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Abstract: Pineapple peel (PP) is a by-product with the potential to be used as a raw material for
functional beverages. Traditional PP fermentation has so far paid little attention to the microbial
community and its role in the fermentation process. As a result, the current research looked into the
microbial communities and their roles during PP fermentation. A metagenomic approach based on
the 16S rRNA sequencing data was used to assess the microbial communities. Subsequent analysis
was performed using PICRUSt (phylogenetic investigation of communities by reconstruction of
unobserved states) to analyze the microbial functions in the fermentation system. The microecology
of the fermentation process in three samples was predominated by Firmicutes. Furthermore, the
well-known probiotic genera Weissella, Lactobacillus, and Lactococcus were found to be predominating
in the gumer, promic, and control samples, respectively. It was obvious that microenvironmental
differences have an effect on the microbial composition of PP fermentation. Moreover, functional
prediction revealed that carbohydrate metabolism was the most prevalent metabolic pathway during
the fermentation process. Additionally, it was discovered that all of the bacteria found in the samples
played significant roles in carbohydrate, amino acid, vitamin, and co-factor metabolism, which can
be inferred to result in the production of beneficial metabolites.

Keywords: pineapple; fermentation; metagenomic; 16S rRNA; functional role; PICRUSt; metabolic
pathway; KEGG

1. Introduction

Indonesia is one of the largest producers of pineapple (Ananas comosus L. Merr.) in
the world. By the end of 2021, pineapple consumption reached 73 kg per capita per year.
Additionally, Indonesia exports pineapples to a number of countries, including Hong Kong,
Korea, Taiwan, China, Japan, and Argentina. A cultivar called MD2 has been identified
as the catalyst for EPP7’s entry into the premium fruit market. The MD2 pineapples were
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developed to meet the market’s demand for fresh pineapples that were exceptionally sweet,
uniform in size and ripeness, and consistent in size and ripeness [1]. The outer color, which
ranges from green to yellowish, and the inner color, which is bright yellow, indicate that the
sugar content is 14–18% and the acid content is 1.65–2.14%. Pineapple peel (PP) is a source
of concern because it is not widely utilized by the local community. The edible portion
(fruit flesh) of the pineapple is only 53%; the remaining 47% is discarded as waste. The PP
accounts for approximately 12% of pineapple waste, depending on the type of pineapple
and the peeling technique used [2].

The proximate composition per 100 gr of PP is crude protein (9.13 g), crude lipid
(1.57 g), total dietary fiber (424.22 g), and carbohydrate (42 g) [3]. Furthermore, PP con-
tains health-promoting micronutrients, minerals, and secondary metabolites. Numerous
researchers have previously examined the polyphenol content of PP [4–6]. Several studies
have shown that plant polyphenols can be used as antioxidants to protect against various
oxidative stress-induced diseases [7,8]. There are several ways to repurpose PP waste,
including processing it with Acetobacter xylinum to produce functional foods called “nata”
that are high in fiber, chewy, and have a jelly-like shape [9]. Additionally, PP can be utilized
for making syrup products. However, fermentation of PP waste to produce a functional
beverage is still very limited. It is well-established that fermenting food and beverage
products not only increases their functional and nutritional value [10,11], but also enhances
their taste and allows for the creation of new food and beverage variants. Additionally,
fermented products contain a high concentration of beneficial probiotic bacteria [12].

The structure and composition of bacteria (microbiome) involved in the fermentation
process are critical parameters to study, as are the functions of these microbes during
the fermentation process. Analysis of microbial communities and their functions in a
fermentation process is now facilitated by the metagenomic approach, so that analysis
can be carried out more comprehensively and cost-effectively. By utilizing 16S rRNA
sequencing data, the functional ability of microbial communities in an environment can be
predicted using PICRUSt (phylogenetic investigation of communities by reconstruction
of unobserved states). In-depth research is required to develop fermented beverages with
health benefits. This is because fermented beverages will remain a significant component
of the functional product market [13].

