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Abstract: The present work sought to implement a model different from the more traditional ones for
the fermentation process of ethanol production by the action of the fungus Saccharomyces cerevisiae,
using a relevant metabolic network based on the glycolytic Embden–Meyerhof–Parnas route, also
called “EMP”. We developed two models to represent this phenomenon. In the first model, we
used the simple and unbranched EMP route, with a constant concentration of microorganisms
throughout the process and glucose as the whole substrate. We called this first model “SR”, regarding
the Portuguese name “sem ramificações”, which means “no branches”. We developed the second
model by simply adding some branches to the SR model. We called this model “CR”, regarding the
Portuguese name “com ramificações”, which means “with branches”. Both models were implemented
in MATLABTM software considering a constant temperature equal to 32 ◦C, similar to that practiced
in sugar and ethanol plants, and a wide range of substrate concentrations, ranging from 30 to 100 g/L,
and all the enzymes necessary for fermentation were already expressed in the cells so all the enzymes
showed a constant concentration throughout the fermentation. The addition of common branches to
the EMP route resulted in a considerable improvement in the results, especially predicting ethanol
production closer to what we saw experimentally. Therefore, the results obtained are promising,
making adjustments consistent with experimental data, meaning that all the models proposed here are
a good basis for the development of future metabolic models of discontinuous fermentative processes.

Keywords: Saccharomyces cerevisiae; alcohol fermentation; metabolic models; fermentation process

1. Introduction

A wide range of fermented products are still produced by batch or sequential batch
processes using easily accessible raw materials. In the case of ethanol production, biofuel
is of interest to compete with fossil fuels, since its use brings a reduction in the emission
of harmful gases, such as SOx and NOx. This is similar to the use of one of the most
widely used processes in the production of this alcohol, the Melle-Boinot process, a form of
fed-batch fermentation developed by Fermin Boinot, in the town of Melle, located in the
Nouvelle-Aquitaine region of France, in the first half of the 20th century. Furthermore, in
the production of ethanol, the yeast Saccharomyces cerevisiae is the most used microorganism,
even if other microorganisms have a better potential in laboratory situations, such as the
bacterium Zymomonas mobilis [1–4].

Due to the importance of this type of process, from the second half of the 20th century,
a series of works seeking to understand these interactions began to be developed, especially
after Gaden [5], who developed an empirical analysis (black box) of batch fermentation
processes, verifying whether it was possible to associate the production of a metabolite
with cell growth or not. This relatively simple approach had good results, despite ignoring
a large part of the interactions that occur inside the cells. Because of this, numerous works
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were developed based on the work of Gaden and the kinetic model of Monod, making
additions that sought to insert any metabolic knowledge.

Among the models that began seeking to insert these metabolic details, we can men-
tion the model developed by Sonnleitner and Käppeli [6], developed based on a quasi-ideal
Monod kinetic model. In such a model, Sonnleitner and Käppeli simplified the relevant
metabolism into three stoichiometric relationships: two containing purely oxidative rela-
tionships, and one reductive. Furthermore, this model already considered the possibility of
alcoholic fermentation not being fueled by a single substrate: it considered the possibility of
multiple substrates, such as the possibility of ethanol being used by Saccharomyces cerevisiae
as a carbon source. Despite the relevant results achieved in such a model, it still considered
the great metabolic complexity in an extremely simplified way.

In addition to the model by Sonnleitner and Käppeli [6], several other relevant models
for alcoholic fermentation were developed in a black box or with the addition of some
metabolic details. Among such models, we can cite the work of Birol et al. [7], Kostov
et al. [8], Sainz et al. [9], and Freitas et al. [10]. The works by Birol et al. [7] and Kostov
et al. [8] have the merit of analyzing a large number of black box models for alcoholic
fermentation, highlighting the Monod, Andrews, Naock, and Hinshelwood models. Fer-
mentation processes conducted in batch and fed-batch form generate a considerably com-
plex dynamic interaction between microorganisms and the environment around them, as
studied by Freitas et al. [10] using genetic algorithms, differential evolution, and real-time
dynamic optimization. These interactions have been generally studied and well analyzed
in the form of black box analyses for some decades, as highlighted by Sainz et al. [9], but
they fail to consider that each of the cells of a microorganism is capable of carrying out
hundreds of reactions simultaneously. It was fair to the model proposed by Sainz et al. [9]
that such interactions began to be considered. Each of these reactions is extremely well
controlled by the action of substances that generate the expression of or inhibit very specific
biocatalysts—enzymes [11,12].

Among the most important metabolic routes for numerous fermentative processes,
we can mention the Embden–Meyerhof–Parnas route, or the EMP route. Completely
described in the 1940s, the EMP pathway is present in a large number of organisms and
describes a series of spontaneous reactions that convert glucose to pyruvate. The pyru-
vate generated in this sequence can be converted into a wide range of other substances,
including ethanol, which can be produced under anaerobic conditions by reducing
pyruvate [11,13–15].

