Table Olive Wastewater as a Potential Source of Biophenols for Valorization: A Mini Review
Abstract
:1. Introduction
2. Table Olive Manufacturing Processes
3. Table Olive Wastewater
- Reuse of cooking bleach: it is a simple operation and requires few complementary installations, as a pump and an auxiliary tank are sufficient. It is a very profitable process, as it takes advantage of the high amounts of NaOH that would be lost. This reduces the volume of discharges, saves water and avoids a large amount of polluting matter.
- Washing elimination: it has been seen that the use of a single washing step could provide a fermentation and a final product that do not differ from those obtained by performing more washes.
- Purification and reuse of brines: until now, the reuse of brines has not been very successful in the industry, as they present suspended solids that give it turbidity (mainly by lactic fermentation). Considering the high polluting power of fermentation brines, which have a large amount of lactic acid, the regeneration of these has been studied for later use.
- Two systems have been developed to remove suspended solids and color:
- Adsorption on active carbon and tangential filtration. One of the main advantages of this method is its versatility, since the properties of the treatment can be adjusted according to the purpose that will be given to the generated brine, thus making the cost as fair as possible and without additional costs [12]. If the brine is intended for packaging, all color must be removed, which demands more amounts of active carbon. However, if it is used for other procedures in the same industry, filtration would be enough, which would be conducted with less active coal. Likewise, the type of coal is decisive, since the chosen one will have one behavior or another. An example is the number of polyphenols that retain each other [13].
- Ultrafiltration through a membrane of a certain pore size (most commonly used on an industrial level). The essential part of this type of treatment is the type of filter membrane, as well as its pore size [14,15,16]. In order to achieve a good rinsing of the brine, it is necessary to use a pore size equal to or less than 1 kDa. Some variables to consider when using this technique are pressure (permeation increases with pressure, operating as much as possible), initial concentration of suspended solids (more, less flow) and temperature (increasing this decreases viscosity, and therefore, favors filtration).
4. Composition of Table Olive Wastewater
5. Biological Activities
6. Identification of Phenolic Compounds in Olive Waste
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olive Global Production Share by Country 2018/2019|Statista. Available online: https://www.statista.com/statistics/937256/share-of-table-olive-production-by-country-global/ (accessed on 1 March 2022).
- Rincón-Llorente, B.; de la Lama-Calvente, D.; Fernández-Rodríguez, M.J.; Borja-Padilla, R. Table Olive Wastewater: Problem, Treatments and Future Strategy. A Review. Front. Microbiol. 2018, 9, 1641–1664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Álvarez-Blanco, S.; Mendoza-Roca, J.A.; Corbatón-Báguena, M.J.; Vincent-Vela, M.C. Valuable Products Recovery from Wastewater in Agrofood by Membrane Processes. In Sustainable Membrane Technology for Water and Wastewater Treatment; Figoli, A., Criscuoli, A., Eds.; Springer: Singapore, 2017; pp. 295–318. ISBN 978-981-10-5621-5 978-981-10-5623-9. [Google Scholar]