The development of fermented PP beverage products not only contributes to the
reduction of the environmental impact of PP waste, but also meets the public’s demand for
novel, high-quality fermented beverage products. Until recently, however, there has been
very limited research into bacterial profiles and how they function in the PP fermentation
process. In fact, the high nutritional profile of PP lends itself to use as a functional beverage
raw material. In the right fermentation process, it will allow microbes that are beneficial for
health to grow well. A common characteristic of fermentation is the production of metabo-
lites such as organic acids, alcohols, aldehydes, and flavoring compounds, all of which
contribute to the overall quality of the fermented product [10]. The presence of diverse
metabolites indicates the presence of related genes in a microbial population and sheds light
on the products of these genes’ expression [14]. This study hypothesized that there were
differences in bacterial profiles in PP fermented products using a metagenomic approach
between treatment and control. Thus, this study was aimed at predicting the profile and
functional roles of bacterial communities during PP fermentation using a metagenomic
approach and PICRUSt (phylogenetic investigation of communities by reconstruction of
unobserved states), respectively. The findings of this study will shed light on how to
manufacture and investigate the promising prospects of a fermented PP beverage with a
permissible alcohol content in certain countries.

2. Materials and Methods
2.1. Sample Preparation and Fermentation

The pineapple was collected from the village of Lobong, Bolaang Mongondow District,
North Sulawesi, Indonesia (0◦45′56” N, 124◦15′41” E). The fruits were immediately brought
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to the laboratory for sample preparation. The fruits were washed with running water and
dried using sterile tissue paper. Pineapples were peeled and weighed to obtain 0.5 kg of PP
for each experiment. Several fermentation experiments were conducted, as follows:

Control (0.5 kg of PP and 500 mL of sterile water to cover the sample);
Gumer (0.5 kg of PP and 50 g of brown sugar in 500 mL of sterile water to cover the

sample); and
Promic (0.5 kg of PP and 10% of promic, a local microorganism solution, in 500 mL of

sterile water to cover the sample).
Fermentation was carried out anaerobically in a specially designed container that did

not allow O2 to enter, but allowed CO2 to exit. After 48 h, the samples were collected and
subjected to metagenomic and alcohol content analysis.

2.2. Analysis of Ethanol Concentration
Each homogenized sample was extracted using 1 mL of dichloromethane in a 2 mL

vial. The solution was vortexed for 3 min and then centrifuged at 9000 rpm for 3 min.
One µL of the supernatant was injected into the gas chromatography (GC) Agilent 7890B.
The alcohol (EtOH) concentration of each sample was compared with the standard with
serial concentrations that were also injected into the same machine. The oven temperature
was set at 45 ◦C and held for 5 minutes, then increased by 30 ◦C/min until it reached
110 ◦C. The following formula was used to determine the alcohol concentration:

EtOH concentration in the sample =
Reading concentration × final volume of sample)

Sample weight
(1)

2.3. Metagenomic Analysis
2.3.1. Total Genomic DNA Extraction

The total genomic DNA of each sample was extracted using a CTAB/SDS-based DNA extraction
procedure. To begin, the samples were lysed in cetyltrimethylammonium bromide (CTAB), followed
by the addition of SDS to ensure complete lysis. Following that, the liquid phase was transferred to
a new tube and precipitated for 1 h with isopropanol. The sample was then eluted and incubated
with DNAse before being precipitated again with isopropanol for 1 h. After eluting the DNA, the
concentration and purity of the extracted DNA were monitored using a 1% agarose gel. According to
the detected concentration, the DNA was diluted to 1 ng/µL to be used to generate amplicons.

2.3.2. Amplicon and Libraries Generation
The region V3–V4 of the 16S rRNA gene was amplified using 515F/806R primer pairs [15]. All

PCR reactions were carried out with Phusion® high-fidelity PCR master mix (New England Biolabs,
Massachusetts, USA). The PCR result was verified using a 1X loading buffer containing SYB green on
a 2% agarose gel. For the following experiments, samples with a bright main stripe between 400 and
450 bp were chosen. Then, using the Qiagen gel extraction kit (Qiagen, Hilden, Germany), the mixed
PCR products were purified. The libraries were generated with the NEBNext® UltraTM DNA library
prep kit for Illumina and quantified via Qubit and Q-PCR, then analyzed on the Illumina platform.