Considering the importance of ethanol in the current economic and environmental
scenario, as well as the development of models that are more faithful to reality, the
present work sought to model a batch alcoholic fermentation process. We used kinetic
equations derived from the EMP route of Saccharomyces cerevisiae, considering substrate
concentrations lower than those used industrially to avoid the appearance of significant
inhibitory effects. The production of ethanol still needs further clarification at the
metabolic level. Thus, we propose two distinct models: the SR model, built only with the
reactions present in the EMP route followed by alcoholic fermentation, and the CR model,
which consists of using the SR model as a basis, adding the ramifications of trehalose,
glycerol, succinate, and acetate. Furthermore, the development of models based on as
much metabolic information as possible can benefit countless other industrial sectors
besides sugar and alcohol: an understanding of the behavior of possible ramifications
is something that would greatly benefit the food and pharmaceutical industries, for
example. In the case of the food industry, this knowledge would make better control
of the processes and the selection and development of new strains of microorganisms
possible, making it possible to obtain larger amounts of specific substances, especially
those involved in aromas and flavors.
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2. Method and Experimental Procedures

Figure 1 below shows the sequence of reactions selected for the composition of the
model. In short, there are the transport of the substrate from the extracellular environment
to the intracellular environment, the EMP route, and alcoholic fermentation. Additionally,
highlighted are the enzymes responsible for each of the reactions, in blue; products or
resulting secondary reagents, in green; and the intracellular energy molecules ADP, ATP,
NAD+, and NADH, in red. A list of symbols and meanings is available in the end of this
paper.
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In Figure 1, there is the existence of two substrates, glucose (GLCex) and fructose
(FRUex), where the “ex” subscript indicates that these substances are found in an extra-
cellular environment. Even though the yeast metabolizes these two sugars and both are
originally present in the raw material, used at the ratio of 52.5% glucose and 47.5% fruc-
tose, in this work, we assumed that the only substrate available is glucose for reasons of
simplification. Furthermore, there is only one metabolic product of interest, ethanol, EtOH.

In addition to these substances, there is a series of intracellular metabolites: GLCin,
ADP, ATP, TRE, FRUin, G6P, F6P, F16P, DHAP, GAP, GLY, Pi, BPG, NAD, NADH, P3G,
P2G, PEP, PYR, ACA, SUC, ACE, T6P, and F26P. Thus, starting from the sequence of
metabolic reactions shown in Figure 1, we propose the following set of differential equations
for such a model:

dGLCex

dt
= −vHXT,G (1)

dEtOH
dt

= vADH (2)

dGLCin
dt

= vHXT,G − vHK − 2vTRE1 (3)

dATP
dt

= vPGK + vPYK − vHK − vPFK − 2vTRE2 (4)

dTRE
dt

= vTRE2 − vTRE1 (5)

dG6P
dt

= vHK − vPHI − 2vTRE2 (6)

dF6P
dt

= vPHI − vPFK (7)

dF16P
dt

= vPFK − vALD (8)

dDHAP
dt

= vALD − vGLY − vTPI (9)

dGAP
dt

= vALD − vGAPDH + vTPI (10)

dGLY
dt

= vGLY (11)

dPi
dt

= −vGAPDH (12)

dBPG
dt

= vGAPDH − vPGK (13)

dNADH
dt

= vACE + vGAPDH + 3vSUC − vGLY − vADH (14)

dP3G
dt

= vPKG − vPGM (15)

dP2G
dt

= vPGM − vENO (16)

dPEP
dt

= vENO − vPYK (17)

dPYR
dt

= vPYK − vPDC − 2vSUC (18)

dACA
dt

= vPDC − vADH − vACE (19)
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dSUC
dt

= vSUC (20)

dACE
dt

= vACE (21)

The model generated from Equations (1)–(21) constitutes what will be called the CR
model, that is, the most complete model that considers the existence of ramifications in
the EMP route followed by alcoholic fermentation. On the other hand, the simplest model,
called the SR model, is the model for which the velocities of Equations (5), (11), (20), and
(21) will be equal to zero, that is, the SR model is the model where the EMP route and
alcoholic fermentation occur directly and without deviations. Furthermore, as the focus
of the present work is the development of a model for alcoholic fermentation, and cell
reproduction in alcoholic fermentation in an anaerobic medium is low, we opted for the
simplified use of kinetic relationships for cell growth, as will be discussed later.

A problem that may occur when using all these reactions in a metabolic model relates
to the concentrations of energetic molecules, such as AMP, ADP, ATP, T6P, and NAD. These
substances are used in numerous other reactions that occur in cell metabolism, being gener-
ated and consumed, thus maintaining such substances at approximately constant levels in
healthy cells. Therefore, as chosen in the model proposed by van Eunen et al. [16], we de-
cided to maintain the levels of these substances as constant in the present work. In addition
to these substances, F26P is also another substance of importance in the metabolic network
in question, but it is difficult to measure and ended up having its concentration considered
as constant as well. In Table 1, we list the fixed concentrations for such substances.

Table 1. Substances with constant concentrations in the model application. Source: van Eunen
et al. [16].