- Cardoso, S.M.; Falcão, S.I.; Peres, A.M.; Domingues, M.R.M. Oleuropein/Ligstroside Isomers and Their Derivatives in Portuguese Olive Mill Wastewaters. Food Chem. 2011, 129, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Brenes, M.; Ramírez, E.; García, P.; Medina, E.; de Castro, A.; Romero, C. New Developments in Table Olive Debittering; International Society for Horticultural Science (ISHS): Leuven, Belgium, 2018; pp. 483–488. [Google Scholar]
- Papadaki, E.; Mantzouridou, F.T. Current Status and Future Challenges of Table Olive Processing Wastewater Valorization. Biochem. Eng. J. 2016, 112, 103–113. [Google Scholar] [CrossRef]
- Ayed, L.; Asses, N.; Chammem, N.; ben Othman, N.; Hamdi, M. Advanced Oxidation Process and Biological Treatments for Table Olive Processing Wastewaters: Constraints and a Novel Approach to Integrated Recycling Process: A Review. Biodegradation 2017, 28, 125–138. [Google Scholar] [CrossRef]
- de Castro, A.; Brenes, M. Fermentation of Washing Waters of Spanish-Style Green Olive Processing. Process Biochem. 2001, 36, 797–802. [Google Scholar] [CrossRef]
- Caporaso, N.; Formisano, D.; Genovese, A. Use of Phenolic Compounds from Olive Mill Wastewater as Valuable Ingredients for Functional Foods. Crit. Rev. Food Sci. Nutr. 2017, 58, 2829–2841. [Google Scholar] [CrossRef]
- Huertas-alonso, A.J.; Gavahian, M.; González-serrano, D.J.; Hadidi, M.; Salgado-ramos, M.; Prado Sánchez-Verdú, M.; Simirgiotis, M.J.; Barba, F.J.; Franco, D.; Lorenzo, J.M.; et al. Valorization of Wastewater from Table Olives: NMR Identification of Antioxidant Phenolic Fraction and Microwave Single-Phase Reaction of Sugary Fraction. Antioxidants 2021, 10, 1652. [Google Scholar] [CrossRef]
- Ferrer-Polonio, E.; Mendoza-Roca, J.A.; Iborra-Clar, A.; Alonso-Molina, J.L.; Pastor-Alcañiz, L. Biological Treatment Performance of Hypersaline Wastewaters with High Phenols Concentration from Table Olive Packaging Industry Using Sequencing Batch Reactors. J. Ind. Eng. Chem. 2016, 43, 44–52. [Google Scholar] [CrossRef]
- Achak, M.; Hafidi, A.; Ouazzani, N.; Sayadi, S.; Mandi, L. Low Cost Biosorbent “Banana Peel” for the Removal of Phenolic Compounds from Olive Mill Wastewater: Kinetic and Equilibrium Studies. J. Hazard. Mater. 2009, 166, 117–125. [Google Scholar] [CrossRef]
- Sabbah, I.; Marsook, T.; Basheer, S. The Effect of Pretreatment on Anaerobic Activity of Olive Mill Wastewater Using Batch and Continuous Systems. Process Biochem. 2004, 39, 1947–1951. [Google Scholar] [CrossRef]
- El-Abbassi, A.; Kiai, H.; Raiti, J.; Hafidi, A. Application of Ultrafiltration for Olive Processing Wastewaters Treatment. J. Clean. Prod. 2014, 65, 432–438. [Google Scholar] [CrossRef]
- Kiai, H.; García-Payo, M.C.; Hafidi, A.; Khayet, M. Application of Membrane Distillation Technology in the Treatment of Table Olive Wastewaters for Phenolic Compounds Concentration and High Quality Water Production. Chem. Eng. Process. Process Intensif. 2014, 86, 153–161. [Google Scholar] [CrossRef]
- Hadidi, M.; Khaksar, F.B.; Pagan, J.; Ibarz, A. Application of Ultrasound-Ultrafiltration-Assisted Alkaline Isoelectric Precipitation (UUAAIP) Technique for Producing Alfalfa Protein Isolate for Human Consumption: Optimization, Comparison, Physicochemical, and Functional Properties. Food Res. Int. 2020, 130, 108907. [Google Scholar] [CrossRef] [PubMed]