2.3.3. Sequencing Data Processing
Paired-end reads were assigned to samples using their unique barcodes and were then truncated

by removing the barcode and primer sequences. FLASH (V1.2.7) (http://ccb.jhu.edu/software/
FLASH/, accessed on 21 February 2022) [16] was used to merge paired-end reads to generate raw tags.
Quality filtering was performed on the raw tags under specific filtering conditions in order to obtain
high-quality clean tags [17] in accordance with the Qiime (V1.7.0) (http://qiime.org/scripts/split_
libraries_fastq.html, accessed on 23 February 2022) quality control process. The tags were compared
with the reference database (SILVA database; https://www.arb-silva.de/, accessed on 24 February
2022). The UCHIME algorithm (UCHIME Algorithm; http://www.drive5.com/usearch/manual/
uchime_algo.html, accessed on 25 February 2022) [18] was used to detect chimera sequences. Finally,
the chimera sequences were removed to obtain the effective tags.

http://ccb.jhu.edu/software/FLASH/
http://ccb.jhu.edu/software/FLASH/
http://qiime.org/scripts/split_libraries_fastq.html
http://qiime.org/scripts/split_libraries_fastq.html
https://www.arb-silva.de/
http://www.drive5.com/usearch/manual/uchime_algo.html
http://www.drive5.com/usearch/manual/uchime_algo.html
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2.3.4. OTU Cluster and Taxonomic Annotation
Uparse software [19] was used to analyze the sequences, which included all of the effective

tags. OTUs were assigned to sequences that shared ≥97% similarity. For each OTU, a represen-
tative sequence was screened for further annotation. For each representative sequence, Qiime
(Version 1.7.0) (http://qiime.org/scripts/split_libraries_fastq.html, accessed on 23 February 2022),
which is integrated into the Mothur method, was performed on the SSUrRNA (SILVA Database;
https://www.arb-silva.de/; accessed on 27 February 2022) for species annotation at each taxo-
nomic rank [20,21]. The MUSCLE (Version 3.8.31; http://www.drive5.com/muscle/, accessed on
28 February 2022) was used to rapidly compare multiple sequences in order to construct the phyloge-
netic relationship of all OTU representative sequences [22]. The abundance of OTUs was normalized
using a sequence number standard that corresponded to the sample with the least sequences. On the
basis of this output normalized data, subsequent analyses of alpha and beta diversity were conducted.

2.3.5. Alpha Diversity
Alpha diversity was used to analyze the complexity of a sample’s biodiversity using six indices,

including Observed-species, Chao1, Shannon, Simpson, ACE, and Good-coverage. All of these indices
were calculated using QIIME (Version 1.7.0; http://qiime.org/scripts/split_libraries_fastq.html,
accessed on 23 February 2022) and visualized using the R programming language (Version 2.15.3;
https://cran.microsoft.com/snapshot/2017-02-04/bin/windows/base/old/2.15.3/, accessed on 25
February 2022).

2.3.6. Beta Diversity
Assessment of sample differences in a species complex was performed using beta diversity analysis by

employing QIIME software (Version 1.7.0; http://qiime.org/scripts/split_libraries_fastq.html, accessed
on 23 February 2022) to calculate both weighted and unweighted UniFrac (unique fraction metric).
Prior to cluster analysis, principal component analysis (PCA) was used to reduce the dimension
of the original variables using the FactoMineR and ggplot2 packages in R software. Principal
coordinate analysis (PCoA) was performed to gain insight into principal coordinates and visualize
them from complex and multidimensional data. The PCoA was visualized using the WGCNA
package, stat packages, and ggplot2 package, all of which are integrated into the R software (Version
2.15.3; https://cran.microsoft.com/snapshot/2017-02-04/bin/windows/base/old/2.15.3/, accessed
on 2 March 2022). Unweighted pair-group method with arithmetic means (UPGMA) clustering
was performed as a type of hierarchical clustering method in interpreting the distance matrix by
employing average linkage and was conducted by QIIME software (Version 1.7.0; http://qiime.org/
scripts/split_libraries_fastq.html, accessed on 23 February 2022).

2.4. PiCRUSt Analysis
The PICRUSt workflow based on previous research [23] was employed to predict the functional

composition of the microbial community’s metagenome derived from PP fermentation using a 16S
rRNA profile. The Kyoto Encyclopedia of Genes and Genomes (KEGG) was used for metagenome
functional prediction analysis. All graphical profiles were visualized using R software.

3. Results
3.1. Ethanol Concentration

The concentration of ethanol in each sample is listed in Table 1. The average concentration of
ethanol in the control was 0.0838%, 0.0846% in the fermentation with 10% gumer, and 0.0661% in the
fermentation with 10% local inoculum.