Substance Concentration (mM) Substance Concentration (mM)

ATP 3 T6P 0.2
ADP 1 F26P 0.014
AMP 0.3 NAD 1.59

In addition to constant concentrations, we need to employ a series of initial concentra-
tions for the relevant metabolites in order to solve the model. The use of good initial values
is essential for a good model response; however, finding practical values for the initial
concentration of metabolites is complex. Teusink [17] and van Eunen [16] used a similar
set of initial concentrations of substances, but some concentrations used by them were
considerably high compared to the data presented in other works, such as Sato et al. [18],
Ruoff et al. [19], Casei et al. [20], and Peeters et al. [21]. Thus, based on the data presented
in such studies, we list the initial concentrations of metabolites in Table 2 below.

Table 2. Initial concentrations of the substrate, [i]0, product, and internal metabolites from alcoholic
fermentation. Source: van Eunen et al. [16]; Sato et al. [18]; Teusink et al. [17]; Ruoff et al. [19]; Casei
et al. [20]; Peeters et al. [21].

Substance (mM) [i]0 (mM) Substance (mM) [i]0 (mM)

GLCex * P3G 1.09
GLCin 0.1213 P23G 0.15
G6P 0.50 PEP 0.11
F6P 0.20 PYR 0.25

F16P 1.80 ACA 0.04
TRIO 0.50 EtOH 0.00
BPG 0.05 NADH 0.29

* The initial value to be chosen.
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The importance of choosing the initial values used for solving the systems of differen-
tial equations found in the present work should be highlighted. The system of differential
equations proposed to solve the problem treated in the present work consists of a set of stiff
differential equations, which generates a highly nonlinear system of differential equations.
That said, the initial conditions used in solving the problem are extremely important, since
a set of initial values can easily lead to non-convergence of values or even to mathemati-
cally correct results that are unrealistic in practice. Thus, a search was carried out in other
works in the literature for initial concentration values for the various substances found in
the system proposed here, looking for those that produced more stable and biologically
viable results. Therefore, a series of initial values for the substances was tested in the
model proposed here, noticing three types of behaviors, used as groups. The first group of
values included values of the initial concentration of certain metabolites, such as fructose-
6-phosphate and pyruvate, which presented a very abrupt drop in concentrations in the
initial periods of fermentation, generating instability in the resolution, including negative
concentrations. The second group of values included initial values that presented the oppo-
site behavior, with an abrupt growth, generating concentrations biologically impossible to
see inside a cell—in the case of glucose-6-phosphate, fructose-1,6-bisphosphate, and trioses.
The third group of values generated a more stable response consistent with data found in
the literature.

The initial substrate concentration in the present work varied between 30 g/L, 75 g/L,
and 100 g/L. Another point we considered in this type of modeling is related to the cell
concentration. Under anaerobic conditions with low substrate concentrations, Saccharomyces
cerevisiae does not reproduce as much as under aerobic conditions. This consideration
makes it common for the cell concentration to be set as constant in such fermentation
assays; however, as the cell concentration relates directly to the enzyme concentration, the
consideration of a variable amount of cells certainly enriches the model. Therefore, in the
present model, we considered the cell concentration to follow the Andrews and Noack
model, a simple model derived from the Monod model that showed a good predictive
capacity according to the work of Kostov et al. [8].

µ =
1
X

dX
dt

= µ0
[S]

1 + KSX
S + S

KiS

(22)

This Andrews and Noack model is a black box model, that is, it does not consider pe-
culiarities regarding the fungus metabolism. The growth metabolism is extremely complex
and not addressed in the present work. The purpose of inserting this growth model is just
to add dynamic behavior to the cell concentration. Furthermore, the Andrews and Noack
model takes into account a possible inhibitory effect on cell growth due to excess substrate
in the culture medium, something important to take into account, since inhibitory effects
on growth tend to appear even at lower levels of the substrate concentration.

With this, it is possible to start solving the system of equations. Both the kinetic equa-
tions and the parameters used are in the Appendices A and B. The values of the kinetic
parameters for the action of the enzymes hexokinase (HK), phosphohexoisomerase (PHI),
phosphofructokinase (PFK), fructose-bisphosphate aldolase (ALD), triose-phosphate
isomerase (TPI), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), bisphospho-
glycerate mutase (PGK), phosphoglycerate mutase (PGM), enolase (ENO), pyruvatok-
inase (PYK), pyruvate decarboxylase (PDC), and alcohol dehydrogenase (ADH) were
taken from Teusink et al. [22], Berthels et al. [23], van Eunen et al. [16], and Smallbone
et al. [24].
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For HXT, there is the limiting step of the fermentation process: that is, it is expected
that this step presents a greater variety of possible values than the other steps. Thus, we
carried out a manual search within a range of possible values for the kinetic constants,
coming from the same works mentioned above. These constants are called apparent, as they
vary with the initial conditions of the fermentation process, and the model proposed here
does not aim to incorporate repression or expression terms into the behavior of proteins.

The models were validated using data from Acorsi et al. [25]. In the batch fermentation
carried out in such works, the culture media used were prepared based on diluted final
sugarcane honey and inverted at 50 ◦C with the addition of 1 mL of invertase solution for
each 100 mL of the desired medium, where the enzyme solution contained 4 mg/mL of
invertase. The raw material was provided by “Usina Santa Terezinha Iguatemi Unit” and
collected directly from the output of the continuous honey centrifuge B, being the same
raw material that supplies the plant’s fermentation vats.