- Ferrer-Polonio, E.; Carbonell-Alcaina, C.; Mendoza-Roca, J.A.; Iborra-Clar, A.; Álvarez-Blanco, S.; Bes-Piá, A.; Pastor-Alcañiz, L. Brine Recovery from Hypersaline Wastewaters from Table Olive Processing by Combination of Biological Treatment and Membrane Technologies. J. Clean. Prod. 2017, 142, 1377–1386. [Google Scholar] [CrossRef]
- Hadidi, M.; Majidiyan, N.; Jelyani, A.Z.; Moreno, A.; Hadian, Z.; Khanegah, A.M. Alginate/Fish Gelatin-Encapsulated Lactobacillus Acidophilus: A Study on Viability and Technological Quality of Bread during Baking and Storage. Foods 2021, 10, 2215. [Google Scholar] [CrossRef] [PubMed]
- Aghamohammadi, B.; Morshedi, A.; Akbarian, M.; Akbarian, A.; Hadidi, M.; Moayedi, F. Effect of high pressure processing of food characteristics: A review of quality aspect. Int. J. Biosci. 2014, 4, 193–205. [Google Scholar] [CrossRef]
- Kamm, B.; Gruber, P.R.; Kamm, M. Biorefineries-Industrial Processes and Products; Status Quo and Future Directions; Wiley-VCH Verlag GmbH & Co: Weinheim, Germany, 2006. [Google Scholar]
- Matharu, A.S.; de Melo, E.M.; Houghton, J.A. Opportunity for High Value-Added Chemicals from Food Supply Chain Wastes. Bioresour. Technol. 2016, 215, 123–130. [Google Scholar] [CrossRef]
- Majidiyan, N.; Hadidi, M.; Azadikhah, D.; Moreno, A. Protein Complex Nanoparticles Reinforced with Industrial Hemp Essential Oil: Characterization and Application for Shelf-Life Extension of Rainbow Trout Fillets. Food Chem. X 2022, 13, 100202. [Google Scholar] [CrossRef]
- Hesami, G.; Darvishi, S.; Zarei, M.; Hadidi, M. Fabrication of Chitosan Nanoparticles Incorporated with Pistacia Atlantica Subsp. Kurdica Hulls’ Essential Oil as a Potential Antifungal Preservative against Strawberry Grey Mould. Int. J. Food Sci. Technol. 2021, 56, 4215–4223. [Google Scholar] [CrossRef]
- Corma, A.; Iborra, S.; Velty, A. Chemical Routes for the Transformation of Biomass into Chemicals. Chem. Rev. 2007, 107, 2411–2502. [Google Scholar] [CrossRef]
- Parinos, C.S.; Stalikas, C.D.; Giannopoulos, T.S.; Pilidis, G.A. Chemical and Physicochemical Profile of Wastewaters Produced from the Different Stages of Spanish-Style Green Olives Processing. J. Hazard. Mater. 2007, 145, 339–343. [Google Scholar] [CrossRef] [PubMed]
- Zahi, M.R.; Zam, W.; el Hattab, M. State of Knowledge on Chemical, Biological and Nutritional Properties of Olive Mill Wastewater. Food Chem. 2022, 381, 132238. [Google Scholar] [CrossRef] [PubMed]
- Obied, H.K.; Allen, M.S.; Bedgood, D.R.; Prenzler, P.D.; Robards, K.; Stockmann, R. Bioactivity and Analysis of Biophenols Recovered from Olive Mill Waste. J. Agric. Food Chem. 2005, 53, 823–837. [Google Scholar] [CrossRef] [PubMed]
- Haghani, S.; Hadidi, M.; Pouramin, S.; Adinepour, F.; Hasiri, Z.; Moreno, A.; Munekata, P.E.S.; Lorenzo, J.M. Application of Cornelian Cherry (Cornus mas L.) Peel in Probiotic Ice Cream: Functionality and Viability during Storage. Antioxidants 2021, 10, 1777. [Google Scholar] [CrossRef]
- Ramírez, E.; Brenes, M.; de Castro, A.; Romero, C.; Medina, E. Oleuropein Hydrolysis by Lactic Acid Bacteria in Natural Green Olives. LWT-Food Sci. Technol. 2017, 78, 165–171. [Google Scholar] [CrossRef]
- Mousouri, E.; Melliou, E.; Magiatis, P. Isolation of Megaritolactones and Other Bioactive Metabolites from “Megaritiki” Table Olives and Debittering Water. J. Agric. Food Chem. 2014, 62, 660–667. [Google Scholar] [CrossRef]