Table 1. Ethanol concentration detected in all fermented PP samples.

Sample Average Concentration of EtOH (%)

Control 0.0838
Promic 0.0661
Gumer 0.0846

http://qiime.org/scripts/split_libraries_fastq.html
https://www.arb-silva.de/
http://www.drive5.com/muscle/
http://qiime.org/scripts/split_libraries_fastq.html
https://cran.microsoft.com/snapshot/2017-02-04/bin/windows/base/old/2.15.3/
http://qiime.org/scripts/split_libraries_fastq.html
https://cran.microsoft.com/snapshot/2017-02-04/bin/windows/base/old/2.15.3/
http://qiime.org/scripts/split_libraries_fastq.html
http://qiime.org/scripts/split_libraries_fastq.html
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3.2. Bacterial Community Profile in the Pineapple Peel Fermentation
In order to produce a functional beverage product from PP fermentation, it is necessary to

conduct a thorough investigation of the microbial profile and its role in the fermentation process.
Bacterial composition is critical to the fermentation process.

3.2.1. Relative Abundance
According to the taxonomic annotation results, the top ten taxa for each taxonomic rank (phylum,

class, order, family, and genus) were obtained from each sample, as indicated by the distribution
histogram of the taxa’s relative abundance. The relative abundance of taxa at the phylum level is
depicted in Figure 1a. In all three samples, Firmicutes appeared to predominate, reaching 99.67%
in the gumer, 95.63% in control, and 89.27% in the promic. Actinobacteria was the second most
abundant phylum in the promic (10.60%), while Proteobacteria appeared to be the second most
abundant phylum (4.08%) in the control. This phylum was also detected in a very small amount in
the promic (0.75%) and gumer (0.54%) samples. Bacteroides was detected in the control samples as
well, albeit in negligible amounts (0.21%).
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At the class level (Figure 1b), Bacilli predominated in all samples (95.05% in control, 99.32%
in gumer, and 88.72% in promic). Furthermore, the unidentified Actinobacterial class was detected
in promic as the second predominant class (10.57%), while Gamaproteobacteria dominated the
control sample as the second predominant class (4.08%). The predominating genera in all samples
are displayed in Figure 1c. Weissella was found in high abundance in gumer (96.41%), moderately
abundance in control (37.13%), and in small amounts in promic (2.25%). Lactobacillus predominated
in promic (85.75%), and was detected in small amounts in control (1.94%) and gumer (1.90%) sam-
ples. Lactococcus was detected in significant numbers in the control (51.91%) but not in the other
two samples. The presence of Leuconostoc (4.00%) and Pantoea (33.01%) was still detected in the
control. Bifidobacterium was detected in appreciable amounts (10.59%) in promic. Weissella paramesen-
teroides was detected in high abundance at the species level in gumer (96.5 %). Lactococcus lactis and
W. ghanensis were found predominating the control, with abundances of 51.9% and 34.5%, respectively.
Lactobacillus casei, L. harbinensi, L. buchneri, and other Lactobacilli were detected in 13.4%, 2.3%, 1.7%,
68.35%, respectively, in promic. Meanwhile, Pantoea dispersa was found at 3.3% in control.

3.2.2. Taxonomic Abundance Cluster Heatmap
The heatmap was created using the abundance information of the top 35 genera of all samples

to determine the similarity and difference between samples. The result is shown in Figure 2. There
appears to be a difference in the relative abundance of each genus in each sample. Pantoea, Lactococcus,
Butyricoccus, Tatumelia, Cronobacter, Blautia, Leuconostoc, Fructobacillus, Romboutsia, Fusicantenibacter,
and Megamonas had the highest relative abundances in the control. In promic, the abundant genera
were Dorea, Sutterela, Lactobacillus, Bifidobacterium, Subdoligranulum, Steptococus, Lachnospira, Faecal-
bacteriam, Bacteroides, Haldomanella, and Anaerostipes. While in gumer, the abundant genera were
Collinsella, Weissella, Acidaminococcus, Facalitalea, Dialster, Lacnoclostridium, and Megasphaera.
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3.2.3. Alpha Diversity
The OTUs generated based on the 97% sequence similarity identity were considered to be

homologous. The statistical index of alpha diversity is summarized in Table 2. According to the
Shannon index value, the control and promic samples had moderate species diversity, whereas the
species diversity in gumer was low.



