013, 142, 535–539. [Google Scholar] [CrossRef]
- Boyce, A.; Walsh, G. Characterisation of a novel thermostable endoglucanase from Alicyclobacillus vulcanalis of potential application in bioethanol production. Appl. Microbiol. Biotechnol. 2015, 99, 7515–7525. [Google Scholar] [CrossRef]
- Liu, J.; Shi, J.; Li, J.; Yuan, X. Characterization of the interaction between surfactants and enzymes by fluorescence probe. Enzyme Microb. Technol. 2011, 49, 360–365. [Google Scholar] [CrossRef]
- Ding, D.Y.; Li, P.Y.; Zhang, X.M.; Ramaswamy, S.; Xu, F. Synergy of hemicelluloses removal and bovine serum albumin blocking of lignin for enhanced enzymatic hydrolysis. Bioresour. Technol. 2019, 273, 231–236. [Google Scholar] [CrossRef]
- Wang, W.; Wang, C.J.; Zahoor; Chen, X.Y.; Yu, Q.; Wang, Z.M.; Zhuang, X.S.; Yuan, Z.H. Effect of a Nonionic Surfactant on Enzymatic Hydrolysis of Lignocellulose Based on Lignocellulosic Features and Enzyme Adsorption. ACS Omega. 2020, 5, 15812–15820. [Google Scholar] [CrossRef]
- Li, K.N.; Wang, X.; Wang, J.F.; Zhang, J.H. Benefits from additives and xylanase during enzymatic hydrolysis of bamboo shoot and mature bamboo. Bioresour. Technol. 2015, 192, 424–431. [Google Scholar] [CrossRef] [PubMed]
Mixture | T1 | T2 | T3 | T4 | T5 |
---|---|---|---|---|---|
Additive 1 (0.1% v/v) | C1 | C4 | C5 | I5 | C10 |
Additive 2 (1% v/v) | SL | SL | SL | SL | SL |
Organic Alcohol | Carbon Chain Length | Relative Conversion Rate a | |||||
---|---|---|---|---|---|---|---|
0.1% (v/v) Addition | 1% (v/v) Addition | ||||||
24 h | 48 h | 72 h | 24 h | 48 h | 72 h | ||
Methanol | C1 | 96.87 | 110.62 | 100.17 | 99.34 | 97.93 | 93.62 |
Ethanol | C2 | 102.98 | 104.14 | 99.69 | 91.42 | 97.92 | 80.04 |
Glycerol | C3 | 102.25 | 102.42 | 98.34 | 96.93 | 95.57 | 95.21 |
n-Butanol | C4 | 106.27 | 111.85 | 100.62 | 95.13 | 98.45 | 85.95 |
n-Pentanol | C5 | 97.58 | 108.83 | 92.86 | 82.82 | 91.51 | 78.38 |
n-Octanol | C8 | 100.89 | 109.38 | 91.33 | 99.42 | 109.20 | 98.18 |
n-Decanol | C10 | 107.94 | 112.04 | 105.86 | 105.41 | 127.96 | 97.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, C.; Feng, Q.; Lu, S.; Wang, Q.; Hu, Y.; Wang, Z.; Wang, W.; Qi, W. Synergistic Enhancement Effect of Compound Additive of Organic Alcohols and Biosurfactant on Enzymatic Hydrolysis of Lignocellulose. Fermentation 2022, 8, 725. https://doi.org/10.3390/fermentation8120725
Liang C, Feng Q, Lu S, Wang Q, Hu Y, Wang Z, Wang W, Qi W. Synergistic Enhancement Effect of Compound Additive of Organic Alcohols and Biosurfactant on Enzymatic Hydrolysis of Lignocellulose. Fermentation. 2022; 8(12):725. https://doi.org/10.3390/fermentation8120725
Chicago/Turabian StyleLiang, Cuiyi, Qifa Feng, Si Lu, Qiong Wang, Yunzi Hu, Zhongming Wang, Wen Wang, and Wei Qi. 2022. "Synergistic Enhancement Effect of Compound Additive of Organic Alcohols and Biosurfactant on Enzymatic Hydrolysis of Lignocellulose" Fermentation 8, no. 12: 725. https://doi.org/10.3390/fermentation8120725
APA StyleLiang, C., Feng, Q., Lu, S., Wang, Q., Hu, Y., Wang, Z., Wang, W., & Qi, W. (2022). Synergistic Enhancement Effect of Compound Additive of Organic Alcohols and Biosurfactant on Enzymatic Hydrolysis of Lignocellulose. Fermentation, 8(12), 725. https://doi.org/10.3390/fermentation8120725