- Cavaca, L.A.S.; Rodrigues, C.A.B.; Simeonov, S.P.; Gomes, R.F.A.; Coelho, J.A.S.; Romanelli, G.P.; Sathicq, A.G.; Martínez, J.J.; Afonso, C.A.M. Valorization of Oleuropein via Tunable Acid-Promoted Methanolysis. ChemSusChem 2018, 11, 2300–2305. [Google Scholar] [CrossRef] [Green Version]
- de Marco, E.; Savarese, M.; Paduano, A.; Sacchi, R. Characterization and Fractionation of Phenolic Compounds Extracted from Olive Oil Mill Wastewaters. Food Chem. 2007, 104, 858–867. [Google Scholar] [CrossRef]
- Alagna, F.; Mariotti, R.; Panara, F.; Caporali, S.; Urbani, S.; Veneziani, G.; Esposto, S.; Taticchi, A.; Rosati, A.; Rao, R.; et al. Olive Phenolic Compounds: Metabolic and Transcriptional Profiling during Fruit Development. BMC Plant Biol. 2012, 12, 162. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Gutiérrez, G.; Duthie, G.G.; Wood, S.; Morrice, P.; Nicol, F.; Reid, M.; Cantlay, L.L.; Kelder, T.; Horgan, G.W.; Fernández-Bolaños Guzmán, J.; et al. Alperujo Extract, Hydroxytyrosol, and 3,4-Dihydroxyphenylglycol Are Bioavailable and Have Antioxidant Properties in Vitamin E-Deficient Rats—A Proteomics and Network Analysis Approach. Mol. Nutr. Food Res. 2012, 56, 1131–1147. [Google Scholar] [CrossRef]
- Giacomazza, D.; D’Andrea, D.; Provenzano, A.; Picone, P.; Provenzano, F.; Guarrasi, V.; Raimondo, M.; San Biagio, P.L.; Passantino, R.; Mangione, M.R.; et al. The Precious Content of the Olive Mill Wastewater: The Protective Effect of the Antioxidant Fraction in Cell Cultures. CyTA-J. Food 2018, 16, 658–666. [Google Scholar] [CrossRef] [Green Version]
- Ghio, A.J.; Carraway, M.S.; Madden, M.C. Composition of Air Pollution Particles and Oxidative Stress in Cells, Tissues, and Living Systems. J. Toxicol. Environ. Health Part B 2012, 15, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Chasekioglou, A.N.; Goula, A.M.; Adamopoulos, K.G.; Lazarides, H.N. An Approach to Turn Olive Mill Wastewater into a Valuable Food By-Product Based on Spray Drying in Dehumidified Air Using Drying Aids. Powder Technol. 2017, 311, 376–389. [Google Scholar] [CrossRef]
- Hadidi, M.; Jafarzadeh, S.; Forough, M.; Garavand, F.; Alizadeh, S.; Salehabadi, A.; Khaneghah, A.M.; Jafari, S.M. Plant Protein-Based Food Packaging Films; Recent Advances in Fabrication, Characterization, and Applications. Trends Food Sci. Technol. 2022, 120, 154–173. [Google Scholar] [CrossRef]
- Galanakis, C.M.; Tsatalas, P.; Galanakis, I.M. Implementation of Phenols Recovered from Olive Mill Wastewater as UV Booster in Cosmetics. Ind. Crops Prod. 2018, 111, 30–37. [Google Scholar] [CrossRef]
- Bouaziz, M.; Lassoued, S.; Bouallagui, Z.; Smaoui, S.; Gargoubi, A.; Dhouib, A.; Sayadi, S. Synthesis and Recovery of High Bioactive Phenolics from Table-Olive Brine Process Wastewater. Bioorg. Med. Chem. 2008, 16, 9238–9246. [Google Scholar] [CrossRef] [PubMed]
- Belaqziz, M.; Tan, S.P.; El-Abbassi, A.; Kiai, H.; Hafidi, A.; O’Donovan, O.; McLoughlin, P. Assessment of the Antioxidant and Antibacterial Activities of Different Olive Processing Wastewaters. PLoS ONE 2017, 12, e0182622. [Google Scholar] [CrossRef]
- Fernández-Prior, Á.; Bermúdez-Oria, A.; Millán-Linares, M.D.C.; Fernández-Bolaños, J.; Espejo-Calvo, J.A.; Rodríguez-Gutiérrez, G. Anti-Inflammatory and Antioxidant Activity of Hydroxytyrosol and 3,4-Dihydroxyphenyglycol Purified from Table Olive Effluents. Foods 2021, 10, 227. [Google Scholar] [CrossRef]