We carried out fermentation tests from 30 to 100 g/L in a BIOSTAT® B reactor, a
bioreactor with a 5 L-capacity vessel with built-in mechanical agitation and temperature
control, with the temperature controlled by the water distribution. In addition, this bioreac-
tor features an automatic sampler, which makes sample collection possible, considerably
reducing the risk of contamination during sampling. The other fermentations used smaller
Kitasato-type reactors. We carried out the fermentation tests at a temperature of 32 ◦C [25].

For the quantification of sugars present in the fermentation medium at a given moment,
as the wort used presented its sugars in the form of glucose and fruit, a DNS methodology
modified for a wavelength of 600 nm was used [26–28]. For the quantification of ethanol, a
VARIAN 330 with a Porapak Q column was used. The inlet and detector were kept at 120
◦C, and the column was kept at 100 ◦C. Helium was used as a carrier gas, at a flow rate of
18.75 mL/min. Finally, 1 µL samples were injected to obtain the amount of ethanol present.

3. Results and Discussion

In Figures 2–4, we present the results obtained by the SR model with the conditions
described above.
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Figure 3. (a) SR model result with an initial concentration of 75 g/L, and (b) adjustment of cell
concentration. Source: prepared by the author.
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Figure 4. (a) SR model result with an initial concentration of 100 g/L, and (b) adjustment of cell
concentration. Source: prepared by the author.

In the three cases analyzed, we obtained a good fit for both the cell concentration and
substrate consumption. However, for product formation, the results found were very poor:
in none of the cases was product formation minimally close to the experimental values.

When we added the ramifications to the model, that is, when we run the model with
branches, we obtained the results shown in Figures 5–7.

Note that the prediction of product formation improves considerably with the addition
of branches, even using extremely simple expressions such as those assumed in the present
work. Thus, there is an indication that the addition of well-described ramifications to the
metabolic model can further improve the results.
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Figure 5. (a) Result of the CR model with an initial concentration of 30 g/L, and (b) adjustment of
cell concentration. Source: prepared by the author.
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Figure 6. (a) Result of the CR model with an initial concentration of 75 g/L, and (b) adjustment of
cell concentration. Source: prepared by the author.
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Figure 7. (a) Result of the CR model with an initial concentration of 100 g/L, and (b) adjustment of
cell concentration. Source: prepared by the author.
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Considering the difference obtained between the models, we can compare the kinetic
constants that most interfere in the response of the models, starting with the kinetic con-
stants of the limiting step of alcoholic fermentation, i.e., the transport of glucose from the
extracellular medium to the intracellular medium. Starting with the saturation constant
KGLC, we noticed that the increase in the concentration of the substrate in the medium
decreased the microorganism’s affinity for glucose: in the analyzed fermentations, medium-
to low-affinity transporters were found, with this constant varying from 6.95 to 54 mM. In
both models, we found the highest affinity in the situation with the lowest substrate concen-
tration, matching the need for yeast cells to facilitate substrate entry under nutrient-scarce
conditions. Furthermore, we noted that the CR model needed slightly higher saturation
constants, except in the fermentation with a higher initial substrate concentration. Fur-
thermore, in the more concentrated fermentation, the saturation constant for the two cases
with a greater availability of microorganisms in the CR model was repeated, something not
seen in the SR model. This point may also indicate the need to investigate whether yeast
can express different transport proteins at different stages of fermentation, according to
the availability of the substrate in the medium: in the present work, the concentrations
of relevant enzymes and proteins were constants, since including kinetic expressions for
their expression in different phases of the fermentation process is a future step for the
development of metabolic models.

As for the maximum substrate conversion speed, there was an increase in this parame-
ter with increasing concentration, and in the case of the CR model, the maximum glucose
transport speed was reached at a lower concentration of substrate available in the medium.
Better results for substrate consumption can eventually be obtained by working without
considering a very simple substrate composed only of glucose.

4. Conclusions

The present work aimed to propose a model for a batch alcoholic fermentation process
using a series of kinetic equations derived from the metabolism of Saccharomyces cerevisiae.
Considering the ease and efficiency of the fungus Saccharomyces cerevisiae in carrying out
alcoholic fermentation, in addition to the fact that this fungus is a quasi-model organism, we
successfully assembled a model capable of predicting sugar consumption and the formation
of ethanol using the relevant metabolic network. This setup was certainly simple because
the fungus considered in the present study is a quasi-model microorganism, and the central
metabolic route, the EMP route, is well studied. The biggest difficulties arose with the
ramifications of this route, which have not been sufficiently studied and lack information.
However, even the simplified use of these ramifications showed an improvement in the
results of the proposed models, especially for the formation of ethanol, which was closer to
reality with the CR model. This work can still be improved by giving more detail to the
kinetics of the relevant branches. Andrews and Noack’s model sufficiently represents cell
growth, but it is a black box model; if we add the kinetic relationships from metabolism, its
contribution would be improved. Thus, we have in our hands a basic metabolic model that
shows promise for the representation and study of batch alcoholic fermentation, which can
be improved and optimized in the future.
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List of Acronyms and Abbreviations