Fermentation 2022, 8, 194 7 of 15

Table 2. Alpha diversity indices based on observed species.

Sample Name Observed Species Shannon Simpson Chao1 ACE

Control 96 1.851 0.609 100.091 100.091
Promic 97 1.794 0.530 104.583 104.583
Gumer 104 0.408 0.080 108.200 114.441

3.2.4. Beta Diversity
Figure 3 illustrates a heatmap of beta diversity. The coefficient of dissimilarity between paired

samples was determined using the weighted UniFrac distance and the unweighted UniFrac distance,
which is a frequently used measurement method in microbial community sequencing projects.
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3.2.5. Phylogenetic Tree of the Phyla
To examine the similarity of phyla between samples, a cluster tree was constructed using

clustering analysis. The unweighted pair-group method with arithmetic mean (UPGMA) method
is a type of hierarchical clustering that is used in ecology to classify samples. UPGMA clustering
of the phyla based on unweighted UniFrac distance from the sample can be seen in Figure 4. The
composition of bacteria in control and promic samples appeared to be more similar than in gumer.
However, the three samples showed a predominance of Firmicutes, followed by Proteobacteria,
Bacteriodetes, and Actinobacteria.
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3.2.6. Principal Coordinates Analysis
Principal coordinates analysis (PCoA) is an ordination technique that extracts the fundamental

elements and structures from reduced multidimensional data series of eigenvalues and eigenvectors.
In comparison to principal component analysis (PCA), this technique has the advantage of allowing
for the investigation of each ecological distance. The weighted and unweighted UniFrac coefficients
are calculated to aid in the PCoA analysis, and the result is shown in Figure 5. Three samples were
distributed in three different locations, demonstrating the significant variation between the three
samples. This indicates that each treatment alters the microbial structure significantly during the
fermentation process.
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3.3. KEGG-Based PICRUSt Analysis
3.3.1. Prediction of Functional Genes Expression

The relative abundance of functional gene expression of the samples predicted using KEGG-
based PICRUSt analysis is shown in Figure 6. There are significant differences in the types of genes
expressed in each sample, indicating that the bacterial community’s metabolic processes differ in
each of these samples. This could be explained by the three samples’ distinct bacterial profiles. The
functional genes related to proteinase, meso-butanediol dehydrogenase, acetyl-CoA-carboxylase, 6-
phosphate-beta-glucosidase, poly(glycerol-phosphate) alpha-glucosyltransferase, dihydrofolate syn-
thase, L-lactate dehydrogenase, aminotransferase, exopolyphosphatase, tRNA N(3)-methylcytidine
methyltransferase, and glutathione reductase were very active in gumer. Meanwhile, only a small
number of genes were found to be actively involved in PP fermentation in both the control and promic
samples. In promic, the enzymes 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase and
fumarate reductase were found to be highly active. Transposases and transcriptional regulatory
proteins of the lacI family, on the other hand, were found to be highly expressed in the control group.

3.3.2. Prediction of Microbial Metabolism
The metabolic pathways of microbial consortia were further analyzed and displayed in Figure 7.

The principle metabolic pathway during PP fermentation according to functional orthologs from
KEGG orthologies was demonstrated at three different levels. Functions related to PP fermentation
in level 1 include environmental information processing (EIP), organismal systems (OS), cellular
processes (CP), genetic information processing (GIP), metabolism (M), and human diseases (HD).
In promic, EIP, OS, and CP were all very active, GIP was very active in gumer, and unclassified
function was dominant in control. Additionally, the level 2 KEGG pathways associated with the
metabolism of carbohydrates, amino acids, nucleotides, energy, cofactors, and vitamins were the
significant predominant functions in each sample, accounting for 40% of the total relative abundance.
Other metabolic pathways were observed abundantly (approximately 70%) in the level 3 KEGG
pathway. There were no significant differences between the three samples at the level 1, level 2, or
level 3 KEGG pathways.
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experiments.