- Brenes, M.; de Los Santos, B.; Aguado, A.; de Castro, A.; García, P.; Romero, C. Assessment of the Antimicrobial and Fertilizing Activity of Table Olive Concentrated Waste Streams During Their Shelf Life. Waste Biomass Valorization 2021, 13, 2083–2093. [Google Scholar] [CrossRef]
- Ogrinc, N.; Košir, I.J.; Spangenberg, J.E.; Kidrič, J. The Application of NMR and MS Methods for Detection of Adulteration of Wine, Fruit Juices, and Olive Oil. A Review. Anal. Bioanal. Chem. 2003, 376, 424–430. [Google Scholar] [CrossRef]
- Lisec, J.; Schauer, N.; Kopka, J.; Willmitzer, L.; Fernie, A.R. Gas Chromatography Mass Spectrometry–Based Metabolite Profiling in Plants. Nat. Protoc. 2006, 1, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Gebretsadik, T.; Linert, W.; Thomas, M.; Berhanu, T.; Frew, R. LC–NMR for Natural Product Analysis: A Journey from an Academic Curiosity to a Robust Analytical Tool. Science 2021, 3, 6. [Google Scholar] [CrossRef]
- Belaid, C.; Khadraoui, M.; Mseddi, S.; Kallel, M.; Elleuch, B.; Fauvarque, J.F. Electrochemical Treatment of Olive Mill Wastewater: Treatment Extent and Effluent Phenolic Compounds Monitoring Using Some Uncommon Analytical Tools. J. Environ. Sci. 2013, 25, 220–230. [Google Scholar] [CrossRef]
- Khallouki, F.; Hull, W.E.; Würtele, G.; Haubner, R.; Erben, G.; Owen, R.W. Isolation of the Major Phenolic Compounds in the Pits of Brined Green Olive Drupes: Structure Elucidation by Comprehensive 1H/13C-NMR Spectroscopy. Nat. Prod. Commun. 2019, 14, 203–221. [Google Scholar] [CrossRef] [Green Version]
- Dais, P.; Boskou, D. Detection and Quantification of Phenolic Compounds in Olive Oil, Olives, and Biological Fluids. In Olive Oil Minor Constituents and Health; Boskou, D., Ed.; CRC PressTaylor and Francis Group: Boca Raton, FL, USA, 2009; pp. 55–107. ISBN 978-1-4200-5993-9. [Google Scholar]
- Christophoridou, S.; Dais, P. Novel Approach to the Detection and Quantification of Phenolic Compounds in Olive Oil Based on 31P Nuclear Magnetic Resonance Spectroscopy. J. Agric. Food Chem. 2006, 54, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Owen, R.W.; Haubner, R.; Mier, W.; Giacosa, A.; Hull, W.E.; Spiegelhalder, B.; Bartsch, H. Isolation, Structure Elucidation and Antioxidant Potential of the Major Phenolic and Flavonoid Compounds in Brined Olive Drupes. Food Chem. Toxicol. 2003, 41, 703–717. [Google Scholar] [CrossRef]
- Sandvoss, M.; Roberts, A.D.; Ismail, I.M.; North, S.E. Direct On-Line Hyphenation of Capillary Liquid Chromatography to Nuclear Magnetic Resonance Spectroscopy: Practical Aspects and Application to Drug Metabolite Identification. J. Chromatogr. A 2004, 1028, 259–266. [Google Scholar] [CrossRef]
- Christophoridou, S.; Dais, P.; Tseng, L.-H.; Spraul, M. Separation and Identification of Phenolic Compounds in Olive Oil by Coupling High-Performance Liquid Chromatography with Postcolumn Solid-Phase Extraction to Nuclear Magnetic Resonance Spectroscopy (LC-SPE-NMR). J. Agric. Food Chem. 2005, 53, 4667–4679. [Google Scholar] [CrossRef]
Parameters | Debittering Process Wastewaters | Washing Process Wastewaters | Fermentation Process Wastewaters |
---|---|---|---|
COD (mg/L) | 9390 | 13,630 | 18,910 |
BOD5 (mg/L) | 3115 | 4640 | 6050 |
pH | 12.99 | 11.52 | 4.30 |
Conductivity (ms/cm) | 11.13 | 10.17 | 53.10 |
Color | 1.96 | 1.44 | 0.49 |