ACA Acetaldehyde
ACE Acetate
ADH Alcohol dehydrogenase
ADP Adenosine diphosphate
ALD Aldolase
ART Total reducing sugars
ATP Adenosine triphosphate
BPG 1,3-bisphosphoglycerate
DHAP Dihydroxyacetone-phosphate
EMP Embden–Meyerhof–Parnas Route
ENO Enolase
EtOH Ethanol
ex When used as a subscript, it indicates an extracellular substance
FK Fructokinases
F16P β-D-fructose-1,6-bisphosphate
F26P Fructose-2,6-bisphosphate
F6P β-D-fructose-6-phosphate
FRU Fructose
G1P α-D-Glucose-1-phosphate
G3PDH Glycerol-3-Phosphate Dehydrogenase
G6P α-D-Glucose-6-phosphate
GAP Glyceraldehyde-3-phosphate
GAPDH Glyceraldehyde-3-phosphate dehydrogenase
GLCex α-D-Extracellular glucose
GLCin α-D-Intracellular glucose
GLY Glycerol
gr Kinetic parameter of the PFK enzyme
HK Hexokinase
HXT Large family of hexose transporters
in When used as a subscript, it indicates an intracellular substance
PDC Pyruvate decarboxylase
P2G 2-phosphoglycerate
P3G 3-phosphoglycerate
PEP Phosphoenolpyruvate
PF Pentose-phosphate route
PFK Phosphofructokinase
PGK Phosphoglycerate Kinase
PGM Phosphoglyceratomutase
PHI Phosphohexoisomerase
PYR Pyruvate
PYK Pyruvatokinase
SUCC Succinate
T6P Trehalose-6-phosphate
TPI Triose-phosphate-isomerase
TRE Trehalose
TRIO or Trio-P Triose-phosphate
Γ Ratio for the mass action

Appendix A. Kinetic Equations Used

Since it is expected that this process of GLC entry into the intracellular environment is
similar to an enzymatic process, as it is a process of facilitated diffusion, Teusink et al. [17]
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presented the following symmetric carrier model for the speed of glucose transport to the
intracellular medium, vHXT :

vHXT,G = VmHXT
[GLCex]− [GLCin]

KM,GLC + [GLCex] + [GLCin] +
Kic

KM,GLC
[GLCex][GLCin]

(A1)

For the reaction catalyzed by HK, van Eunen et al. [16] proposed a model with allosteric
regulation and the action of trehalose-6-phosphate, T6P:

vHK = Vmax

[GLCin ][ATP]
KM,HKGLCKM,HKATP

− [G6P][ADP]
KM,HKGLCKM,HKATPKeq,HK(

1 + [GLCin ]
KM,HKGLC

+ [G6P]
KM,HKG6P

+ [T6P]
KM,HKT6P

)(
1 + [ATP]

KM,HKATP
+ [ADP]

KM,HKADP

) (A2)

For the action of phosphohexoisomerase, a relatively simple equation was used,
representing the reversible kinetic equation of a substrate and a product:

vPHI = Vmax

[G6P]
KM,PHIG6P

− [F6P]
KM,PHIF6PKeq,PHI

1 + [G6P]
KM,PHIG6P

+ [F6P]
KM,PHIF6P

(A3)

Phosphofructokinase is a widely studied enzyme and much of its structure is known,
but mathematically modeling its action is something extremely complex. Such is the
level of complexity of the kinetic modeling of this enzyme that Teusink et al. [17] refer to
such a process as the modelers’ nightmare. This enzyme has a huge amount of regulatory
interactions, which means that the model of this enzyme needs to be considerably simplified
to become practicable: no known model available for this enzyme can describe all the effects
and interactions. Among the simplifications used in modeling this route, Teusink et al. [17]
and van Eunen et al. [16] highlighted the hypothesis that some substances present constant
concentrations throughout the fermentation process: ammonia, phosphate, protons, and
the substance fructose-2,6-bisphosphate.

Among the regulatory effects known to act on this enzyme, the following three stand
out: the cooperative binding of fructose-6-phosphate for the proper functioning of the
enzyme, the inhibitory effect of ATP, and activation linked to adenosine monophosphate,
AMP. Another considerable effect observed in the behavior of PFK is the lack of inhibi-
tion caused by its product, fructose-1,6-bisphosphate. However, this product negatively
interferes with the activation of the enzyme produced by fructose-2,6-bisphosphate [16,17].

We expect that the kinetic model of the action of this enzyme includes the concen-
trations of the substances F6P, F16P, F26P, AMP, and ATP. Assuming that the effects of
AMP, F26P, and F16P and the inhibitory effect of ATP are mediated by a shift in the balance
between a tense and a relaxed state, the kinetics of this enzyme will be affected by an
equilibrium constant between these states, symbolized by L. As the tense state is the state
where the enzyme is inactive because there is no binding to F6P, Teusink et al. [17] and van
Eunen et al. [16] proposed the use of the following kinetic model:

vPFK = Vmax
gRλ1λ2R
R2 + LT2 (A4)

Being that

λ1 =
[F6P]

KM,PFKF6P
(A5)

λ2 =
[ATP]

KM,PFKATP
(A6)

R = 1 + λ1λ2 + gRλ1λ2 (A7)

T = 1 + cATPλ2 (A8)
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L = L0

(
1 + Ci,ATPα1

1 + α1

)2(1 + Ci,AMPα2

1 + α2

)2(1 + Ci,F2,6Pα3 + Ci,F1,6Pα4

1 + α3 + α4

)2
(A9)

α1 =
[ATP]

KPFK,ATP
(A10)

α2 =
[AMP]

KPFK,AMP
(A11)

α3 =
[F26P]

KPFK,F26P
(A12)

α4 =
[F16P]

KPFK,F16P
(A13)

Of the constants to be used in this model, we have gR = 5, 12 and L0 = 0.66, according
to Teusink et al. [17] and van Eunen et al. [16].