The statistics on the relative abundances of metabolic pathways within each of the KEGG
categories are presented in Figure 8. Cellular mobility is the most common activity in the course
of cellular processes. Membrane transport appears to be abundant in the context of environmental
information processing. At the level of genetic information processing, there was a balanced distri-
bution of activity between translation, transcription, and protein folding, sorting, and degradation,
as well as between transcription and translation. Replication and repair, on the other hand, are the
most active. The metabolism of carbohydrates and amino acids is the most active function during the
metabolic process.
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4. Discussion
Fermentation is one method for improving the nutritional value and sensory properties of a

food while also extending its shelf life [24,25]. In addition, it can also be used to repurpose waste,
such as PP. Due to its high nutritional value, PP can be fermented to produce a functional beverage.
Brown sugar has frequently been used in the production of fermented PP beverages, particularly
by the Mexican people. Tepache is the name of this beverage, which has been used for religious
and medicinal purposes since ancient times. This is because fermented products contain beneficial
bacteria known as probiotics [26].

The analysis of the fermentation results included the profile of the bacterial community and
the function or role of these bacteria in the fermentation process using a metagenomic approach
based on the 16S rRNA gene marker. Metagenomics has proven to be a powerful tool in exploring
the microbial community structure and profile in artificial (such as fermentation) as well as natural
settings [27–29].

Alcohol production occurs spontaneously during the fermentation process of fruits because
it is an induced biochemical oxidation–reduction reaction in which carbohydrates are converted
to ethyl alcohol and CO2 as the primary products, along with several other by-products, by yeast-
produced enzymes [30]. The concentration of ethanol in all samples is very low. The alcohol content
is deliberately low because Indonesia, as a country with a majority Muslim population, has its own
regulations regarding fermented beverages. The percentage of permissible ethanol in fermented
beverages in Indonesia should not exceed 1% [31]. Tepache, which is fermented pineapple peel with
brown sugar and fermented for three days, has also been reported to produce a beverage with a
refreshing and sour taste with a low alcohol content [26].

The fermentation results indicated that Firmicutes was the predominant phylum in all three
samples. Actinobacteria and Proteobacteria were also found in small amounts in the promic and
control samples, respectively. Firmicutes and Proteobacteria have previously been reported to be the
predominant phyla in spontaneous traditional sauerkraut in northern China [32]. Similarly, these two
phyla were the most prevalent in naturally fermented milk in India [33]. Firmicutes was also detected
as the most abundant phylum in Yucha, a traditional Li fermented food [29], in tempeh, an Indonesian
fermented soybean inoculated with Rhizopus spp. [34], and in rice wine Koji in China [35]. In fact, in
addition to Firmicutes, Proteobacteria were discovered to be prevalent in Koji [36]. In the human gut,
Firmicutes, Bacteriodetes, Actinobaceria, and Protebacteria are the four predominant phyla [37,38],
although the balance of these microbial populations may alter due to changes in lifestyle, diet, and
age [39].

W. paramesenteroides was very abundant in the gumer sample, and W. ghanensis was in moderate
amount in the control. W. paramesenteroides has a wide range of habitats, including fermented vegeta-
bles and animal products [40]. Additionally, these bacteria detoxify and perform other biochemical
functions on the cassava tuber, causing acidification and imparting organoleptic properties to certain
fermented foods [41]. On the other hand, W. ghanensis can be found in traditional fermented Ghanaian
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cocoan been [42]. L. harbinensis was predominantly found in promic while L. buchneri was found in
an insignificant number. L. harbinensis was frequently isolated from yogurt and kefir. This species
possesses antifungal properties [43]. Lactobacillus is a type of fermenting bacteria that produces lactic
and acetic acids during the fermentation process. L. buchneri is capable of metabolizing lactic acid to
acetic acid and 1,2-propandiol, hence it has an important role in the bioprocess and food fermentation
industries, though this activity can also result in spoilage [44]. Bifidobacterium adolescentis was found in
promic. Essentially, this species is a critical component of the human gut microbiota and it is capable
of converting the precursor monosodium glutamate (GMS) to GABA [45]. Tepache fermented for
3 days was reported to contain the following bacteria: L. plantarum, L. mesenteroides, Lactobacillus sp.,
L. lactis, Hanseniaspora, Torulopsis inconspicua, Saccharomyces cerevisiae, Pichia membranaefaciens, Candida
queretana [26]. The difference in the types of bacteria produced during Tepache fermentation could be
a result of the raw materials used (PP and brown sugar), with some of the detected species possibly
being indigenous strains of bacteria from the sample location. However, if the fermentation process is
carried out properly, Lactobacillus as the core bacterium will grow to dominate the fermentation results.
Lactic acid bacteria (LAB), primarily Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus,
and Weissella, are prevalent in a wide variety of fermented foods and beverages [46].