Total phenols (mg/L) | 211.2 | 446.1 | 182.1 |
Total phenolic compounds (mg/L) | 80.39 | 117.23 | 76.41 |
Benzoic acid | 0.93 | 1.50 | 0.80 |
2-Phenoxyethanol | 1.39 | 2.76 | 0.27 |
Cinnamic acid | 1.67 | 1.23 | N.D |
Tyrosol | 16.33 | 47.40 | 16.83 |
Phenylacetic acid | 8.09 | 1.79 | 1.69 |
3,4-Dimethoxybenzoic acid | 1.86 | 10.91 | 3.96 |
Vanillic acid | 5.55 | 5.43 | 2.69 |
Hydroxytyrosol | 9.69 | 16.21 | 6.09 |
3,4-Dihydroxybenzoic acid | 10.26 | 1.52 | 0.26 |
Syringic acid | N.D | 10.25 | 4.59 |
4-Hydroxycinnamic acid | 4.18 | 6.00 | 1.33 |
Dibutyl phthalate | 7.03 | 9.71 | 32.82 |
Gallic acid | 5.09 | 0.96 | 3.89 |
Ferullic acid | 2.00 | 1.56 | 1.00 |
Caffeic acid | 6.32 | N.D | 0.19 |
Total organic acids (mg/L) | 27.38 | 27.20 | 157.23 |
Total amino acids (mg/L) | 31.82 | 46.31 | 13.74 |
Total sugars (mg/L) | 149.33 | 193.4 | 63.99 |
Biological Activity | Remarks | [Ref] |
---|---|---|
Antioxidant | Hydroxytyrosol was isolated from table olive effluents (4127 μmol of Trolox/mmol of active molecule) | [42] |
DPPH and ABTS scavenging radicals activities of table olive wastewater extract were 8.91 IC50 (μg/mL) and 2.06 (TEAC mmol) | [40] | |
Table olive processing wastewaters extracts had high DPPH radical scavenging activities | [41] | |
Cytotoxicity | Table olive wastewater extract had growth inhibition effects on human cells in a dose-dependent manner. HeLa and DG75 cell lines showed the highest sensitivity to the cytotoxic actions of the extract | [40] |
Anti-inflammatory | Hydroxytyrosol isolated from table olive effluents inhibited the gene expression of any pro-inflammatory cytokine | [42] |
Antimicrobial | Positive activity against S. aureus was demonstrated from table olive processing wastewaters | [41] |
Table olive wastewaters showed in vitro antimicrobial activity against the bacteria Erwinia amylovora and Pseudomonas syringae, and the Oomycota Phytophthora sp | [43] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huertas-Alonso, A.J.; Gonzalez-Serrano, D.J.; Hadidi, M.; Salgado-Ramos, M.; Orellana-Palacios, J.C.; Sánchez-Verdú, M.P.; Xia, Q.; Simirgiotis, M.J.; Barba, F.J.; Dar, B.N.; et al. Table Olive Wastewater as a Potential Source of Biophenols for Valorization: A Mini Review. Fermentation 2022, 8, 215. https://doi.org/10.3390/fermentation8050215
Huertas-Alonso AJ, Gonzalez-Serrano DJ, Hadidi M, Salgado-Ramos M, Orellana-Palacios JC, Sánchez-Verdú MP, Xia Q, Simirgiotis MJ, Barba FJ, Dar BN, et al. Table Olive Wastewater as a Potential Source of Biophenols for Valorization: A Mini Review. Fermentation. 2022; 8(5):215. https://doi.org/10.3390/fermentation8050215
Chicago/Turabian StyleHuertas-Alonso, Alberto J., Diego J. Gonzalez-Serrano, Milad Hadidi, Manuel Salgado-Ramos, Jose C. Orellana-Palacios, M. Prado Sánchez-Verdú, Qiang Xia, Mario J. Simirgiotis, Francisco J. Barba, Basharat Nabi Dar, and et al. 2022. "Table Olive Wastewater as a Potential Source of Biophenols for Valorization: A Mini Review" Fermentation 8, no. 5: 215. https://doi.org/10.3390/fermentation8050215
APA StyleHuertas-Alonso, A. J., Gonzalez-Serrano, D. J., Hadidi, M., Salgado-Ramos, M., Orellana-Palacios, J. C., Sánchez-Verdú, M. P., Xia, Q., Simirgiotis, M. J., Barba, F. J., Dar, B. N., & Moreno, A. (2022). Table Olive Wastewater as a Potential Source of Biophenols for Valorization: A Mini Review. Fermentation, 8(5), 215. https://doi.org/10.3390/fermentation8050215