For the action of the ALD enzyme, it is generally assumed to be a “uni–bi”-ordered
kinetics, and this mechanism is represented by the following equation:

vALD = Vmax

a
Ka

(
1 − Γ

Keq,ALD

)
1 + a

KM,F16p
+ p

Kp
+ q

Kq
+ aq

KaKiq
+ pq

KpKq

(A14)

In (A14), it represents the F16P concentration, the DHAP concentration, and the GAP
concentration. Furthermore, Ki indicates the saturation constant of this enzyme for each of
the substances involved, and Kiq indicates an inhibition constant. This equation expands
in a particular way, which we show below, taking into account a different way of writing
the GAP concentration [16,17,24].

There are not many studies of this enzyme from Saccharomyces cerevisiae contributing
the kinetic data of the model presented in (A14). The parameter with the most values found
in the literature is the saturation constant for F16P, which is around 0.30 mM [16,17,24].

For the glycerol branch, Teusink et al. [17] indicated that the flux is completely con-
trolled by the action of the G3PDH enzyme. The mechanism of action of this enzyme is
not very well known yet, and some modeling works use a model similar to the action of
HK, that is, a reversible reaction model with two substrates and two products, shown by
Equation (A2), DHAP and NADH being the substrates, and glycerol-3-phosphate, GLY,
and NAD+ the products.

To close the glycolysis preparation step, DHAP must be converted into GAP. This
reaction is also mediated by a single enzyme, TPI. The kinetics of this TPI enzyme present,
according to Smallbone et al. [24], direct the inhibition of DHAP in a particular way:

vTPI = Vmax
[DHAP]

KM,TPIDHAP[DHAP]
(

1 +
(
[DHAP]

4

)4
) (A15)

However, it is common for this reaction to be considered in equilibrium, so it is
customary not to consider the action of this enzyme in the glycolytic model. For such a
condition, the equilibrium constant is used:

Keq,TPI =
[GAP]
[DHAP]

(A16)

Since the value of the constant is around 0.045, the total amount of triose-phosphate,
TRIO, in the cell is defined as

[TRIO] = [GAP] + [DHAP] (A17)
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As a mathematical model for the GAPDH enzyme, a relationship similar to that of
the action of HK can be used. However, van Eunen et al. [16] suggested improving this
relationship with the use of two distinct maximum speeds, one for the direct reaction, V+

max,
and one for the reverse reaction, V−

max:

vGAPDH =
V+

max
[GAP]([NAD]−[NADH])

KM,GADPHGAPKM,GADPHNAD
− V−

max
[BPG][NADH]

KM,GADPHBPGKM,GADPHNADH(
1 + [GAP]

KM,GADPHGAP
+ [BPG]

KM,GADPHBPG

)(
1 + [NAD]

KM,GADPHNAD
+ [NADH]

KM,GADPHNADH

) (A18)

The next enzyme, PGK, presents a complicated kinetic study, according to Teusink
et al. [17], because the BPG substrate is very unstable. Thus, it is more common to have data
from the reverse reaction catalyzed by PGK, which is where most of the kinetic data for
this reaction are taken from. Thus, it is customary to use the kinetic model of the reversible
reaction with two substrates and two products for this enzyme, the substrates being BPG
and ADP, and the products P3G and ATP, as shown in Equation (A19):

vPGK = Vmax

Keq,PGK [BPG][ADP]
KM,PGKBPGKM,PGKADP

− [P3G][ATP]
KM,PGK3PGKM,PGKATP(

1 + [BPG]
KM,PGKBPG

+ [P3G]
KM,PGK3PG

)(
1 + [ADP]

KM,PGKADP
+ [ATP]

KM,PGKATP

) (A19)

In the next reaction, we have the action of PGM, an enzyme that is dependent on the
concentration of 2,3-diphosphoglycerate. To circumvent this dependence, thus reducing the
model’s variables, some authors simply assume that the enzyme is already saturated with
this substance at concentrations at micromolar levels. Even with these considerations, there
is considerable variability in the values of the saturation constants of this reaction for P3G.
Therefore, such a reaction can be modeled using a simple reversible reaction mechanism,
with one substrate and one product only, as shown in the reaction below:

vPGM = Vmax

[P3G]
KM,PGMP3G

− [P2G]
KM,PGMP3GKeq,PGM

1 + [P2G]
KM,PGMP3G

+ [P2G]
KM,PGMP2G

(A20)