Naturally, the bacteria that grow during the fermentation process serve a purpose. Hence,
PICRUSt was used to analyze the functional properties of these bacteria. PICRUSt was designed
to analyze gene families that contribute to the functional profile of bacteria or archae discovered
through 16S rRNA sequencing [23]. Some genes, such as those involved in carbohydrate and protein
metabolism, have been shown to be upregulated. The upregulated function of metabolism suggested
that certain microorganisms were actively involved in the PP fermentation process [47]. Lactobacilli,
which were abundant in the sample promic, are capable of fermenting carbohydrates and generating
lactic acid [48]. Weissella predominated in gumer. They are obligate heterofermentative and are
capable of producing CO2 as a by-product of carbohydrate metabolism, as well as lactic and acetic
acids as major end products of sugar metabolism [49]. Lactococci were abundant in control samples
and were capable of metabolizing carbohydrates to form lactic acid [50]. These bacteria are regarded
as essential probiotics that benefit human health.

Previous research has established that metabolism is the most prevalent pathway among the six
major KEGG pathways [51,52]. According to KEGG level 2, the most prevalent were carbohydrate,
amino acid, cofactor, and vitamin metabolic pathways. Furthermore, replication and repair functions
were active in the microbiome. This implies that the microbial community is critical for energy produc-
tion, cellular component biosynthesis, and nutritional value enhancement of fermented products [53].
This finding implies that, depending on the fermentation environment, the bacterial community has
varying metabolic capabilities and favored functions during each stage of the fermentation process.

5. Conclusions
This study revealed that each of the PP fermentation treatments promoted the growth of

distinct types of bacteria based on high-throughput sequencing using the 16S rRNA gene. The three
samples demonstrated a Firmicutes predominance, indicating that the fermentation process was
proceeding normally. Weissella was found in high abundance in gumer, Lactobacillus predominated
in promic, and Lactococcus was detected in significant numbers in the control. These three bacteria
are classified as probiotics. Functional prediction revealed carbohydrate metabolism was the most
abundant metabolic pathway throughout the fermentation process. However, all bacteria detected
have significant roles in carbohydrate, amino acid, vitamin, and cofactor metabolism, which results
in the production of beneficial metabolites. Utilizing a functional prediction approach enables the
establishment of a benchmark for a fermentation process that is performing normally. This research
should be expanded to include a detailed examination of the metabolites produced by each sample,
as well as a correlation between the microorganisms and flavor compounds, in order to maximize the
use of aroma-producing microorganisms in order to improve the taste of the fermentation products.
In turn, the findings of this study can be used as a starting point for developing functional beverages
with a permissible alcohol content from PP in order to optimally utilize the pineapple industry
by-products.
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11. Cichońska, P.; Ziarno, M. Legumes and legume-based beverages fermented with lactic acid bacteria as a potential carrier of

probiotics and prebiotics. Microorganisms 2022, 10, 91. [CrossRef]
12. Rezac, S.; Kok, C.R.; Heermann, M.; Hutkins, R. Fermented foods as a dietary source of live organisms. Front. Microbiol. 2018,

9, 1785. [CrossRef] [PubMed]
13. Tang, Z.; Zhao, Z.; Wu, X.; Lin, W.; Qin, Y.; Chen, H.; Wan, Y.; Zhou, C.; Bu, T.; Chen, H.; et al. A Review on fruit and vegetable

fermented beverage-benefits of microbes and beneficial effects. Food Rev. Int. 2022, 1–38. [CrossRef]
14. Agyirifo, D.S.; Wamalwa, M.; Otwe, E.P.; Galyuon, I.; Runo, S.; Takrama, J.; Ngeranwa, J. Metagenomics analysis of cocoa bean

fermentation microbiome identifying species diversity and putative functional capabilities. Heliyon 2019, 5, e02170. [CrossRef]
15. Fasesan, D.; Dawkins, K.; Ramirez, R.; Rasheed-Jada, H.; Onilude, A.; Nash, O.; Esiobu, N. Analysis of a tropical warm spring

microbiota using 16S rRNA metabarcoding. Adv. Microbiol. 2020, 10, 145–165. [CrossRef]
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