The conversion of P2G to PEP is one of the last reactions of glycolysis, a reaction
catalyzed, under conditions of low growth, by only one enzyme, enolase (ENO). Kinetically,
the model used to assess the action of this enzyme is similar to that used in PGM modeling,
that is, a reversible reaction model with a substrate and a product:

vENO = Vmax

[P2G]
KM,ENOP2G

− [PEP]
KM,ENOPEPKeq,ENO

1 + [P2G]
KM,ENOP2G

+ [PEP]
KM,ENOPEP

(A21)

Finally, closing the glycolysis, the last reaction consists of the conversion of PEP to
PYR by a reaction catalyzed by the PYK enzyme. A striking feature of this enzyme is the
strong dependence on F16P for its activation: under conditions of high concentrations of
F16P, it exhibits hyperbolic behavior and a good affinity with PEP. This condition of a high
F16P concentration was determined to be around 0.5 mM F16P, which is 10 times lower
than the common value of such a metabolite in a cell under normal fermentative conditions.
Therefore, hyperbolic modeling may prove adequate for this enzyme, the reaction being
reversible, with two substrates and two products, and with F16P presenting an allosteric
regulation, as shown in the equation below, proposed by van Eunen et al. [16]:

vPYK = Vmax

[PEP]
KM,PYKPEP

(
[PEP]

KM,PYKPEP
+ 1
)n−1

L0,PYK

(
[ATP]

KM,PYKATP
+1

[F16P]
KM,PYKF16P

+1

)n

+
(

[PEP]
KM,PYKPEP

+ 1
)n

ADP
ADP + KM,PYKADP

(A22)
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Now, the alcoholic fermentation begins. This step consists of only two reactions that
will lead to pyruvate being converted to ethanol, and the first metabolite to appear in
this phase is acetaldehyde, produced by a reaction catalyzed by the PDC enzyme. This
enzyme has cooperative kinetics, linked to the concentration of PYR in the medium, being
a relatively simple model:

vPDC = Vmax
[PYR]nPDC

KM,PDCPYR

(
[PYR]nPDC

KM,PDCPYR
nPDC + 1

) (A23)

Finally, there is the last reaction of the metabolic network under study: the conversion
of ACA into ETOH and carbon dioxide by the action of ADH enzymes, whose kinetic
behavior is considerably complex, being a bi-ordered mechanism with binding by a cofactor
first:

vADH = −Vmax
αADH

1 + βADH + γADH + δADH + εADH
(A24)

αADH =
([NAD]− [NADH])[EtOH]

Ki,ADHNADKM,ADHEtOH
− [NADH][ACA]

Ki,ADHNADKM,ADHEtOHKeq,ADH
(A25)

βADH =
[NAD]− [NADH]

Ki,ADHNAD
+

KM,ADHNAD[EtOH]

Ki,ADHNADKM,ADHEtOH
+

KM,ADHNADH [ACA]

Ki,ADHNADKM,ADHACA
(A26)

γADH =
([NAD]− [NADH])[EtOH]

Ki,ADHNADKM,ADHEtOH
+

KM,ADHNADH([NAD]− [NADH])[ACA]

Ki,ADHNADKi,ADHNADHKM,ADHACA
(A27)

δADH =
[NADH]

Ki,ADHNADH
+

KM,ADHNAD[NADH][EtOH]

Ki,ADHNADKi,ADHNADHKM,ADHEtOH
+

[NADH][ACA]

Ki,ADHNADHKM,ADHACA
(A28)

εADH =
([NAD]− [NADH])[EtOH][ACA]

Ki,ADHNADKM,ADHEtOHKi,ADHACA
+

[NADH][EtOH][ACA]

Ki,ADHEtOHKi,ADHNADHKM,ADHACA
(A29)

ADH lacks data for inhibition constants in the literature, but there are several studies
on the saturation constant for different substrates at a pH of around 9.0 and different
temperatures, ranging from 10 to 30 ◦C.

Appendix B. Tables with Kinetic Parameters Used in the Model

Table A1. Apparent turnover numbers (nmol min−1 mg−1
s ) of the SR and CR models according to

the initial fermentation concentration.

Protein 30 (g L−1) 75 (g L−1) 100 (g L−1)

HXT 128,929 165,200 167,980
HK 377,554 354,849 370,000
PHI 874,243 877,000 877,000
PFK 208,993 209,980 210,000
ALD 535,408 535,170 535,500

GAPDH+ 1,973,459 2,084,595 2,090,000
GAPDH− 912,296 840,000 840,000

PGK 2,125,000 2,090,000 2,160,000
PGM 748,124 840,000 854,609
ENO 345,772 384,832 439,400
PYK 646,674 718,020 755,000
PDC 172,954 172,062 172,000
ADH 143,204 143,000 143,000
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Table A2. Apparent saturation constants K (mM), equilibrium constants, and other constants of the SR
and CR models as a function of the substance i according to the initial concentration of fermentation
in g L−1.

9 i 30 75 100

KM,HXT GLC 15,552 2735 5750
KiC,HXT GLC 0.9081 0.9081 0.9081
KM,HK GLC 0.02 0.018 0.02
KM,HK ATP 0.25 0.25 0.25
KM,HK G6P 30.00 30.00 30.00
KM,HK ADP 0.24 0.24 0.24
KM,HK T6P 0.20 0.20 0.15
Keq,HK - 3800 3800 3800
KM,PHI G6P 1.00 1.01 1.00
KM,PHI F6P 0.31 0.31 0.31
Keq,PHI - 0.314 0.314 0.314
KM,PFK F6P 0.10 0.10 0.10
KM,PFK ATP 0.71 0.71 0.71
KPFK ATP 0.65 0.65 0.65
KPFK AMP 0.0995 0.0995 0.0995
KPFK F16P 0.111 0.111 0.111
KPFK F26P 6.82·10−4 6.82·10−4 6.82·10−4

ci,PFK ATP 3 3 3
Ci,PFK ATP 100 100 100
Ci,PFK AMP 0.0845 0.0845 0.0845
Ci,PFK F16P 0.397 0.397 0.397
Ci,PFK F26P 0.0174 0.0174 0.0174
gR,PFK - 5.12 5.12 5.12
L0,PFK - 0.66 0.66 0.66

KM,ALD F16P 0.055 0.055 0.055
KM,ALD GAP 2.00 2.00 2.00
KM,ALD DHAP 2.40 2.40 2.40
Ki,ALD GAP 10 10 10
Keq,ALD - 0.069 0.069 0.069

KM,GAPDH GAP 0.21 0.21 0.21
KM,GAPDH NAD 0.09 0.09 0.09
KM,GAPDH BPG 1.18 1.18 1.18
KM,GAPDH NADH 0.1 0.1 0.1

KM,PGK BPG 3.00·10−3 3.00·10−3 3.00·10−3

KM,PGK ADP 0.49 0.49 0.49
KM,PGK 3PG 0.53 0.53 0.53
KM,PGK ATP 0.30 0.30 0.30
Keq,PGK - 3200 3200 3200
KM,PGM P3G 1.08 1.09 1.10
KM,PGM P2G 0.10 0.10 0.10
Keq,PGM - 0.19 0.19 0.19
KM,ENO P2G 0.050 0.050 0.050
KM,ENO PEP 0.50 0.50 0.50
Keq,ENO - 6.7 6.7 6.7
KM,PYK PEP 0.021 0.021 0.021
KM,PYK ADP 0.16 0.16 0.20
KM,PYK F16P 0.2 0.2 0.2
KM,PYK ATP 1.5 1.5 1.5

nPYK - 4 4 4
L0,PYK - 60,000 60,000 60,000
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Table A2. Cont.

9 i 30 75 100

KM,PDC PYR 8500 7828 8500
nPDC - 1.9 1.9 1.9

KM,ADH NAD 0.059 0.059 0.059
KM,ADH NADH 0.120 0.110 0.122
KM,ADH ACA 2.83 2.83 2.83
KM,ADH EtOH 12 12 12
Ki,ADH NAD 0.92 0.92 0.92
Ki,ADH NADH 0.031 0.031 0.031
Ki,ADH ACA 1.1 1.1 1.1
Ki,ADH EtOH 90 90 90
Keq,ADH - 6.9·10−5 6.9·10−5 6.9·10−5

KTRE,1 - 0.083 0.457 0.485
KTRE,2 - 0 0.210 0.430
KGLY - 0.58 0.499 0.121
KSUC - 0.030 0.000 0.000
KACE - 0.130 0.152 0.000

Table A3. Apparent substrate transport turnover numbers (nmol min−1 mg−1
s ) of the SR and CR

models according to the initial fermentation concentration.

Model 30 (g L−1) 75 (g L−1) 100 (g L−1)

SR 149.96 216.00 310,000
CR 150.99 310,000 310,000

Table A4. Apparent substrate transport saturation constants KGLC (mM), equilibrium constants,
and other constants of the SR and CR models as a function of the substance according to the initial
concentration of fermentation in g L−1.

K i Model 30 75 100

KiG,HXT GLC
SR 6.95 17.5 54.0
CR 8.40 35.5 35.0

References
1. Andrietta, M.G.S.; Andrietta, S.R.; Steckelberg, C.; Stupiello, E.N.A. Bioethanol—30 years of Proálcool. Int. Sugar J. 2007, 109,

195–200.
2. Ferreira, R.J.A. Tecnologia de Produção de Alcool: Fermentação Alcoólica; Rio de Janeiro, Brazil, 2008; p. 73.
3. Dai, Z.; Nielsen, J. Advancing metabolic engineering through systems biology of industrial microorganisms. Curr. Opin. Biotechnol.

2015, 36, 8–15. [CrossRef]
4. Jonker, J.; van der Hilst, F.; Junginger, H.; Cavalett, O.; Chagas, M.; Faaij, A. Outlook for ethanol production costs in Brazil up to

2030, for different biomass crops and industrial technologies. Appl. Energy 2015, 147, 593–610. [CrossRef]
5. Gaden, E.L., Jr. Fermentation process kinetics. J. Biochem. Microbiol. Technol. Eng. 1859, 1, 413–429. [CrossRef]
6. Sonnleitner, B.; Käppeli, O. Growth of Saccharomyces cerevisiae is controlled by its limited respiratory capacity: Formulation and

verification of a hypothesis. Biotechnol. Bioeng. 1986, 28, 927–937. [CrossRef]
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